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Abstract: In this paper, we introduce a new approach to solving fractional initial and boundary value
problems involving a heat equation, a wave equation, and a telegraph equation by modifying the
double Sumudu transform of the fractional type. We discuss a modified double conformable Sumudu
transform together with the conditions for its existence. In addition, we prove some more properties
of the fractional-type Sumudu transform, including convolution and other properties, which are well
known for their use in solving various symmetric and asymmetric problems in applied sciences and
engineering.
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1. Introduction

Fractional differential equations appear widely in various applied sciences and en-
gineering applications in order to improve the quality of modeling and better describe
real-world problems, which include economic, physical, electrical, and biological applica-
tions, among many others. One can refer, for instance, to [1] and the references therein,
where a good review of the applications of fractional differential equations in economics
was given, and to [2] for applications in the circuit domain, in which a time-fractional RC
circuit model was considered. Still, a similar fractional mathematical model can be used to
better model other types of circuits, such as RLCG circuits, as in [3].

Importantly, an exciting advancement in theoretical physics and nonlinear sciences
will be the development of methods for finding the exact solutions of nonlinear partial
differential equations that include equations of the fractional type. Such solutions play an
important role in the nonlinear sciences, which can lead to further applications.

Regarding fractional definitions, in [4], a new fractional definition that was called the
conformable fractional derivative was introduced and was defined as follows: For a given
function ¢: [0,00) — R, the conformable fractional derivative of order ¢ is given by

DO (x) = lim £+ D90 g ¢ (0,1],
e—0

This definition is very easy to use when calculating derivatives and solving fractional
differential equations compared with other fractional definitions, such as the definitions of
Liouville-Riemann and Caputo fractional derivatives. Moreover, one of its most interesting
advantages is that it can be easily used to generalize many integral transforms, such as
Laplace and Sumudu transforms. Various modifications of the original definition were
proposed by many researchers; see, for instance, [5] and the references therein.

Recently, several powerful methods have been developed to obtain the exact solutions
for conformable fractional partial differential equations, such as the reliable methods
in [6,7], the single and double Laplace transform methods in [8-10], and the double Shehu
transform in [11].
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Interestingly, in [9], Ozkan et al. introduced a definition of the conformable fractional
double Laplace transform and some of its properties, which were used to solve some
conformable fractional partial differential equations and will be important in what follows
here in this work. These were defined as follows: For a given function ¢: [0, 0) x [0, c0) —
R, the conformable fractional double Laplace transform of order ¢y, 9; € (0, 1] is given as

_x02 1
LOLEW ) =¥ s = [ [T P () oy

Over the years, transform methods, including the Sumudu transform, have been
proven to be efficient methods for solving many symmetric and asymmetric real-life
problems in applied sciences and engineering. In [12], the authors presented a single
Sumudu transform, and in [13], a conformable double Sumudu transform was presented in
order to solve partial differential equations of the conformable fractional type. The authors
of [14] used the double Sumudu transform in order to obtain solutions of a space-time
telegraph equation. In [15], with the use of a double Sumudu transform, Mohamed et al.
presented numerical solutions to the conformable fractional coupled Burger’s equation.

In this paper, we modify the definition of the double Sumudu transform and prove
some more of its properties, including its convolution properties, which have not been
proven in the literature. In addition, we prove its existence under some certain conditions.
Moreover, we use this modification to give exact solutions of some important conformable
fractional differential equations, including the heat equation, the wave equation, and the
telegraph equation. Our modification is based on the use of the conformable fractional
integral defined by Khalil et al. [4], which is different from what one can find in the
literature.

2. Double Conformable Sumudu Transform

In this section, we introduce the double conformable Sumudu transform and some of
its properties that can be used later in order to solve some conformable fractional differential
equations.

Definition 1. A function 1 of two variables is said to be conformable and exponentially order-
%2
bounded if |(x,t)| < MeH TRy , where M, k1,ko > 0and 0 < 91,8, <1, for all sufficiently

large x and t.

Definition 2. Let ¢: [0,00) X [0,00) — R be a piecewise continuous function of conformable and
exponentially order-bounded % + %, k1 ko > 0. Then, the double conformable Sumudu transform
of ¥ is defined as:

5591 i;z [47(X t)}(/\l A2) )\1)\2/ / e A1192 A2!91 1p(x t)dlgltdgz
where A, Ay € C, 81,0 € (0,1], and dyg, t = th-1g¢ dg,x = x2=14x.

Theorem 1. If ¢ is piecewise continuous on [0,00) x [0,00) and conformable and exponen-
tially order-bounded for % + é,kl,kz > 0, then the double conformable Sumudu transform

Sglsgz [p(x, )] (A, 2,) EXists for %e(%l + %2) > % + klj and converges absolutely.
Proof. Since 1 is conformable and exponentially order-bounded for % + é, ki,ky > 0, then
3 x9, to, M1, k1, ky > 0 such that

2 %1
lp(x,t)| < M1e"1"‘2+’f2”1 Vx > xg,Vt > to.
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In addition, ¢ is piecewise continuous on [0, xo] x [0, to], i.e

[W(x,t)| < Mp,V(x,t) € [0,x0] x [0, to].

2 %
Since e*1%2 k2% hasa positive minimum on [0, o) x [0, %), we can choose a sufficiently
large value of M such that

P2

[(x, )| < Meki®2 k201 x> 0,Vt > 0.

1 1 4 1 1l _ 1, 15
Therefore, if = ettt and el i then

%1

A
fo f ¢ Aty R0 (x, t)dg, t dg,x

v | AR EE AL o 1 g1
A0y " A0 MokiOy T k0 $01—1 00—
Sfofoe 192 20 Mekida ' kdy ¢ X

dt dx

(ryaNS2 (12 B2
[(“1+“21) 2 +<b1+b )0 ]Mek1’92+Wtﬁ1_1xl92_l df dx

= fov for

(3N

RIS I - | B W W W i B
= fO’Y OT e(kl “1) % e<"2 b1) % |le® B ||ef2 &1 | MtP1—1x02-1 d¢ dx
1) || = 11y i

= Mf07 g(kl “1) % (lem2 %2 |x%2 1dxf e(kz bl) % ||ef2 B1 #9114t

) 9

r< 11 —i — 1_1 —i
_ % |, \F oy ol 0 |\ o )| o5 ! ; _x2 g
=M [, e( L) e |dh |, e( ) e |dl (by letting h = %>, 1 = %)

702 01
11 [ 11\, |7
11y 2 (777)1 1
_Mg(kl ”1) e\k2 by
- 1 _ 1 1 _ 1
k a k b
1 1 0 2 1 0
(ifi)ﬁ (L,L>ﬂ
_ e\l 1) % 1 e\e )% 1
- 1 _ 1 T I T 1 _ 1 T 1T
koo koo ky by ky by

1 1) _ 1 1 1 1
Now,as'y—>oo,T—>oo,and§Re<A—l+A—2) _H+E> E—kg,wehave

1 1
<M<1_1> (1_1>‘
k  m ky b

Definition 3. (Single conformable Sumudu transform of a function with two variables.)
Let ¢ : [0, 00) X [0 oo) — R be a piecewise continuous function of conformable and exponen-
tially order- bounded Tt k , ki ko > 0. Then:

e Azﬂup(x t)dg, t dg,x

O



Symmetry 2022, 14, 2249

40f 15

(1) The conformable Sumudu transform with respect to x of P(x, t) is defined by

X )

1 > _x2
ng[lp( )]()\1) A1/ e Alﬂzlp(xlt)dﬂzx/

where Ay € C, 9, € (0,1] and dg,x = x02-1gx.
(2) The conformable Sumudu transform with respect to t of Y (x, t) is defined by

%1

1 oo
S [(x, )] 1) = ™ / e 2% p(x, £)dy,t,
where Ay € C, 91 € (0,1], and dg,t = t9171dt.

Note that if the order transformation of i(x, t) can be changed [16], then

M )
/\1)\2 Joo Jo et Azl?”/’(x t)dg,t dg,x = AZM Jo Jo e 2 Al&zl/’(x t)dg,x dy, t.

So,
So, S5, [0 (x, )] (3, 0y = 55,56, [P D] (2, 1,)-

Theorem 2. Let (x,t), ¢(x,t) be two functions that have the double conformable Sumudu
transform. Then,
(1) Sg, S5, [a(x, 1) + 09 (x, )] 1, ;) = @S5, S5, [ (%, )1, 0,) + 0S5, S5, [0, D] a0,

d2 %

(2) 559151’;2 (6 B hep(x, t) = msfﬁsl@z [lp(x,t)]( M Ao )

A{+cq’ Ay+c
(AM72) T

(3) 8591 ng [lp(’)/x/ Aut)] ()\1,/\2) = 5591 ng [lp(x’ t)] (/\1')/‘92,/\2]4‘91 ) .

Proof. Let ¢(x,t), ¢(x,t) be two functions that have the double conformable Sumudu
transform. Then, we have:
For point (1):

501 g2 [alp(x t) +b(]>(x t)} (A7)
N mz/ / o e (0, 1) + bg(x, )y gy

£%1
= Az/h/ / e Maf W’th x,t)dg,x dﬂlt+b/\)L / / e Azf’l "1”245 x,t)dg,x dg, t

= 45191513;2 [ (x, )] (7, 00) + b5ﬁ15§2 [P, )] (A 00)-
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For

point (2):
W 01
(o)
(A1,A2)

M2 %
e Al 192 A2191 e %o Nay(x,t) |de t dex
A1A2 / / ( v )) v

1) %

1 1 1
AlAz/ / Girea) =GB g e, oy
/\+c Ag+c
/ / B ﬁ i*(%)ﬁlp(x,t)dﬁtdﬂx
)\1)\2 1 2

c1c2 () ()
f : £)d,t d
@@+ A+ ) G Al)\z/ fe TR P gt dx
%2

C(Mter )22 (Aptep ) 1
A 7 A 7
Aicy A fo /O ¢ ( 151) ’ ( 262) 11/)(x’t)dl9ltdl9zx
(c14A1) (c2+A2)

1

B2
c1+A1)(c2+A2)
1 Aty

C1C2
(c1+A1)(c2 +A2)

C1C2 t x
S x/t C C .
(c1+ M) (2 +22) " a9 )](ﬂ}]r,\ﬁé)

Finally, we have, for point (3):

S, S5, (7%, W)}(Al )

— A19
)\1)\2/ / ¢

Az”l PY(yx, ut)de, t dg,x

1 oo _ %
— AL? A0 Ad d
et e 214?(736#)01] x

%2
— i/we*)‘lﬂz 1
A1 Jo A

o
o

00—
= 1 / e Mo
A ’)/192 0

- )\17192)\2;4191/ / ¢
B Aﬂﬁz/\zﬂﬂl/ / ‘

&y

0 — &
/o e "2 (yx, {o)dg, o | do,x (by letting {5 = pit)

2
0!

/Ooo e Mo ¥(C1,02)d9, G2 | do, 01 (by letting {1 = x)

)\2‘1/[191
0

o
sz 2 na0u (71, 8o)d, Cada,Ca

0

_tr
)\1027 W)

1
11 4 (x, t)dg,t dg,x (since {1, {2, x,t are dummy variables)

Sﬂl 192 [l/)(x, t)] (Alry”z,A2;401)/

and hence, the proof is complete. [

The

following theorem gives some important relations, including a relation between

the double Laplace transform defined in [9] and the double Sumudu transform.

Theorem 3. Let §: [0,00) X [0,00) — R be a given function and 91,9, € (0,1]. Then,

(1) Sy S5, [0 D] 0 = /\11)\2313192[1;’( )](i

@) S, Sy Dl = 55" 910205 @0 )|

1\, Where
My

gﬂlgﬂz[ x t ps) - / / 717@7 01 lp(x t)dﬂltdﬂz

(/\1,/\2).
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mﬂz t11t91 gm+n

(3) (—1)m+nsglsi§ |: o or ll«’( )} (A1) = )\11/\2 a)\ma)Ln |:/\l/\2S S [lp( )]()\1,/\2)]‘

Proof. Let ¢ be a given function and let ¢y, 9, € (0, 1]. Then, we have:

For point (1):
02
S, S50 o = 1 o [ ¢ 5 (D gy
=X@ﬂM%wn&@.
For point (2):

2
oy A2”1 P(x, t)dﬁlt dg,x.

S, S5 00 Do = s o e

By letting | = %, h= x&z, we have

1 1
/\L‘) T A0 /\ -3 = +
/\1/\2/ / e M% zlllJ(x t)dp t dg,x = /\1/\2/ / e M 21/;( (82h) %2, (11) 1)d1 dh.

Since t, x, I, h are dummy variables, we have

7\17\2/ / ¢ i le((l%h)ﬂz (1911)‘91> dl dh
N )\1)\2/ / AT (‘929‘) (191t)”11> dt dx

_ gigr [lp((z‘}zx)”z (ﬁlt)&ll>:|(/\1,)\2).

For point (3), (by Theorem 2.1 in [9]):

m192 tnﬁ]

m+n
( ) 5191 192[ ﬁm 1911 ¢( )}(Al,)tz)

1 i ) X m192 ndy
=AM>+ﬁﬁbdm>h)wm

1 1
A7 A

— 1W[$ﬂ1$02[¢(x t)] }
Mdg aagoag [Tt T WAL

oo AMA2SL S3 t by 1
= mw[ 14294, 02[1P(x/ )]()\1,/\2)} (by 1)),

and hence, the proof is complete. O

Theorem 4. The Sumudu transform St Sy [1[J(x, t)]( A),) I8 as follows for some functions:

1. sﬁlsﬁz /\1 Ay) = where c is constant

t a +bt _ 1
2. 545, [ B2 1 = A=ar)(=1y)"
(A,A2)
t gx L _ _ah
3 51915192 [sina’g } Ahg) - THER
t
4, [c ag:

L)

1
= —>5.
} A2) 1+a%A%

_a)
- f
(AM,A2)
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x02
6. Sy S3 ll —e'%

Gl
togx A x%2 - Al
7. 51915192 [(1 et ) cosb [ 1 T (142A2) (1-a)y)
(AM,A2)

Proof. We will prove 2 and 7. The other cases are similar.

For 2., we have
t X aX T +bt
59,55, [ 2
(A1, /\2)

+%2 22 %

bt
= MO \2191 45, L
)L1)L2/ / e e do,t dg,x

1 o _f gt 1 o it
= —/ e Mo dg,x —/ e Ml a dg,t

Al 0 A2 Jo

n bt
= S, <eu B Shle ™
M (A2)

1 1 1
1 —11/\1 1 —b}\zi (1 —(Z)\l)(l —b/\z).

For 7., we have

s 8
S, 5%, [(1—8 g > cosb%}
2 100
A0 Ao ”tgi x%2
= )\1)\2/ / e M2 M [1—¢ % cosbﬁ—Zdlgltdgzx
1 oo _a% x02 1 oo ,ﬁ o
— _ A0 S _ 1 _ N
(M/O e 1zcosbl92d192x><)\2/0 e ¢ 7 dg, t
L)) '91
= i;z (COS b%) 5;‘91 (1 76‘7 kN >
2/ M (A2)

1 —ﬂ/\z —a)\z

140202 1—aky (1+02A2)(1 —ady)’

O
Theorem 5. Let (x,t)and ¢(x, t) have a double Sumudu transform. Then,

86,55, [(¥+¢) (X, )] (2, ny) = 117428, S5, [¥(x, )] (1, 1, S, S5, (9%, D], 0,

where

)ty = [ [ 9@mote—g,t-n)dt dn.
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b3, [D'9(x,1)|

Proof. Using Theorem 3 (part (2)) and Theorem 3.1 in [17], we have

S, S5, [(¥50) (%, )] (1, 0y)

)(x
= st"{ Px) < (%) W, (t1t) f}ﬂ
(A1,A2)
= AApSiS* (z?zx )%, (04t) 01)} Sts* {gb((ﬁzx)ﬂlz,(ﬁlt)ﬂll)]
(A1,A2) (AMA2)

= AlAzsﬂl 02 [lp(x’ t)] ()\1,/\2)5191 Sl’;z [(P(x’ t)] ()\1,/\2) :

O

Theorem 6. The double conformable Sumudu transforms of the 01-th- and O,-th-order fractional
partial derivatives are given by:

1
Sélsgz[Dg2‘lJ(x/f)LM,Az) = /\*15591 B, — Sal[lP( Bl o.00)7
1

1
S Sk [DPe 0] = TS SLIPE Do, — 3 ST 000

where Dﬁzlp(x, t)and D?l P(x, t) are Op-th- and &1-th-order fractional partial derivatives, respectively.

Proof. Using Theorem 2.5 in [12], Lemma 2.1 in [9], and Theorem 3, we have

5,55, | DEW(x,1)| o

N [D,‘Zzlp(x,t)} (

N )
1 1 9 0 o
= L2 — L (0,
o AL 1y - 2RO
_ i 1 91 ot _ 1 &
— " Al)\ziﬂt 2y [4’(x, t)]<%’i )\1)\2% [lP(O,t)](O,i)

_ 11 191 192

1
= A—lsl@l §2[¢(x,t)](A1,A2>—flsv@l[‘/’(o'f)](o/m

In addition,

o2 9 19
(A1,A2) )\173 e 2[ tlw(x,t)](

- T L) ) - 20 )

— 1 1 191 % _ ii 0,

B )Lz )Ll)tz g [ll)( H(ﬁ[%) Ay Algx [l/J( /0)]<%,0>
1
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Theorem 7. Let 81,9, € (0,1] and m,n € N such that ¢ € CF(R* x R*), k = max(m,n). Let
the conformable Sumudu transforms of the functions {(x, t), D;ﬂzlp(x, t), D{&] Y(x,t),i=1,...,m,
j=1,...,nexist. Then,

0
Sgls@ [D;‘n i t)} (A7)

= ﬁsﬁlsﬁz [P B)] a0, — ﬁsfh [%(0, )] (0,0,
m—1 m—i i
- L (&) su[pven]

(0//\2)

9
S9, S, [Df W t)} (MA2)

)Ll'l 5591 SIJ;Z [ (x’ t)} /\1 )‘2 S§2 [lp( O)] (AI/O)
= %
( ) [D (x, 0)} s

Proof. Using Theorem 2.5 in [12], Theorem 2.2 in [9], and Theorem 3, we have

t gx md
5,53, [DE*(x, )] o

-t Azxﬂlzﬁz [D”“’le(x t)]

= ﬁsélsﬁzl[w(x fﬂ@ A2) T )%1;1531 [¥(0, )] (0,0y)
m— m—i ;
~ 2 ()" s [pvon]

i=1

(0A2)
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In addition,

t Qx nth
Sl915192 |:Dt lib(x’ t):| (/\1,)\2)

s 0 L%
= i 2022 D]y (x, )]

= A%,S@lsgz [ (x, )] (ay00) — )%gsﬁz [¥(x,0)] (1, 0)
n—1 i

CE)S )

j=1 (A1,0)
O

3. Solution of Some Conformable Partial Differential Equations

In this section, we apply the double conformable fractional Sumudu transform to
solve the following homogeneous and non-homogeneous fractional heat equations, the
homogenous fractional wave equation, and the non-homogenous fractional telegraph
equation.

Problem 1. Consider the following homogeneous fractional heat equation:

DI1p(x, t) = DX2yp(x, 1),

where
o1
P15 = en,
xl92
P0) = €%,
o 1
D2y(0,t) = e®,

9,0 € (0,1], x,t > 0, and Dgz and D?l denote the Op-th- and 04-th-order fractional partial
conformable fractional derivative of {(x, t).
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Solution 1. By applying the conformable Sumudu transform, we have

st 53, [P ()] o = S5 [D3% (1)

AM,A2) (MA2)

%25591 S5, [0 )] a0 — ,\%5@ [¥(x,0)] (1, 0)

X 0
= 55,5500 D], — 55, 00 D0, = £S5, [DERO0]

— LS50 0] 0, — 5, 1900, D 010) — = b, [DEP(0,1)]

(0,?\2)’
M=Mct cx
A2 99,55, [P D] 3, 0,)
. %2 Lot | 21 Lt | B0
— 1 cx [ R [ _ 1 2
_Msﬁz e /\%5191 e’ Alsth e’ |,
(A1,0) (0,A2)

A=Ay

t cx 1 1 1 1 1
iz S0 S o) = BT T et T N T

2 2 2
tocx _ M- (Aa—Mda) - AaAg
Sﬂlsﬁz[wx't)](?\l,ftz) (A2=MA2) (A3-A2A;)  AT-Ayp’

252 2 2
b ox _ MMM +ATA AT
Sl?] Sﬂz [llj(x/ t)](/\l,)tz) - /\2/\%(1—/\1)(1—/\2) /\%_/\2’

5591 ng [lp<x’t)]()\1/\2) - (17/\1)1(17)\2)’

02 0

l/J(X, t) = erLW/
which is the exact solution of our homogeneous fractional heat equation.

Problem 2. Consider the following non-homogeneous fractional heat equation:

Dflgb(x, f = Diﬂng(x, ) + cos 3:::,
where
i
P0,t) = 1—e %,
P(x0) = 0,
D%yp(0,t) = 0,

t%,9% € (0,1], x,t > 0, and D;Zz and D?l denote the Oy-th- and 0y-th-order fractional partial
conformable fractional derivative of P(x,t).
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Solution 2. By applying the conformable Sumudu transform, we have

t ax %
s, S3, [Dt (x, t)] e

ot er [26s toox X%
= 59,55, [D" lp(x’t)} (i) T o050 {COS 02 }(M,Az)/

1556, 55, (% D, 00) — 7555, [# (2, 0], 0)

0,
= 355,550 00 D], — 256, 90D 00,) — 4S5, [DEROD]

05 5]

i
= %251952[0]()\1’0) - /\L%S%l [1 — e ! ] — %15){91 [0](0,)\2) + 1_:)\%/
(0,A2)

)‘%*/\Zst SE [ip(x, )] — 1 A 1
AT T 7 (M) AT+ T 1A

t _ —\ 1 )\2/\2
56,58, [P (X D (3 00) = {A%(H—ZAZ) + 1+A§] Py

t _ A2
So,55, [ (X, )] (3, 1) = WM'

X _ A
5118915192 [lp(x’t)](hx/\z) - (1+)\2)(21+/\%)’

1 9
— _p x°2
P(x,t) = <1 e % > cos %
which is the exact solution of our non-homogeneous fractional heat equation.

Problem 3. Consider the following homogeneous fractional wave equation:

D'y (x,t) = DX2y(x, 1),

where

xgz
P(x,0) = e,

1

P(0,t) = e%,

o ﬂ

D2y(0,t) = e?,

o %2
D/'¢(x,0) = e®,

%, € (0,1], x,t > 0, and D;Zz and D?l denote the Oy-th- and 0y-th-order fractional partial
conformable fractional derivative of P(x,t).
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Solution 3. By applying the conformable Sumudu transform, we have

¢ 0,
$5,53, [ D" 9 ()] = s, 5%, [D¥*p(x,1)|

(AM1A2) (MA2)

2
55,53, 0(5 D] 1, 1) — B S5 95 O, 0 = £S5, [PP9 0],

0,
= S0, SHIPE Dy — S WO ony — 4% [DEVOD]

2
2

£02 02 %1

= Ai%sgz [6’92} + 55, [eﬂz} - Ai%sg] S5, [eﬁl} — 1Sk [eﬂl} /
(A1,0) (A1,0) (A1,A2) (0,42)
M-\

AZAZ 5591 Sljgz [lI] (x’ t)] (MA2)

=1t 1 11 11 11
TATA T AT T TR T NI

t cox _ 1+A, 1404 . /\%)‘%
Sﬁlsﬁz[lp(x’t)](Al,Az)_ MBA-A) A=A | A3-A37

2 242 2 242 242
tocx _ M-ABA-AHAA] ATAS
51915192[4’<x't)](A1,Az) T OMAJ(1-A)(1-Ay) AT-ARY

St gx )‘%_)‘g /\%/\%
x, t = .
0,55, (5 D, 1) AA3(1-A)(1-A2) A3-A37

Sf?l ng [p(x, t)](Al,Az) = (1—»‘1)1(1—T2) ’

% 4

X2y t L

w(x, t) —e% %
which is the exact solution of our homogeneous fractional wave equation.

Problem 4. Consider the following non-homogeneous fractional telegraph equation:

9
x 1
+ 5

—D;"p(x, £)+DF2(x, £) — DP'p(x, 1) — p(x,b) = —2e 2,

where

1

P(0,f) = eh,

x02

P(x,0) = e%,

o ﬂ

D2y(0,t) = e%,

o %2

DIy(x,0 = %,

%,9, € (0,1], x,t > 0, and D;ZZ and Df ! denote the 0-th- and O1-th-order fractional partial
conformable fractional derivative of P(x,t).
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Solution 4. By applying the conformable Sumudu transform, we have

b 4

s, sy |—2e® T
H -,

(A1,A2)

¢ o o2
——sh sy [DFp(en] sy sy [y n] - s) sy D)

(A1,A2) (A1,A2) (A1,A2)

_Sgl Si;z [lP(xr t)](/\],/\z)’

(I-A1)(1-A2)

= — S SH W0 D200 + S5, (000, 0] 000 + 4S5, [DRYOD]

435 8b, S5, 1900 Do ) — 253,05 01,0 — 55, [P0 0)]

—1550,55, [P (X, D], ) + 725 55, 10(x, 0)] 1, 0) — S, S8, [9(x, D] (4,10

—2
(1-A1)(1—-A2) M

l
_ 1 1 1 t 1ct |, 1at |5
= (A1) B Dl + S, | ](om) A Lo,m

$%2

%2 £02
1 qx o 1 ¢x 5, 1 qx o
_/\—%5192 |:e 2 :| o — A—Zsﬂz [e ) } o) + A—Zsﬁz {e 2 } (AI,O),

(1-M)(1-A2)

- nglsgz[lp(x,t)]wm + Aw{m + ) A%(llm,
oy = AR N Gt 68 [(x, )] 4y 0g) + TSI,
SS90 D) = [Tty — T o] S
Sy S 000 D) = R ST
Sk, S8, [ ()] (0, 00) = %%(ﬁ%);?(%ﬁz;f)\% ' —A§+A§7£\§/\27/\%/\§ ’

S, S5, [ (x, Bl ) = (141)1(17)\2)'

9 B
Pl =cn

which is the exact solution of our non-homogeneous fractional telegraph equation.

4. Conclusions

The conformable fractional integral defined by Khalil et al. [4] was used to modify the
double conformable Sumudu transform. Moreover, with the use of the conformable double
Laplace transform defined in [9], some more properties of the transform, including its
convolution properties, in addition to the existence of the transform for functions satisfying
certain exponential conditions, were proved. Finally, exact solutions of some important
partial differential equations of the conformable fractional type—namely, the heat equation,
the wave equation, and the telegraph equation—were given.
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