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Abstract: In the paper, we consider functional set-valued integral equations whose representation
contains set-valued integrals occurring symmetrically on both sides of the equation. On the coef-
ficients of the equation, we impose certain conditions, more general than the standard Lipschitz
condition, which allow the application of the Bihari–LaSalle inequality in the proofs of the obtained
theorems. In this way, we obtain a result about the existence and uniqueness of the solution of the
equation under consideration and the insensitivity of the solution in the case of minor changes in the
parameters of the equation.
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1. Introduction

This paper is a continuation of the research presented in [1], where certain directions
were indicated in which the theory of symmetric functional set-valued integral equations
can develop. The current paper presents the achievements in this subject, going in the
direction of replacing the Lipschitz condition of the continuity of the coefficients of the
considered equation by a weaker condition. Although in the aforementioned paper [1] the
facts used to embed our research in the existing mathematical framework are given initially,
here we will also mention and repeat the most important ones for the reader’s comfort.

The symbol Pcc(Rd) stands for the family of nonempty compact and convex subsets of
Rd. We will work in the metric space (Pcc(Rd), ρH), where ρH is the Hausdorff–Pompeiu
metric, i.e.,

ρH(A, B) := max

{
sup
a∈A

inf
b∈B
‖a− b‖, sup

b∈B
inf
a∈A
‖a− b‖

}
, A, B ∈ Pcc(Rd),

where ‖ · ‖ denotes norm in Rd. The space (Pcc(Rd), ρH) is Polish and locally compact.
The set Pcc(Rd) can be supplied with addition and multiplication by a real number

A + B := {a + b | a ∈ A, b ∈ B}, k · A := {k · a | a ∈ A}

for A, B ∈ Pcc(Rd) and k ∈ R,

thus obtaining a semilinear structure. It is worth recalling that the opposite element may
not exist, and defining set subtraction can be cumbersome. In the paper, we will use the
concept of the Hukuhara difference of two sets, denoting this operation as A	 B. Such a
set A	 B is defined by the equality A = B + (A	 B). The Hukuhara differences may not
exist, but if they exist, they are unique. We also recall some properties of the metric ρH that
will be useful in our considerations (see [2]). For A, B, C, D ∈ Pcc(Rd),

(P1) ρH(A + C, B + C) = ρH(A, B);
(P2) ρH(A + B, C + D) ≤ ρH(A, C) + ρH(B, D);
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(P3) If there exist A	 B and C	 D then ρH(A	 B, C	 D) ≤ ρH(A, C) + ρH(B, D).

Since we are interested in functional equations, we also consider the set Cθ = C([−θ, 0],
Pcc(Rd)) of all ρH-continuous set-valued mappings acting from [−θ, 0] to Pcc(Rd), where
θ is a positive real number. The set Cθ is equipped with the supremum metric ρ∗, i.e.,

ρ∗(χ1, χ2) = sup
u∈[−θ,0]

ρH(χ1(u), χ2(u)) for χ1, χ2 ∈ Cθ .

The set-valued integrals appearing in this paper are in the sense of Aumann (see [3]),
which means that for a set-valued mapping F : [a, b]→ Pcc(Rd)

∫ b

a
F(u)du :=

{∫ b

a
f (u)du | f ∈ S(F)

}
,

where S(F) is the set of integrable selections of F and this set is nonempty. Let us recall the
following (see [2]):

(P4)
∫ b

a F(u)du ∈ Pcc(Rd);

(P5)
∫ b

a F(u)du =
∫ c

a F(u)du +
∫ b

c F(u)du if a ≤ c ≤ b;
(P6) If F, G are integrable set-valued mappings then

ρH

(∫ b
a F(u)du,

∫ b
a G(u)du

)
≤
∫ b

a ρH
(

F(u), G(u)
)
du.

In this paper, we examine functional set-valued equations which have a representation

X(t) +
∫ t

t0

F(s, Xs)ds = χ0(0) +
∫ t

t0

G(s, Xs)ds for t ∈ [t0, t0 + T] (1)

with initial condition
Xt0 = χ0,

where t0 symbolizes initial instant of time, T is a time horizon, χ0 ∈ Cθ is an initial
history, F, G : [t0, t0 + T]× Cθ → Pcc(Rd) are the coefficients of the equation and Xs ∈ Cθ is
understood as Xs(u) = X(s + u) for u ∈ [−θ, 0], where s is fixed from I := [t0, t0 + T]. In
the setting of this paper, X is a set-valued mapping that belongs to C(J,Pcc(Rd)), where
J := [t0− θ, t0 + T]. Such equations have been called symmetric because of the symmetrical
occurrence of integrals on both sides of the equation. Since integrals are sets, it is not
possible in general to reduce the form of this equation to one that contains only one integral.
At this point, it should be emphasized that equations of the one-sided, asymmetric type
are a special case of symmetric equations of type (1). This fact motivates even more to
consider symmetric equations. When we talk about asymmetric equations in the context of
Equation (1), we mean the equations of the form

X(t) = χ0(0) +
∫ t

t0

G(s, Xs)ds for t ∈ [t0, t0 + T] (2)

with initial condition
Xt0 = χ0,

and

X(t) +
∫ t

t0

F(s, Xs)ds = χ0(0) for t ∈ [t0, t0 + T] (3)

with initial condition
Xt0 = χ0,
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respectively. It is worth recalling and realizing that equations in integral form (2) can be
treated as equivalent to differential equations with the so-called Hukuhara derivative DH
of set-valued mappings, namely

DHX(t) = G(t, Xt) for t ∈ [t0, t0 + T] (4)

with initial condition Xt0 = χ0 and they were the basic form of set-valued functional
differential equations, the study of which forms the basis of the theory of such equations
(cf. [2,4–8]). Such differential equations, in which the mappings are set valued, should be
thought of as mathematical models of processes that change their states dynamically and
in which the state of the process cannot be described with a single number, but a set of
numbers must be used.

Additionally, integral Equation (3) has its counterpart in the differential equation with
the Hukuhara derivative of the second kind D∗H , i.e.,

D∗HX(t) = (−1) · F(t, Xt) for t ∈ [t0, t0 + T] (5)

with initial condition Xt0 = χ0. Such equations have become interesting because of a certain
property that distinguishes them significantly from Equation (4). Namely, every solution of
equation of type (5) has the property that its values become more and more precise with
the increase in time in the sense that the diameter of the set that is the value of the solution
at a given moment t does not increase with the passage of time t (see [9–12]). On the other
hand, the values of solutions of Equation (4) have diameters that are not diminished in time,
which can be interpreted with non-decreasing uncertainty about the state of the process
that is modeled by such a differential equation.

The equations we consider in this paper have the good property that they cover
both equations of type (2) and (3) and thus can serve to model real-life processes, whose
uncertainty about the exact value of the state can change the nature of monotonicity.
Although the current paper mentions the potential of applications of the studied equations,
it is a theoretical research that may be the basis for application in practical issues in
the future.

The study presented here is a continuation and extension of some achievements
collected in [1]. We are now engaged in proving the existence and uniqueness of a solution
to Equation (1) under more general conditions than in the paper [1], where we required
the Lipschitz condition to be met. Now we use a condition weaker than the Lipschitz
one. With this more general condition, described precisely in the next section, we will also
justify the stability of the solution in relation to small changes in the initial history or small
changes in the coefficients of the equation. All these results are obtained by applying the
Bihari–LaSalle inequality.

The theory of set-valued equations began in the 1960s. Since then, they have formed
a separate stream of research with their own methods and techniques. An extensive
collection of results in this field is contained in the monograph [2]. The importance of
these studies was also confirmed by recently published articles, e.g., [9–20], including those
that combine this theory with application, for example, in the diagnosis of cancer [21,22].
The applicability of set-valued differential equations confirmed by the last mentioned
papers gives a good chance to use the results of the current article in analyses related to
mathematical modeling in medicine.

2. Main Results

Since one of the main tools that will allow us to obtain the presented results is the
Bihari–LaSalle inequality, we recall it below for the convenience of the reader.
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Lemma 1. (Bihari–LaSalle inequality [23,24]). Let f , g : I → [0, ∞) be continuous, and ξ be a
continuous and non-decreasing function such that ξ(t) > 0 for t > 0. If f satisfies

f (t) ≤ α +
∫ t

0
g(s)ξ( f (s))ds, for t ∈ I,

where α is a non-negative constant, then

f (t) ≤ V−1
(

V(α) +
∫ t

0
g(s)ds

)
for all t ∈ I such that V(α) +

∫ t
0 g(s)ds ∈ Dom(V−1), where

V(r) =
∫ r

1

ds
ξ(s)

, r > 0,

and V−1 is the inverse function of V.
Moreover, if α = 0 and

∫
0+

dt
ξ(t) = +∞ then f (t) = 0 for every t ∈ I.

Remark 1. If ξ(t) = t in the assumptions of the Bihari–LaSalle inequality, then the inequality in
the thesis will be

f (t) ≤ α exp
{∫ t

0
g(s) ds

}
for t ∈ I

and it is well known as the Gronwall–Bellman inequality.

After recalling the above inequalities, we start by writing what we mean by the
solution to Equation (1).

Definition 1. A set-valued mapping X : J → Pcc(Rd), which is ρH-continuous, is said to be a
solution to Equation (1), if Xt0 = χ0 and X(t) meets

X(t) +
∫ t

t0

F(s, Xs)ds = χ0(0) +
∫ t

t0

G(s, Xs)ds for every t ∈ I = [t0, t0 + T].

To obtain the results presented in this article, we will use the following conditions:

(A0) χ0 ∈ Cθ ;
(A1) F, G : I × Cθ → Pcc(Rd) are jointly continuous;
(A2) There is a positive constant C such that for every t ∈ I

max{ρH(F(t, 0), {0}), ρH(G(t, 0), {0})} ≤ C,

where 0 is the zero element in the space Cθ ;
(A3) There is a continuous, non-decreasing, concave function ξ : [0, ∞)→ [0, ∞) satisfying

ξ(0) = 0, ξ(t) > 0 for t > 0,
∫ 1

0+
dt

ξ(t) = +∞ and such that for every (t, χ) ∈ I × Cθ

max{ρH
(

F(t, χ1), F(t, χ2)
)
, ρH

(
G(t, χ1), G(t, χ2)

)
} ≤ ξ

(
ρ∗(χ1, χ2)

)
;

(A4) There is T̃ ∈ (0, T] such that the sequence {Xn}∞
n=0, Xn : Ĩ → Pcc(Rd), Ĩ = [t0, t0 + T̃]

described as

X0(t) =
{

χ0(t− t0), t ∈ [t0 − θ, t0],
χ0(0), t ∈ Ĩ,

and for n ∈ {1, 2, . . .}

Xn(t) =

{
χ0(t− t0), t ∈ [t0 − θ, t0],[
χ0(0) +

∫ t
t0

G(s, Xn−1
s )ds

]
	
∫ t

t0
F(s, Xn−1

s )ds, t ∈ Ĩ,
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is well defined, i.e., the Hukuhara differences exist.

Remark 2. If we put ξ(t) = Lt in (A3), where L is a positive constant, then ξ is a continuous,
concave, non-negative function satisfying ξ(0) = 0, ξ(t) > 0 for t > 0 and

∫ 1
0+

1
ξ(t)dt = +∞.

Thus, the condition (A3) takes the form of a Lipschitz condition in the case of ξ(t) = Lt, and this
is the Lipschitz continuity condition found in [1]. For this reason, the more general form of the
function ξ in (A3) causes the current results to expand the range of possible coefficients F and G in
the Equation (1).

To signal how the new condition is more effective and better in the sense of being more
general and expanding the class of admissible F and G, we will recall a few well-known
examples of the functions ξ meeting the conditions listed in (A3). They are, for instance,

ξ1(t) =
{

t log(t−1), 0 ≤ t ≤ ε,
ε log(ε−1) + ξ ′1(ε−)(t− ε), t > ε,

ξ2(t) =
{

t log(t−1) log log(t−1), 0 ≤ t ≤ ε,
ε log(ε−1) log log(ε−1) + ξ ′2(ε−)(t− ε), t > ε,

where ε ∈ (0, 1) is sufficiently small and ξ ′k(ε−) (k = 1, 2) stands for left-sided derivative of
ξk at ε.

Before we proceed to the proper analysis, let us remind that the compositions F with
continuous X and G with continuous X in integrals in Equation (1) are the continuous
mappings due to assumption (A1). Therefore, the integrals in (1) can be defined. The as-
sumption (A4) in which Hukuhara’s differences occur is indelible in general and is a
consequence of the symmetric form of the Equation (1).

Below, we present the result indicating the boundedness of the approximation se-
quence {Xn} which will be used to justify the existence of a solution to Equation (1).

Lemma 2. Let assumptions (A0)–(A4) be satisfied. Then, there is a positive constant M such that
for every n ∈ N

sup
t∈ J̃

ρH(Xn(t), {0}) ≤ M,

where J̃ := [t0 − θ, t0] ∪ Ĩ = [t0 − θ, t0 + T̃].

Proof. Firstly notice that sup
t∈[t0−θ,t0]

ρH(Xn(t), {0}) = ρ∗(χ0, 0).

Let us denote fn(t) = sup
u∈[t0−θ,t]

ρH(Xn(t), {0}) for n ∈ N and t ∈ Ĩ. Then one can write

fn(t) ≤ max
{

sup
t∈[t0−θ,t0]

ρH(Xn(t), {0}), sup
t∈[t0,t]

ρH(Xn(t), {0})
}

.

Now, we will deal with the second component of the maximum in the above inequality

sup
u∈[t0,t]

ρH(Xn(u), {0}) = sup
u∈[t0,t]

ρH

([
χ0(0) +

∫ u

t0

G(s, Xn−1
s )ds

]
	
∫ u

t0

F(s, Xn−1
s )ds, {0}

)
.
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Due to properties (P3), (P2) and (P6), we obtain

sup
u∈[t0,t]

ρH(Xn(u), {0}) ≤ sup
u∈[t0,t]

ρH

(
χ0(0) +

∫ u

t0

G(s, Xn−1
s )ds, {0}

)
+ sup

u∈[t0,t]
ρH

(∫ u

t0

F(s, Xn−1
s )ds, {0}

)
≤ ρ∗(χ0, 0) + sup

u∈[t0,t]
ρH

(∫ u

t0

G(s, Xn−1
s )ds, {0}

)
+ sup

u∈[t0,t]
ρH

(∫ u

t0

F(s, Xn−1
s )ds, {0}

)
≤ ρ∗(χ0, 0) +

∫ t

t0

ρH

(
G(s, Xn−1

s ), {0}
)

ds

+
∫ t

t0

ρH

(
F(s, Xn−1

s ), {0}
)

ds.

The use of a triangle inequality and assumptions (A2) and (A3) leads us to

sup
u∈[t0,t]

ρH(Xn(u), {0}) ≤ ρ∗(χ0, 0) +
∫ t

t0

ρH

(
G(s, Xn−1

s ), G(s, 0)
)

ds

+
∫ t

t0

ρH

(
G(s, 0), {0})

)
ds

+
∫ t

t0

ρH

(
F(s, Xn−1

s ), F(s, 0)
)

ds

+
∫ t

t0

ρH

(
F(s, 0), {0})

)
ds

≤ ρ∗(χ0, 0) + 2CT̃ + 2
∫ t

t0

ξ
(
ρ∗(Xn−1

s , 0)
)
ds

= ρ∗(χ0, 0) + 2CT̃ + 2
∫ t

t0

ξ
(

sup
r∈[−θ,0]

ρH(Xn−1(s + r), 0)
)
ds

≤ ρ∗(χ0, 0) + 2CT̃ + 2
∫ t

t0

ξ
(

sup
u∈[t0−θ,s]

ρH(Xn−1(u), 0)
)
ds.

Hence

fn(t) ≤ ρ∗(χ0, 0) + 2CT̃ + 2
∫ t

t0

ξ
(

fn−1(s)
)
ds.

Since function ξ is concave, we have that ξ(u) ≤ au + b for u ≥ 0, where a, b are
positive constants. Thus

fn(t) ≤ E1 + E2

∫ t

t0

fn−1(s)ds,

where E1 = ρ∗(χ0, 0) + 2(C + b)T̃ and E2 = 2a. Therefore, we can also write

max
1≤n≤k

fn(t) ≤ E1 + E2

∫ t

t0

max
1≤n≤k

fn−1(s)ds

for k ∈ N. Since max
1≤n≤k

fn−1(s) ≤ ρ∗(χ0, 0) + max
1≤n≤k

fn(s), we get

max
1≤n≤k

fn(t) ≤ E1 + E2T̃ρ∗(χ0, 0) + E2

∫ t

t0

max
1≤n≤k

fn(s)ds.
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By the Gronwall–Bellman inequality, we arrive at

max
1≤n≤k

fn(t) ≤
(
E1 + E2T̃ρ∗(χ0, 0)

))
exp

{
E2(t− t0)

}
for t ∈ Ĩ and k ∈ N.

Thus
sup
t∈ J̃

ρH(Xn(t), {0}) ≤ M,

where M =
(
E1 + E2T̃ρ∗(χ0, 0)

))
exp

{
E2T̃

}
. �

Theorem 1. Under assumptions (A0)–(A4), Equation (1) has a unique solution.

Proof. Let n, m ∈ N and t ∈ Ĩ. Using (P3) and (P1)

sup
u∈[t0−θ,t]

ρH(Xm(u), Xn(u))

= sup
u∈[t0,t]

ρH(Xm(u), Xn(u))

= sup
u∈[t0,t]

ρH

([
χ0(0) +

∫ u

t0

G(s, Xm−1
s )ds

]
	
∫ u

t0

F(s, Xm−1
s )ds,

[
χ0(0) +

∫ u

t0

G(s, Xn−1
s )ds

]
	
∫ u

t0

F(s, Xn−1
s )ds

)
≤ sup

u∈[t0,t]
ρH

(∫ u

t0

G(s, Xm−1
s )ds,

∫ u

t0

G(s, Xn−1
s )ds

)
+ sup

u∈[t0,t]
ρH

(∫ u

t0

F(s, Xm−1
s )ds,

∫ u

t0

F(s, Xn−1
s )ds

)
.

By property (P6), we obtain

sup
u∈[t0−θ,t]

ρH(Xm(u), Xn(u)) ≤
∫ t

t0

ρH
(
G(s, Xm−1

s ), G(s, Xn−1
s )

)
ds

+
∫ t

t0

ρH
(

F(s, Xm−1
s ), F(s, Xn−1

s )
)
ds

and due to assumption (A2)

sup
u∈[t0−θ,t]

ρH(Xm(u), Xn(u)) ≤ 2
∫ t

t0

ξ
(
ρ∗(Xm−1

s , Xn−1
s )

)
ds.

Hence,

sup
u∈[t0−θ,t]

ρH(Xm(u), Xn(u)) ≤ 2
∫ t

t0

ξ
(

sup
u∈[t0−θ,s]

ρH(Xm−1(u), Xn−1(u))
)
ds.

By the integration of both sides, with κ ∈ [t0, t0 + T̃], and using Jensen’s inequality,
we arrive at∫ κ

t0

sup
u∈[t0−θ,t]

ρH(Xm(u), Xn(u))dt

≤ 2
∫ κ

t0

∫ t

t0

ξ
(

sup
u∈[t0−θ,s]

ρH(Xm−1(u), Xn−1(u))
)
dsdt

≤ 2(κ − t0)
∫ κ

t0

ξ
( 1

t− t0

∫ t

t0

sup
u∈[t0−θ,s]

ρH(Xm−1(u), Xn−1(u))
)
ds.
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Let us denote

hm,n(t) =
1

t− t0

∫ t

t0

sup
u∈[t0−θ,s]

ρH(Xm(u), Xn(u))
)
ds.

Then
hm,n(κ) ≤ 2

∫ κ

t0

ξ(hm−1,n−1(t))dt.

Owing to Lemma 2, we can state that supt∈ Ĩ supm,n∈N hm,n(t) is finite. Denoting

h(t) = lim sup
m,n→∞

hm,n(t)

and applying Fatou’s lemma we obtain

h(κ) ≤ 2
∫ κ

t0

ξ(h(t))dt.

The Bihari–LaSalle inequality (Lemma 1) allows us to conclude that h(κ) = 0 for every
κ ∈ Ĩ which means that

lim sup
m,n→∞

1
t− t0

∫ t

t0

sup
u∈[t0−θ,s]

ρH(Xm−1(u), Xn−1(u))
)
ds = 0 for every t ∈ Ĩ.

From this, it is easy to conclude that

lim
m,n→∞

sup
u∈[t0−θ,t0+T̃]

ρH(Xm(u), Xn(u)) = 0

and this means that the sequence {Xn} of ρH-continuous mappings from a complete space
C([t0− θ, t0 + T̃],Pcc(Rd)) with the supremum metric converges to a certain ρH-continuous
element X of this space. Of course X(t) = χ0(t− t0) for t ∈ [t0 − θ, t0], because the same
equality occurs for every Xn, n ∈ N∪ {0}.

In the next stage of the proof, we will show that X is a solution to Equation (1). For this
purpose, it is enough to show that

ρH

(
X(t) +

∫ t

t0

F(s, Xs)ds, χ0(0) +
∫ t

t0

G(s, Xs)ds
)
= 0 for every t ∈ Ĩ.

Therefore, we present further estimates, where U(t) denotes the left-hand side of the
above equality and t ∈ Ĩ

U(t) ≤ ρH

(
X(t) +

∫ t

t0

F(s, Xs)ds, Xn(t) +
∫ t

t0

F(s, Xn−1
s )ds

)
+ ρH

(∫ t

t0

G(s, Xs)ds,
∫ t

t0

G(s, Xn−1
s )ds

)
≤ ρH(X(t), Xn(t)) +

∫ t

t0

ρH
(

F(s, Xs), F(s, Xn−1
s )

)
ds

+
∫ t

t0

ρH
(
G(s, Xs), G(s, Xn−1

s )
)
ds

≤ ρH(X(t), Xn(t)) + 2
∫ t

t0

ξ
(
ρ∗(Xs, Xn−1

s )
)
ds.

Since ξ(0) = 0, ξ is continuous, and the sequence {ρ∗(Xs, Xn−1
s )} is bounded, by the

Lebesgue dominated convergence theorem, we obtain that lim
n→∞

∫ t
t0

ξ
(
ρ∗(Xs, Xn−1

s )
)
ds = 0.

We previously justified that lim
n→∞

ρH(X(t), Xn(t)) = 0. Hence, indeed U(t) = 0 for t ∈ Ĩ.
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If Z is the second solution to Equation (1) on the interval J̃ = [t0− θ, t0 + T̃], then notice
that in accordance with the definition of the solution, it would have to be Z(t) = χ0(t− t0)
for t ∈ [t0 − θ, t0] and this means Z(t) = X(t) for t ∈ [t0 − θ, t0]. Our next goal is to show
that Z coincides with X also on the interval [t0, t0 + T̃]. To this end, let us observe that

sup
u∈[t0,t]

ρH
(
Z(u), X(u)

)
= sup

u∈[t0,t]
ρH

([
χ0(0) +

∫ u

t0

G(s, Zs)ds
]
	
∫ u

t0

F(s, Zs)ds,[
χ0(0) +

∫ u

t0

G(s, Xs)ds
]
	
∫ u

t0

F(s, Xs)ds
)

≤ sup
u∈[t0,t]

ρH

(∫ u

t0

G(s, Zs)ds,
∫ u

t0

G(s, Xs)ds
)

+ sup
u∈[t0,t]

ρH

(∫ u

t0

F(s, Zs)ds,
∫ u

t0

F(s, Xs)ds
)

≤ 2
∫ t

t0

ξ(ρ∗(Zs, Xs))ds

≤ 2
∫ t

t0

ξ( sup
u∈[s−θ,s]

ρH(Z(u), X(u)))ds

= 2
∫ t

t0

ξ( sup
u∈[t0,s]

ρH(Z(u), X(u)))ds.

Invoking the Bihari–LaSalle inequality, we receive

sup
u∈[t0,t]

ρH
(
Z(u), X(u)

)
= 0 for every t ∈ Ĩ

from which the equality Z(t) = X(t) also follows for t ∈ [t0, t0 + T̃]. Hence X is the unique
solution on the interval J̃ = [t0 − θ, t0] ∪ [t0, t0 + T̃]. �

Having the result of the existence of a solution for Equation (1) in the next stage, one
can think about some desired properties of the solutions. The first one we will analyze is
the slight sensitivity of the solution to the equation with a different initial history χε

0 ∈ Cθ ,
which is only slightly different from the original history χ0. Therefore, we will now consider
two equations: Equation (1) and the following equation,

Z(t) +
∫ t

t0

F(s, Zs)ds = χε
0(0) +

∫ t

t0

G(s, Zs)ds for t ∈ [t0, t0 + T] (6)

with initial condition
Zt0 = χε

0.

The following statement confirms the occurrence of the property just discussed.

Theorem 2. Suppose that the assumptions (A0), (A1) and (A3) are satisfied. Let X be a solution to
Equation (1) on interval J̃ = [t0 − θ, t0 + T̃], where T̃ ∈ (0, T]. Let Z be a solution to Equation (6)
also on interval J̃. Then

sup
t∈ J̃

ρH
(
Z(t), X(t)

)
≤ V−1

(
V
(
2ρ∗(χε

0, χ0)
)
+ 2T̃

)
,

where V and V−1 are connected with ξ from (A3) in a way described in Lemma 2.

Proof. At the beginning, let us note that

sup
u∈[t0−θ,t0]

ρH(Z(u), X(u)) = ρ∗(χε
0, χ0).
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For t in the remaining part of the interval J̃, i.e., for t ∈ [t0, t0 + T̃] we have

sup
u∈[t0,t]

ρH
(
Z(u), X(u)

)
= sup

u∈[t0,t]
ρH

([
χε

0(0) +
∫ u

t0

F(s, Zs)ds
]
	
∫ u

t0

G(s, Z)
s ds,

[
χ0(0) +

∫ u

t0

F(s, Xs)ds
]
	
∫ u

t0

G(s, Xs)ds
)

≤ ρH
(
χε

0(0), χ0(0)
)
+
∫ t

t0

ρH
(

F(s, Zs), F(s, Xs)
)
ds

+
∫ t

t0

ρH
(
G(s, Zs), G(s, Xs)

)
ds.

Due to condition (A3), we obtain

sup
u∈[t0,t]

ρH
(
Z(u), X(u)

)
≤ ρH

(
χε

0(0), χ0(0)
)
+ 2

∫ t

t0

ξ
(
ρ∗(Zs, Xs)

)
ds.

Hence

sup
u∈[t0,t]

ρH
(
Z(u), X(u)

)
≤ ρ∗(χε

0, χ0) + 2
∫ t

t0

ξ
(
ρ∗(Zs, Xs)

)
ds

≤ ρ∗(χε
0, χ0) + 2

∫ t

t0

ξ
(

sup
u∈[t0−θ,s]

ρH(Z(u), X(u))
)
ds.

Therefore, in the considered case of t ∈ [t0, t0 + T̃]

sup
u∈[t0−θ,t]

ρH(Z(t), X(t)) ≤ sup
u∈[t0−θ,t0]

ρH(Z(t), X(t)) + sup
u∈[t0,t]

ρH(Z(t), X(t))

≤ 2ρ∗(χε
0, χ0) + 2

∫ t

t0

ξ
(

sup
u∈[t0−θ,s]

ρH(Z(u), X(u))
)
ds.

Now, by the Bihari–LaSalle inequality, we can infer that for every t ∈ [t0, t0 + T̃]

sup
u∈[t0−θ,t]

ρH(Z(t), X(t)) ≤ V−1
(

V
(
2ρ∗(χε

0, χ0)
)
+ 2(t− t0)

)
.

From this inequality, the assertion follows immediately. �

With the above result, it is easy to determine the property of continuous dependence
of the solution to Equation (1) on the initial history χ0. Indeed, if ρ∗(χε

0, χ0) converges to
zero, then V(2ρ∗(χε

0, χ0)) goes to (−∞). However, V−1(t)→ 0 as t→ −∞, and this yields
continuous dependence.

In addition to the low sensitivity of the solution to changes in the initial history, the
second similar desirable property would be a small change of the solution in the case of
small changes in the coefficients of the equation. This feature results directly from the fact
written below.

Let us consider Equation (1) and the equation with slightly different coefficients F̃, G̃,
i.e.,

Z(t) +
∫ t

t0

F̃(s, Zs)ds = χ0(0) +
∫ t

t0

G̃(s, Zs)ds for t ∈ [t0, t0 + T] (7)

with initial condition
Zt0 = χ0.



Symmetry 2022, 14, 2246 11 of 13

The fact that the coefficients F̃ and G̃ are slightly different from F and G is understood
in the sense of satisfying the condition

∫ t0+T̃

t0

[
ρH(F̃(t, Xt), F(t, Xt)) + ρH(G̃(t, Xt), G(t, Xt))

]
dt ≤ ε, (8)

where ε > 0 is small and X is the solution to Equation (1).

Theorem 3. Suppose that the assumptions (A0), (A1) and (A3) are satisfied for the data χ0, F, G
of Equation (1) and for the data χ0, F̃, G̃ of Equation (7). Let X be a solution to Equation (1) on
interval J̃ = [t0 − θ, t0 + T̃], where T̃ ∈ (0, T]. Let Z be a solution to Equation (7) also on interval
J̃. Assume that (8) is satisfied. Then

sup
t∈ J̃

ρH
(
Z(t), X(t)

)
≤ V−1

(
V
(

A
)
+ 2T̃

)
,

where V and V−1 are connected with ξ from (A3) in a way described in Lemma 2 and A =∫ t0+T̃
t0

[
ρH(F̃(t, Xt), F(t, Xt)) + ρH(G̃(t, Xt), G(t, Xt))

]
dt.

Proof. Notice first that for t ∈ [t0 − θ, t0] we have Z(t) = χ0(t− t0) = X(t). Hence

sup
t∈[t0−θ,t0]

ρH(Z(t), X(t)) = 0.

Further, we analyze what we will get for t ∈ [t0, t0 + T̃] and so

sup
u∈[t0,t]

ρH
(
Z(u), X(u)

)
= sup

u∈[t0,t]
ρH

([
χ0(0) +

∫ u

t0

F̃(s, Zs)ds
]
	
∫ u

t0

G̃(s, Zs)ds,

[
χ0(0) +

∫ u

t0

F(s, Xs)ds
]
	
∫ u

t0

G(s, Xs)ds
)

≤
∫ t

t0

[
ρH
(
G(s, Xs), G̃(s, Zs)

)
+ ρH

(
F(s, Xs), F̃(s, Zs)

)]
ds

≤
∫ t

t0

[
ρH
(
G(s, Xs), G̃(s, Xs)

)
+ ρH

(
G̃(s, Xs), G̃(s, Zs)

)]
ds

+
∫ t

t0

[
ρH
(

F(s, Xs), F̃(s, Xs)
)
+ ρH

(
F̃(s, Xs), F̃(s, Zs)

)]
ds

≤
∫ t

t0

[
ρH
(
G(s, Xs), G̃(s, Xs)

)
+ ρH

(
F(s, Xs), F̃(s, Xs)

)]
ds

+
∫ t

t0

[
ρH
(
G̃(s, Xs), G̃(s, Zs)

)
+ ρH

(
F̃(s, Xs), F̃(s, Zs)

)]
ds

≤ A +
∫ t

t0

[
ρH
(
G̃(s, Xs), G̃(s, Zs)

)
+ ρH

(
F̃(s, Xs), F̃(s, Zs)

)]
ds

Invoking assumption (A3), we obtain

sup
u∈[t0,t]

ρH
(
Z(u), X(u)

)
≤ A + 2

∫ t

t0

ξ
(

sup
u∈[t0,s]

ρH(Z(u), X(u))
)

ds.

Applying the Bihari–LaSalle inequality, we have

sup
u∈[t0,t]

ρH
(
Z(t), X(t)

)
≤ V−1(V(A) + 2(t− t0)

)
for t ∈ [t0, t0 + T],
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from which the thesis follows. �

This assertion allows us to attribute to the solution of Equation (1) the property of a
continuous dependence on the coefficients of the equation.

3. Conclusions

In this paper, the subject of research is symmetric functional set-valued integral equa-
tion

X(t) +
∫ t

t0

F(s, Xs)ds = χ0(0) +
∫ t

t0

G(s, Xs)ds for t ∈ [t0, t0 + T]

with initial condition
Xt0 = χ0,

where χ0 is an initial set-valued history, and F, G are the set-valued coefficients. Solutions
of such symmetric equations have the feature of unnecessary monotonicity of the diameter
of the solution value in contrast to asymmetric equations, that is, with one integral on
only one side of the equation. The research presented in this paper is theoretical and
concerns the properties of such symmetric equations. Among the fundamental properties,
we confirm the existence of a unique solution, which is the basis of applicability in practice
to describe real processes with states described in the form of sets. The assumptions
under which we conduct our study are more general than the conditions used in our
previous paper [1]. In particular, we use a more general condition of continuity of equation
coefficients compared to the Lipschitz continuity used in [1]. With this more general
condition, we also justify the stability of the solution in relation to small changes in the
initial history and small changes in the coefficients of the equation. All these results
are obtained by applying the Bihari–LaSalle inequality. One of the conditions we used
assumes the existence of some Hukuhara differences, which at first glance may be puzzling.
However, this is an intrinsic feature of equations of the symmetric type and the fact that
the space of sets does not have a linear structure.

We hope that the theoretical results established in this paper will be used in modeling
real-world processes. It seems particularly interesting to apply our equations to math-
ematical modeling in medical issues related to edge detection and determining cancer
regions in images as was done in [21]. In addition to future research directions involving
applications in practical issues, it is worth mentioning that the current article certainly
does not completely exhaust future theoretical research. One can think about weakening
the Lipschitz-type condition again or consider coefficients that will not necessarily be
continuous. Conditions ensuring the periodicity of the solution would also be of interest.
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