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Abstract: The present study focuses on the examination of the propagation of plane surface waves
on a coated half-space, which is accompanied by the magnetic field force, and the normal mechanical
loading, due to Winkler’s elastic foundation. The study is based upon the application of the ana-
lytical and asymptotic integration procedures to acquire and further analyze the aspiring secular
equation. Asymptotically, the influence of the coating layer is suppressed by deploying apposite
effective boundary conditions that are ingrained on a long-wave approximation condition, to obtain
the resulting pseudo-differential operator of the reduced equation of surface motion. In fact, the
comparison between the two approaches yielded considerable agreement through the dependency
plots, featuring the scaled velocity v/vR versus the dimensionless wavenumber K. Moreover, certain
well-known results in the literature are obtained as liming circumstances of the present examination.
Additionally, an insightful finding about the vanishing possibility of the coating layer is illustratively
highlighted.
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1. Introduction

Modern technological advancements in the areas of science and engineering appli-
cation has resulted in the quest for coated and composites structures due to their various
advantages and applications; the construction of medical biomaterials that improve the
quality of life is, in particular, enough to see the imperativeness of the modeling and analy-
sis of coated structures [1,2], in addition to their relevance in many engineering professions,
including, for example, mechanical, aeronautics, civil, and manufacturing engineering
to mention a few. We also recall their significance in material science, glazing and floor-
ing, and above all, its applicability in the design and construction of the multi-layered
media [3–7]. Moreover, the propagation of surface waves in coated elastic solids have
inspired many research questions in recent times, having frequently arisen, for instance,
in modeling seismic protection, improving highways and rail transportation quality to men-
tion a few, see, for example, [8–14] and the references provided therein for more readings.
The Rayleigh wave propagation, being a form of a surface wave on a homogeneous elastic
half-space, is widely known to occur only for stress-free surfaces [15,16]. However, several
investigations have recently been conducted on the impact of external factors that infiltrate
or otherwise influence the propagation of surface waves in assorted media. The internal
and external forces such as the gravitational force, magnetic field force, and damping force,
to name a few, are known to influence the propagation of waves; one can also consider
other well-known factors that significantly distort the propagation of elastic waves such
as the external loads, e.g., elastic foundations, initial stress, rotational effects, porosity
presence, material inhomogeneity, and cracks, among others, see [17–24] and the references
listed therein for a quick review of such phenomena. Additionally, the thermal heating
effect is equally a vital phenomenon with vast relevance in the field of elasticity, which later
metamorphosed to the theory of thermo-elasticity [25–31].
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However, within this work, we further expand on the considerations presented by
Kaplunov et al. [8,10] by replicating an interesting scenario of a coated half-space sub-
strate under the influence of certain external forces—modeling a interface between the
rigid coating layer and deformable semi-infinite substrate. The major focus is on gain-
ing a physical understanding of the characteristics of the localized dynamic phenomena
amidst external forces by using an asymptotic approach [13]; read about the generalized
asymptotic analysis method for seeking the contributions of edge, surface, and interfacial
waves from the dynamic of external loads and different effects in [32–34]. Furthermore,
in Kaplunov et al. [8], the significance of a thin coating covering a homogenous elastic
half-space was tackled by deriving the corresponding effective boundary conditions down
the surface of a semi-infinite half-space, having initially prescribed a clamped-surface
condition on the upper face of the coating; whereas, Dai et al. [10] examined the long-wave
propagation scenario of surface waves in a coated semi-infinite range with the stress-free
end condition. Equally, both the low- and high-frequency vibrations were analyzed, in ad-
dition to the presentation of their asymptotic treatments of the higher-order Rayleigh-type
waves with a periodic distinction in [8], one can also read similar studies related to the
modeling and examination of elastic structures with thin layers and walls in [33,35,36].
However, in this regard, the idea for the construction of the associated effective boundary
conditions, which is also analogous to the interfacial conditions for hyperbolic-elliptic
formulation to study the Rayleigh-type waves which firstly appeared in the works of
Kaplunov and Kossovich [37], with further advances in [33]. The same method was also
used for various propagation problems in elastic media, including coated half-spaces [8–14],
where a pseudo-differential operator is realized, and the crack propagation scenario related
to the mixed boundary value problems [22]. More so, the method provides the asymptotic
formulas for the corrections to the Rayleigh wave speed in favor of the thin light coating
that follows from the pseudo-differential equation along the half-space surface.

In brief, the present research is aimed at modeling and analyzing the propagation of
plane surface wave scenarios with regard to a half-space coated by a light-coating layer
under the influence of certain external forces. However, since there are a number of external
forces in the literature, we will be considering the structure under deliberation to be exposed
to the magnetic field force [12] and the normal mechanical load due to Winkler’s elastic
foundation [30,38,39] only, respectively, owing to their practical thoughts and natural oc-
currence. A methodology kit, comprising analytical and asymptotic tools, will be deployed,
such that the influence of the coating layer is to be asymptotically tackled through the
acquisition of apposite effective boundary conditions [10,13]—depending on the long-wave
approximation condition [40]. Moreover, the presentation of the present paper takes the
following outline: Section 2 presents the formulation, as well as the determination of the
exact solution to the problem. Section 3 prescribes appropriate boundary and interfacial
conditions for the coated half-space under deliberation, while Section 4 determines the
generalized exact secular equation and its numerical illustration. Section 5 obtains an
approximate secular equation asymptotically, while Section 6 provides a discussion on the
vanishing effect of the coating layer, and Section 7 provides certain finishing notes.

2. Problem Formulation

Let us begin by considering the governing equations of motion under the influence of
magnetic field force ~F as follows [12,15,16]

σij,j + ~Fi = ρqui,tt, (1)

where the magnetic force is expressed as follows [41]

~Fi = µ0H2
0(e,1 − ε0µ0u1,tt, e,2 − ε0µ0u2,tt, 0), (2)

with e = u1,1 + u2,2. Further in the paper, we define all the terms involved.
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Thus, the present study considers a coated elastic half-space that is subject to certain
external forces, including the magnetic field force, and the normal mechanical load P acting
along the surface of the coating layer. Here, both the coating and the half-space layers are
assumed to be homogeneous, and are further supposed to be made of isotropic material.
Moreover, the entire structure is then recognized to be an inhomogeneous structure in
relation to the varying material properties in the layers. Additionally, the coating layer is
presumed to have a constant thickness of h that occupies the interval −h ≤ x2 ≤ 0, while
the half-space layer is perfectly interfaced over the semi-infinite interval 0 ≤ x2 < ∞. In
addition, this scenario is illustrated in Figure 1.

Figure 1. A coated homogeneous half-space under the effect of external forces.

More precisely, the two-dimensional (2D) dynamic equations of motion interoperating
with the magnetic field force in the two isotropic homogeneous layers of the coated half-
space are, respectively, given in component form from (1) and (2) as follows

σ
q
11,1 + σ

q
12,2 + µ0H2

0

(
uq

1,11 + uq
2,21 − ε0µ0uq

1,tt

)
= ρquq

1,tt,

σ
q
21,1 + σ

q
22,2 + µ0H2

0

(
uq

1,12 + uq
2,22 − ε0µ0uq

2,tt

)
= ρquq

2,tt,
(3)

where σ
q
ij are the related stresses defined by

σ
q
ij = λq ε

q
kk δij + 2µq ε

q
ij, ε

q
ij =

1
2
(uq

i,j + uq
j,i), i = j = 1, 2, (4)

with ε
q
ij denoting the strain–displacement relation, uq

1 = uq
1(x1, x2, t) and uq

2 = uq
2(x1, x2, t)

are the in-plane displacements under consideration, δij is the Kronecker delta, while ρq
and µq, λq are the densities and the Lamé elastic constants in the respective regions of
the coating and half-space, respectively, for q = c, s. Furthermore, the presence of the
magnetic field force has resulted in the attendance of the magnetic field intensity H0,
electric permeability ε0, and the magnetic permeability µ0.

Thus, upon expressing the above equations of dynamic equations of motion expressed
in (3) in a component form, we now rewrite them in terms of displacements uj, (j = 1, 2)
as follows(

λq + 2µq + µ0 H2
0

)
uq

1,11 +
(

λq + µq + µ0 H2
0

)
uq

2,12 + µq uq
1,22 −

(
ρq + ε0 µ2

0 H2
0

)
uq

1,tt = 0,(
λq + 2µq + µ0 H2

0

)
uq

2,22 +
(

λq + µq + µ0 H2
0

)
uq

1,12 + µq uq
2,11 −

(
ρq + ε0 µ2

0 H2
0

)
uq

2,tt = 0,
(5)

for q = c, s.
The displacements uq

j , (j = 1, 2) can be expressed further through the following poten-
tial functions φq and ψq as follows [12]

uq
1 = φ

q
,1 − ψ

q
,2, uq

2 = φ
q
,2 + ψ

q
,1, (6)
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which leads to the uncoupled equations of magneto-elastic wave motion

φ
q
,11 + φ

q
,22 −

1
v2

1q
φ

q
,tt = 0, ψ

q
,11 + ψ

q
,22 −

1
v2

2q
ψ

q
,tt = 0, (7)

where v1q and v2q are the known longitudinal and transverse speeds in isotropic homoge-
neous magneto-elastic bodies, expressed explicitly as follows

v1q =

√
λq + 2µq + H2

0 µ0

ρq + µ2
0 H2

0 ε0
, v2q =

√
µq

ρq + µ2
0 H2

0 ε0
, q = c, s. (8)

Note, from the above speeds, in the absence of magnetic field force, that is, when
H0 → 0, the respective speeds reduce accordingly to

v1q =

√
λq + 2µq

ρq
, v2q =

√
µq

ρq
, q = c, s, (9)

which are the known respective longitudinal and transverse speeds of an isotropic homo-
geneous medium [32,40].

Hence, we further sought solutions for the un-coupled equations of magneto-elastic
motion expressed in (7) via the supposed potentials functions φq and ψq as follows

φq = f1q(x2)eik(x1−vt), ψq = f2q(x2)eik(x1−vt), (10)

where k and v are the dimensional wavenumber and the phase speed, respectively.
On introducing the solutions (10) into (7), we arrive at

f1q,22 − k2 α2
q f1q = 0, f2q,22 − k2 β2

q f2q = 0, (11)

where αq and βq (q = c, s) are defined as

αq =

√
1− v2

v2
1q

, and βq =

√
1− v2

v2
2q

. (12)

Therefore, the solution of (7) via (10) and (11) may be given for the coating layer as

φc =
(

A1c ek αc x2 + A2c e−k αc x2
)

eik(x1−vt), ψc =
(

A3c ek βc x2 + A4c e−k βc x2
)

eik(x1−vt), (13)

while, for the half-space layer that decays away from the surface x2 = 0, its solution may
be expressed in the following pattern

φs = A1s e−k αs x2 eik(x1−vt), ψs = A2s e−k βs x2 eik(x1−vt), (14)

where A1c, A2c, A3c, A4c, A1s, and A2s arising from (13) and (14) are constants to be
determined later.

3. Boundary Conditions

The imposed boundary conditions under the external forces at the surface x2 = −h
are given as

σc
12 + τc

12 = 0, and σc
22 + τc

22 = −P, j = 1, 2, (15)

where P = P(x1, t) in the last equation is a normal mechanical load that is considered to be
due to an elastic Winkler foundation, which is further expressed as [30,38,39]

P = p uc
2 |x2=−h, (16)
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where p is the dimensional stiffness of Winkler’s elastic foundation. Furthermore, the stresses
σ

q
j2 and τ

q
j2 for j = 1, 2, and q = c, s are the mechanical stresses and Maxwell’s stresses

caused by the presence of a magnetic field force, respectively.
In addition, the following interfacial conditions between the coating and the half-space

layers at x2 = 0 are obtained as

uc
j = us

j , and σc
j2 + τc

j2 = σs
j2 + τs

j2, j = 1, 2. (17)

Moreover, the Maxwell’s stresses τ
q
j2 caused by the presence of a magnetic field force,

are further considered to have the following tensorial representation

τ
q
ij = µ0 H0

(
Hq

i hq
j + Hq

j hq
i − Hq

k hq
k δij

)
, i = j = 1, 2, q = c, s, (18)

such that the corresponding normal and tangential stresses take the following explicit
linearized forms

τ
q
22 = µ0 H2

0

(
uq

1,1 + uq
2,2

)
, and τ

q
12 = 0, q = c, s. (19)

Additionally, in the above equations, Hq
i is the magnetic field vector that takes the

following definition

Hq
i = (hq

i + H0)δi2, i = 1, 2, q = c, s. (20)

with δij representing the Kronecker delta taking the values in {0, 1}, while H0 = (0, 0, H0)
denotes the magnetic field intensity, which is taken along the x3 direction—with the
structure reclining over the x1x2 plane. Additionally, hq

i represents the perturbed magnetic
field upon which it takes Einstein’s summation form [12,16]

hq
i = −uq

k,k, j = k = 1, 2, q = c, s. (21)

Note that we assume the magnetic field parameters to be the same in both layers,
for the sake of simplicity.

4. Secular Equation and Numerical Illustrations

Deploying the expressions expressed in Equations (13) and (14) into the boundary
and continuity conditions prescribed in (17) and (19), we obtain a homogeneous system
of order six with the non-zero components. The dispersion relation, or rather, the secular
equation, is then obtained as follows:

Det





iαce−αc K −iαceαc K −δ2
c e−βc K −δ2

c eβc K 0 0
χ+

1 e−αc K χ−1 eαc K iχ+
2 e−βc K −iχ−2 eβc K 0 0

i i −βc βc −i −βs
αc −αc i i αs −i

iµ αc −iµ αc −µ δ2
c −µ δ2

c iαs δ2
s

µ δ2
c µ δ2

c iµ βc −iµ βc −δ2
s iβs



 = 0, (22)

with

χ±1 = δ2
c ±

αc ζ

2K
, χ±2 = βc ±

αc ζ

2K
, δq =

1
2

(
1 + β2

q

)
, q = c, s, (23)

where the dimensionless Lamé elastic constant µ, dimensionless wavenumber K, and the
dimensionless stiffness of the Winkler’s elastic foundation ζ, are respectively expressed
as follows:
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µ =
µc

µs
, K = kh, ζ =

hp
µc

. (24)

Moreover, it can be demonstrated that at h = 0, that is, when the the coating layer
vanishes, the secular equation expressed in (22) corresponds to that of the half-space only,
which then takes the following reduced version form(

1 + β2
s

)2
− 4αs βs = 0. (25)

In fact, upon making use of the explicit expressions for αs and βs as expressed in (12),
the very well known Rayleigh wave equation is achieved [12,15].

In addition, the numerical simulation and results of the governing model via the
obtained secular equation in (22), are performed in the present study by considering the
following physical data of much concern, considered interchangeably in both the coating
and the half-space layers, as follows [42–44].

Furthermore, in Table 1, ρ stands for the density, E stands for Young’s modulus, while
ν is the Poisson ratio. Furthermore, in favor of the magnetic field force presence, we
consider the following fixed values (unless otherwise stated) as follows [12].

µ0 = 4π × 10−7 kg m s−2 A−2, ε0 = 8.85× 10−12 kg−1m−3 s4 A2.

Numerical illustrations of the dispersion curves via the obtained secular equation
in (22)—showing the relationship between the dimensionless phase speed v/vR and the
dimensionless wavenumber K—are presented in Figures 2 and 3, respectively.

Table 1. Some physical data regarding iron (Fe) and zinc (Zc) materials.

Materials ρ (kg m−3) E (GPa) ν

Iron (Fe) 7900 196.2 0.291

Zinc (Zn) 7100 96.4 0.249

v
vR

K
(a)

v
vR

K
(b)

Figure 2. Dependence of the scaled phase velocity v
vR

on the dimensionless wavenumber K with
ζ = 0.01. (a) Iron coating and zinc substrate. (b) Zinc coating and iron substrate.
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v
vR

K
(a)

v
vR

K
(b)

Figure 3. Dependence of the scaled phase velocity v
vR

on the dimensionless wavenumber K with
ζ = 0. (a) Iron coating and zinc substrate. (b) Zinc coating and iron substrate.

From these figures, a soft Winkler’s elastic foundation [39] is considered in Figure 2
when the dimensionless stiffness of the foundation takes the value ζ = 0.01, for an iron-
coated zinc substrate (see Figure 2a), and, on the other hand, for a zinc-coated iron substrate
(see Figure 2b), respectively, with the variation in magnetic field intensity H0. Similarly,
Figure 3 describes the same scenarios as in Figure 2, but with no load; that is, the prescribed
normal mechanical load is ignored by setting the dimensionless stiffness of the foundation
to be zero, that is when ζ = 0.

In particular, the dependence of the phase speed v/vR on the dimensionless wavenum-
ber K as shown in Figure 2a for the iron-coated zinc substrate is observed to grow steadily
in the same manner, starting around 0.5 to 0.98 on the phase velocity axis, before a sudden
steady growth. In fact, an increase in magnetic field intensity H0 is noted to decrease/reduce
the dependency of v/vR on K. However, in the case of the zinc-coated iron substrate por-
trayed in Figure 2b, it is equally found to grow steadily in the same manner before a sudden
decline. Moreover, the decline is noted to respond more with respect to lesser magnetic
field intensity.

Without further delay, Figure 3 maintains a similar trend to that of Figure 2, if not for
the absence of the prescribed normal mechanical load, when the dimensionless stiffness
of the Winkler’s foundation ζ = 0. In fact, the absence of Winkler’s foundation widens
the independence of v/vR on K; at the same time, it maintains the description of the
composition of the layers. More clearly, the dependency of the iron-coated zinc substrate
starts from 1 on v/vR axis and increases, while that of the zinc-coated iron substrate
decreases from the same point.

5. Asymptotic Solution

The current section is intended to asymptotically study the obtained secular equation
in the preceding section. Thus, we begin the section by explaining the basics of the
construction of effective boundary conditions for the governing model—the explanation is
to be conducted by demonstrating the procedure for the formulated problem. In addition,
we would equally establish a comparative study on the two secular equations; the exact
versus approximate.

5.1. Treating Coating Layer

Here, we begin by modeling the effect of the homogeneous elastic coating via the
effective boundary conditions procedure. Thus, we put into practice in what follows the
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direct asymptotic integration of the equations in elasticity, see, e.g., [8,10,11,13,32]. Firstly,
let us specify the wavenumber K associated with the long-wave limit, given as

K = kh� 1. (26)

Furthermore, it is appropriate to set the following boundary conditions

uc
i = vs

i , (27)

where vi = vi(x1, t), for i = 1, 2 are displacements defined on the interface of the substrate,
that is, at x2 = 0.

Next, we introduce the scaling variables

ξ = k x1, γ =
x2

h
+ 1, τ = k v2c t, (28)

along with the following dimensionless quantities

u∗j = k uc
j , v∗j = k vs

j , p∗ =
p

K k µc
, σ∗j2 =

σs
j3

K µc
, τ∗22 =

τs
22

K µc
, j = 1, 2. (29)

The equations of motion expressed (5) can then be represented in terms of the new
variables as follows

u∗1,γγ + K
(

κ2
c − 1

)
u∗2,ξγ + K2

(
κ2

c u∗1,ξξ − u∗1,ττ

)
= 0,

κ2
c u∗2,γγ + K

(
κ2

c − 1
)

u∗1,ξγ + K2
(

u∗2,ξξ − u∗2,ττ

)
= 0,

(30)

together with the new transformed boundary conditions from those prescribed in (19)
and (27), given by

u∗1,γ + K u∗2,ξ = 0 at γ = −1,

κ2
c u∗2,γ + K

(
κ2

c − 2
)

u∗1,ξ = −K2 p∗ u∗2 at γ = −1,

u∗j = v∗j at γ = 0,

(31)

where κc = v1c/v2c.
The asymptotic series for the dimensionless displacements may now be written in

terms of the small parameter K � 1 as

u∗i
σ∗j2
τ∗22

 =


u(0)

i
σ
(0)
j2

τ
(0)
22

+ K


u(1)

i
σ
(1)
j2

τ
(1)
22

+ K2


u(2)

i
σ
(2)
j2

τ
(2)
22

+ . . . , j = 1, 2. (32)

Therefore, upon using (4) and (29)–(32), the stresses σ12 and σ22 + τ22 imply

K2 σ∗12 = u(0)
1,γ + K

(
u(1)

1,γ + u(0)
3,ξ

)
+ K2

(
u(2)

1,γ + u(1)
2,ξ

)
+ O

(
K3
)

,

K2(σ∗22 + τ∗22) = κ2
c u(0)

3,γ + K
(

κ2
c u(1)

3,γ +
(

κ2
c − 2

)
u(0)

1,ξ

)
+ K2

(
κ2

c u(2)
2,γ +

(
κ2

c − 2
)

u(1)
1,ξ

)
+ O

(
K3
)

.

(33)
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Then, the solutions for u(0)
j , u(1)

j , and u(2)
j , j = 1, 2 are found as follows

u(0)
j = v∗j , u(1)

1 = −γ v∗2,ξ , u(1)
2 = −γ

(
1− 2κ−2

c

)
v∗1,ξ ,

u(2)
1 = γ

[((
−3 + 2κ−2

0

)γ

2
− 4
(

1− κ−2
c

))
v∗1,ξξ +

(
1 +

γ

2

)
v∗1,ττ

]
,

u(2)
2 = γ

[(
1− 2κ−2

c

)γ

2
v∗2,ξξ + κ−2

c

((
1 +

γ

2

)
v∗2,ττ − p∗

)]
,

(34)

such that the stresses expressed in (33) now become

σ
(0)
12 = (γ + 1)

(
v∗1,ττ − 4

(
1− κ−2

c

)
v∗1,ξξ

)
+ O(K2),

σ
(0)
22 + τ

(0)
22 = (γ + 1) v∗2,ττ − p∗ + O(K2).

(35)

The leading order stresses are then rewritten in terms of the original dimensional
variables as

σc
12(x1, x2, t) = (x2 + h)µc

(
v−2

2c vs
1,tt − 4

(
1− κ−2

c

)
vs

1,11

)
,

(σc
22 + τc

22)(x1, x2, t) = (x2 + h)µc v−2
2c vs

2,tt − pv2.
(36)

Lastly, the effective boundary conditions procedure reveals the following transformed
continuity of stresses and displacements at the interface x2 = 0, as follows

σs
13(x1, 0, t) = hµc

(
v−2

2c us
1,tt − 4v2

2c

(
1− κ−2

0

)
us

1,11

)
,

(σs
22 + τs

22)(x1, 0, t) = hµc v−2
2c us

2,tt − p us
2.

(37)

Note also that these conditions were first presented in [32] for free boundary conditions,
using an ad hoc approach, see also [10], cf. (3.17).

5.2. Asymtotic Dispersion Relation

In this subsection, an asymptotic model for surface waves on an elastic half-space
(substrate) associated with the effect of normal mechanical load, due to the Winkler’s elastic
foundation, and that of the magnetic field force will be derived.

Thus, upon following the procedure described in [10,11,13,32], a slow-time perturba-
tion scheme based on the supposition that K � 1 may be established, revealing the free
Rayleigh wave at leading order, with the perturbed wave equation following from the
analysis of correction terms. The resulting explicit formulation for surface wave field is
expressed in terms of the longitudinal potential φ, and non-zero component of the shear
potential ψ with the displacement field expressed by using (6). The behavior over the
interior of the half-space is governed by the following elliptic equations

φs
,22 + α2

R φs
,11 = 0, ψs

,22 + β2
R ψs

,11 = 0, (38)

where

αR =

√
1−

v2
R

v2
1s

, and βR =

√
1−

v2
R

v2
2s

, (39)

with vR denoting the Rayleigh wave speed.
The boundary condition expressed (38)1 at x2 = 0 is given by a singularly perturbed

wave equation

φs
,11 −

1
v2

R
φs

,tt − b1hH
(
φs

,111
)
= −b2

p
µs
H
(
φs

,1
)
, (40)
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whereH is Hilbert transform; while b1 and b2 are found to be

b1 =
µ
(
1− β2

R
)

2B

[
v2

R
v2

2c
(αR + βR)− 4βR

(
1− κ−2

c

)]
, b2 =

µ αR
(
1− β2

R
)

2B
, (41)

respectively, with

B =
βR
αR

(
1− α2

R

)
+

αR
βR

(
1− β2

R

)
−
(

1− β4
R

)
. (42)

Obviously, the perturbation terms in (40) are connected with the effect of the coating
layer and the Winkler’s foundation can be expressed as a pseudo-differential operator, i.e.,

φs
,11 −

1
v2

R
φs

,tt − b1h
√
−∂,11 φs

,11 = −b2
p

µs

√
−∂,11 φs

,1. (43)

Furthermore, the shear potential function ψs is found to be

ψs(x1 − vRt, βR x2) =
1 + β2

R
2βR

H(φs(x1 − vRt, βR x2)). (44)

The derived equation in (43) leads to the approximation of the exact secular equation
earlier determined in (22), as follows

v
vR

=
√

1− Γ, (45)

where

Γ = b1 K +
b2 ζ

K
. (46)

Here, the parameter Γ contains the effect of the coating and the stiffness of the Win-
kler’s elastic foundation ζ; we will show later the related relation at which the parameter
Γ vanishes.

5.3. Numerical Comparison

This section establishes a comparative analysis graphically. Let us now illustrate
graphically the comparison between the obtained approximate secular equation in (45)
and that of the exact secular equation earlier determined in (22). Numerical comparison of
the exact the secular equation in (22) and that of the asymptotic secular relation in (45) is
depicted for H0 = 103 kg s−2 A−1 in Figures 4 and 5, sequentially, for ζ = 0.01 and ζ = 0.
Furthermore, from these figures, the black solid lines denote the exact dispersion curves of
the exact secular equation determined in (22), while the dashed lines correspond to that of
the asymptotic secular equation determined in (45).
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Figure 4. Comparison of the exact (22) and approximate (45) secular equations via the dependence
of scaled velocity v

vR
on the dimensionless wavenumber K with ζ = 0.01. (a) Iron coating and zinc

substrate. (b) Zinc coating and iron substrate.
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Figure 5. Comparison of the exact (22) and approximate (45) secular equations via the dependence
of scaled velocity v

vR
on the dimensionless wavenumber K with ζ = 0. (a) Iron coating and zinc

substrate. (b) Zinc coating and iron substrate.

Here, the comparative plots depicted in Figures 4 and 5, respectively, follow the pattern
of Figures 2 and 3 with and without the presence of Winkler’s elastic foundation—when
ζ = 0.01 (a soft elastic foundation) and when ζ = 0. More specifically, a correlation is noted
in both Figures 4 and 5 with regard to both the iron-coated zinc substrate (see Figures 4a
and 5a), and that of the zinc-coated iron substrate (see Figures 4b and 5b), respectively.

6. Vanishing Possibility of the Coating Layer

In this section, we study the vanishing possibility of the effect of the coating layer
through the expression of the constant Γ determined in (45) and (46), that is, when Γ = 0.
As a result, (40) vanishes, and this leads to having only the hyperbolic equation on the
surface of a substrate in the case of the absence of the coating layer.

Thus, upon setting Γ = 0 in (45), the following expression holds
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Ec =
1

2
(
2βR + ζRν−c

) [2Υ
(

v2
Rρc + v2

Rε0H2
0 µ2

0

)
− 4βRH2

0 µ0 + H2
0 µ0νc(4βR − ζR) + H2

0 µ0 ζR

−2ν2
c

(
v2

RρcΥ + H2
0 µ0

(
v2

Rε0µ0Υ− 4βR + ζR

))
+ ν+c

(
8Υv2

R H2
0 µ0(1− 2νc)

(
ε0H2

0 µ2
0 + ρc

)(
2βR + ζR ν−c

)
+
(

2ρcv2
Rν−c Υ + H2

0 µ0

(
4βR − 8βRνc + 2v2

Rε0µ0 ν−c Υ + ζR(2νc − 1)
))2

)1/2
]

,

(47)

where

ν−c = νc − 1, ν+c = νc + 1, Υ = αR + βR, ζR =
αRζ

K
.

From the later equation, we observe that the Young’s modulus Ec of the coating layer
is non-homogeneously dependent on Winkler’s elastic parameter ζ and the dimensionless
wavenumber K. Moreover, in the absence of the magnetic field intensity and Winkler’s
foundation in the equation, that is, when H0 = 0 and ζ = 0, Equation (47) further reduces
to the following

Ec = ρc

(
1− ν2

c

)
v2

R

(
α0

R + β0
R

β0
R

)
, (48)

where

α0
R =

√
1−

v2
R (2ν2

s + νs − 1)ρs

Es(νs − 1)
, and β0

R =

√
1−

2 v2
R(νs + 1)ρs

Es
. (49)

Numerically, as an example, let us consider an iron substrate (with the following physi-
cal data: Es = 196.2 GPa, νs = 0.291, ρs = 7900 kg m−3), with vc = 0.249,
µ0 = 4π× 10−7 kg m s−2 A−2, H0 = 105 kg s−2 A−1, and ε0 = 8.85× 10−12 kg−1m−3 s4 A2.
Furthermore, an unloaded case is considered by disregarding Winkler’s elastic founda-
tion, by setting the dimensionless stiffness of the foundation to zero, that is, ζ = 0. Thus,
the following figures show the vanishing possibility of the effectiveness of the coating
layer on the propagation of waves on the governing magneto-elastic coated substrate.
Here, the numerical comparison of the exact solution (22) is shown by a solid black line,
against the approximate solution (45) that is depicted using the dashed black line.

Figure 6 portrays the occurrences, or rather, the glimpses of the coating’s density
variation ρc through the dependency curves of v/vR versus K. It can be noted from these
Figure 6a–d how possible it is to reduce the effect of the coating layer, by using the values
of Ec expressed in (47). Accordingly, we progressively increment the density of the coating
layer ρc, in such a way that, the density of the half-space substrate ρs is approached.

In a nutshell, we conclude that the wider (or closer) the gap between ρc and ρs, and Ec
and Es, the wider (or closer) the level of exactitude, existing between the approximate and
exact dispersion relation, through the dependency curve of v/vR versus K.

In essence, the effect of the coating layer vanishes steadily when the densities of the
coating and that of the substrate are equalized, as correctly captured in Figure 6d. In fact,
this scenario somewhat satisfies the instance of a material contrast [43,45].
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Figure 6. The relationships between v
vR

versus K when the relation (46) is achieved. (a) if
ρc = 7800 kg m−3, then Ec ≈ 187.403 GPa. (b) if ρc = 7850 kg m−3, then Ec ≈ 188.611 GPa.
(c) if ρc = 7890 kg m−3, then Ec ≈ 189.578 GPa. (d) if ρc = ρs = 7900 kg m−3, then Ec ≈ 189.82 GPa.

7. Conclusions

In conclusion, we examined the propagation of plane surface waves on a coated elastic
half-space. Sufficient perfect interfacial conditions were prescribed between the coating and
the half-space layers. Additionally, owing to the natural incidence of certain external excita-
tions, the structure under deliberation was further exposed to the presence of a magnetic
field force, upon which an addition normal mechanical load P(x1, t) was further prescribed
through the application of Winkler’s elastic foundation. Moreover, we utilized a couple
of analytical and asymptotic integration procedures, thereby acquiring and analyzing the
aspiring secular equation. In fact, the influence of the coating layer was suppressed asymp-
totically by deploying apposite effective boundary conditions. These effective boundary
conditions were ingrained in a long-wave approximation condition. Indeed, the compari-
son between the two approaches yielded a perfect agreement; furthermore, the acquisition
of certain well-known results in the literature acted as liming circumstances of the present
examination. Additionally, an insightful study about the existence and vanishing possibly
of the effectiveness of the coating layer was highlighted graphically and discussed. Lastly,
the present study can be used by material scientists, and engineers while designing and
constructing multilayered composites—in addition to its huge relevance in the study of
seismic waves and earthquakes. More so, a multiply coated heterogeneous structure would
be considered a future prospect, with different external forces.
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