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Abstract: This paper aims to investigate the screw motion in generalized space. For this purpose,
firstly, the change in the screw coordinates is analyzed according to the motion of the reference frames.
Moreover, the special cases of this change, such as pure rotation and translation, are discussed. Matrix
multiplication and the properties of dual numbers are used to obtain dual orthogonal matrices, which
are used to simplify the manipulation of screw motion in generalized space. In addition, the dual
angular velocity matrix is calculated and shows that the exponential of this matrix can represent the
screw displacement in the generalized space. Finally, to support our results, we give two examples of
screw motion, the rotation part of which is elliptical and hyperbolic.
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1. Introduction

A rigid body is a system of particles with a fixed distance from one another, so every
displacement of a rigid body be an isometry. An isometry is called a rigid displacement
when it has properties such as rotation and translation. The set of rigid displacements is
called the Euclidean group [1,2].

The term “kinematics”, which originates from Greek, means motion, and it is a branch
of mechanics that deals with the analysis of the motion of particles and rigid bodies [3].

In order to represent rigid motion in Euclidean or Lorentzian space equipped with
multiple coordinate frames, it is required to determine the “rotation matrix” and “transla-
tion axis” concepts. In particular, if the axis of rotation is parallel to the axis of translation,
this transformation is called screw motion and the axis is called the screw axis. These
concepts are used to create homogeneous transformation matrices, which represent the
position and direction of a coordinate frame relative to the other. These transformations
allow us to navigate from one coordinate frame to another [4,5].

To obtain frame M from frame F, it is necessary to apply a rotation determined by
R, and translation (with respect to F) given as n, where F is a fixed frame and M is a
moving frame. This transformation called coordinate transformation, which is denoted as
D : F → M, and the coordinates of it are determined y = Rx + n, where y is the position
of x after the displacement. In this notation, R is an n × n orthogonal matrix called a
rotation matrix, and n is an n-dimensional vector called a translation. This transformation
is denoted by D = (R, n) [3,5].

Screw theory was introduced by Chasles in 1830 in order to explain the concept of
the twist motion of a rigid body. Then, in 1865, Plücker called this a screw. Later, in 1900,
Ball explained the kinematics of a rigid body by using screw theory [6–8]. The screw
theory is defined as the concept of rotation and translation about a common axis; it can
be thought of as any helix of rotation. A common example is the thread of a screw (hence
the name screw theory). In engineering, a screw thread is defined by a pitch, i.e., the ratio
of translational motion to rotational motion. To describe the direction in which the screw
points, an axis is needed along which it points. Finally, to describe a point on the screw,
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we need a magnitude, a measure of distance along the screw that allows us to find our
position on the spiral. Thus, to describe rigid body motion using a screw, we need three
components: a pitch, an axis, and an amount [9].

The derivative of motion represents the velocity of a point from frame F to frame M.
Linear velocity is the instantaneous rate of change in the linear position of a point relative
to some frame. The angular velocity describes the rotational motion of M with respect to
F [3,5,10].

Dual numbers were initially introduced by Clifford in 1873. Their first applications
to kinematics were in the study by Kotel’nikov in 1895 and in 1903. Bottema and Roth, in
1978, used dual numbers in theoretical kinematics. Then, dual quaternions were applied to
spatial kinematics by Agrawal in 1987. Further information on dual quaternions can be
found in the work of McCarthy from 1990 [3,5,11–15].

Vector spaces with a quadratic form generate an associative algebra with unity called
Clifford algebra. The quaternion algebra, a subalgebra of Clifford algebra, is isomorphic
to the rotation group. The generalized quaternions H are a four-dimensional algebra that
is associative but not commutative. The algebra of a generalized quaternion is a natural
generalization of quaternion algebra H [16–20].

According to the definition, the generalization space is a Euclidean space if α = β = 1
and a semi-Euclidean space if α = 1 and β = −1. In this study, all situations of α and β
are considered, except α = β = 0. Some concepts that are used in the definition of the
scalar product and vector product in the generalization space are different from those in
Euclidean and Lorentzian space.

Beggs gave a derivation for a screw matrix by using two different coordinate systems
in 1965. In 2018, Sıddıka studied the screw theory in Lorentzian space L3. In 2021, Ata and
Savcı showed that unit-generalized quaternions H(α, β) correspond to a rotation in gener-
alized space E3(α, β). They obtained the screw axis of a displacement, the dual Rodrigues
equation, and the Euler parameters of a spatial displacement, in generalized space. They
stated that this motion gives the rotational motion in three-dimensional Euclidean space
E3 and in three-dimensional semi-Euclidean space for their specific choices of α, β ∈ R. In
2022, Savcı obtained the screw axis of a displacement, the dual Rodrigues equation, and
the Euler parameters of a spatial displacement, in generalized space E3(α, β) [10,20–23].

Since the rotational motion in Euclidean space is on the sphere, it is circular, whereas
the rotational motion in Lorenz space is hyperbolic because it is on hyperboloids. With the
appropriate selection of α and β in generalized space, rotational motions such as circular,
hyperbolic, and elliptical can be obtained. Thus, this gives the opportunity to work in
many areas, such as from the centrifugal force taken into account when calculating the
slope of the road to the motion of an electric field [24] and the orbits of the planets [25,26].
Generalized space is also a scalar product space. For general information about scalar
product spaces and their algebraic properties, see [16–18,20,24–29].

Screw motion is an important part of rigid body motion, and it is vital in various
fields, such as multi-body dynamics, mechanical design, computational geometry, and
robot mechanics. From this point of view, it is important to reveal the wider application
prospects of the screw motion. With our study, the details of which are given below, screw
motion has been examined for all situations in generalized space.

In this paper, we explain the change in the screw coordinates according to the motion
of the reference frames and consider the specific cases of changes in the coordinates.
Then, we obtain Plücker coordinates for the screw axis in generalized space. Moreover,
we obtain dual orthogonal matrices to simplify the screw coordinate transformations by
using matrix multiplication and the properties of dual numbers. Finally, we obtain a
dual angular velocity matrix and show that screw displacement can be represented as the
exponential of this matrix in generalized space E3(α, β), which includes the Euclidean and
semi-Euclidean space.
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2. General Information

In this section, we will provide some basic information that is used in the manuscript.

Definition 1. Let r = (r1, r2, r3), s = (s1, s2, s3) be two vectors in R3 and α, β ∈ R. The
generalized scalar product is defined by

< r, s >G= αr1s1 + βr2s2 + αβr3s3 (1)

Or
< r, s >G= r>εs

where ε =

 α 0 0
0 β 0
0 0 αβ

.

The vector space R3, with the generalized scalar product defined over it, is called a
three-dimensional generalized space and is denoted by E3(α, β) = (R3,<,>G ). This space
includes the Euclidean and semi-Euclidean spaces, i.e.,

If α = β = 1, then E3(1, 1) = E3 is a three-dimensional Euclidean space.
If α = 1 and β = −1, then E3(1,−1) = E3

2 is a three-dimensional semi-Euclidean space.
The generalized vector product is defined as follows:

r×G s = β(r2s3 − r3s2)i− α(r1s3 − r3s2)j + (r1s2 − r2s1)k,

where i×G j = k, j×G k = βi, k×G i = αj.
Let {e1, e2, e3} be the orthonormal basis of this space; then, its Clifford algebra

Cl(E3(α, β)) = Clp,q has the basis {1, e1, e2, e1e2}, where p + q = 3, e2
1 = −α, e2

2 = −β and
e1e2 = −e2e1 [18].

Definition 2. A dual number ŝ has the form ŝ = s + εs∗, where s, s∗ ∈ R, ε2 = 0 with ε 6= 0.
The set

D = {ŝ = s + εs∗ : s, s∗ ∈ R , ε2 = 0, ε 6= 0}

is the set of dual numbers, and it forms an Abelian ring with unity and divisors of zero [30].
On the other hand, the set

D3 = D×D×D = {Ŝ : Ŝ = S + εS∗, S, S∗ ∈ R3}

is a module over the ring D.
Let us denote Ŝ = S + εS∗ = (s1, s2, s3) + ε(s∗1 , s∗2 , s∗3) and R̂ = R + εR∗ = (r1, r2, r3) +

ε(r∗1 , r∗2 , r∗3). The Lorentzian scalar product of S and R is defined as follows:〈
Ŝ, R̂

〉
= 〈S, R〉+ ε(〈S, R∗〉+ 〈S∗, R〉).

Dual space D3, together with the scalar product, is called the dual Lorentzian space

and denoted by D3
1. For Ŝ 6= 0, the norm

∥∥∥Ŝ
∥∥∥ of Ŝ is defined by

∥∥∥Ŝ
∥∥∥ =

√∣∣∣〈Ŝ, Ŝ
〉∣∣∣. A dual

vector Ŝ = S + εS∗ is called a dual-space-like vector if 〈S, S〉 > 0 or S = 0, a dual time-like
vector if 〈S, S〉 < 0, and a dual null vector if 〈S, S〉 = 0 for S 6= 0 [30,31].

The dual angle between two lines is the dual number θ̂ = θ + εd, where θ is the angle
between two lines about the common normal and d is the distance between them along
their common normal. Some trigonometric and hyperbolic functions with dual variables
can be written as follows:



Symmetry 2022, 14, 2235 4 of 13

sin θ̂ = sin(θ + εd) = sin θ + εd cos θ

cos θ̂ = cos(θ + εd) = cos θ − εd sin θ

sinh θ̂ = sinh(θ + εd) = sinh θ + εd cosh θ

cosh θ̂ = cosh(θ + εd) = cosh θ + εd sinh θ.

(2)

These definitions arise from the Taylor series expansion of the function f (θ + εd) about
θ, which yields [5,30,31]

f (θ̂) = f (θ + εd) = f (θ) + εd f p(θ) + (εd)2 f pp(θ)/2 + ...
= f (θ) + εd f p(θ)

Definition 3. A matrix C =

 0 −βc3 βc2
αc3 0 −αc1
−c2 c1 0

is called a generalized skew-symmetric

matrix (or G-skew symmetric matrix) if CTε = −εC. The matrix C satisfies the equation Cx =
c×G x, where the vector c = (c1, c2, c3) [18].

Definition 4. The matrix R is called a generalized orthogonal matrix (or G-orthogonal matrix) if
RTεR = |R|ε. The set of all G-orthogonal matrices under matrix multiplication operation is called
a rotation group in E3(α, β) [18,20].

A rotation about the origin can be given with the equation of Rx = y, which is a 3× 3
G-orthogonal matrix and x ∈ E3(α, β). The generalized Cayley formula is defined as
R = (I − C)−1(I + C) = (I + C)(I − C)−1, where C is a G-skew symmetric matrix. By
using the G-Cayley formula, a G-orthogonal matrix can be obtained by a G-skew symmetric
matrix C, which is defined in Definition 3 [20].

Definition 5. The set of all generalized orthogonal matrices with |R| = 1 under the operation of ma-
trix multiplication forms a group denoted as SO(α, β))(3), called a rotation group in E3(α, β) [18].

Definition 6. The set of displacements of the space E3(α, β) is an algebraic group. If T1 : F → M1
and T2 : M1 → M2 are displacements, then T = T1T2 : F → M2 is also a displacement.

The matrix representation of the combination of these two displacements is[
R1 n1
0 1

][
R2 n2
0 1

]
=
[

R1R2 R1n2 + n1
0 1

]
where 0 is a row vector (0, 0, 0). This representation is called a homogeneous transformation.
The set of homogeneous transformations in E3(α, β) is as follows:

G− H(4) = {
[

R n
0 1

]
; R ∈ SO(α, β)(3), n ∈ R3}.

g = (R, n) is the homogeneous transformation corresponding to the displacement
D = (R, n) in E3(α, β). Here,

g(t) : R→ G− H(4)
t→ g(t) = (tij)4×4

Although the displacement is not a linear transformation, the homogeneous transfor-
mation g = (R, n) is a linear transformation.



Symmetry 2022, 14, 2235 5 of 13

The tangent operators of G− H(4) must satisfy the relation

·
gg−1 =

[ ·
R

·
n

0 0

][
R−1 −R−1n

0 1

]

=

[
A s
0 0

]
= (A, s)

where A =
·
RR−1 is the 3 × 3 angular velocity matrix and s = −An +

·
n is its three-

dimensional linear velocity vector. The tangent direction of the motion g(t) at t = t0 is
defined by

·
g(t0).

Similarly, the condition for SO(α, β)(3) to be tangent operators is obtained from the
relation RTεR = ε in E3(α, β). Differentiating both sides, we obtain

·
RTεR + RTε

·
R = 0

which can be written as
RTε

·
R = (−RTε

·
R)T .

The last equation shows that RTε
·
R = Φ is a skew-symmetric matrix that is called the

angular velocity matrix of the rotation R(t) in E3(α, β). If we can calculate that
·
R = Rε−1Φ,

let ε−1Φ = Ω, then
·
R = RΩ. Note that Ω is a G-skew-symmetric matrix.

·
R(t) = R(t) Ω,

The solution of this matrix-differential equation gives a one-parameter group of
rotations as follows [23]:

R(t) = etΩ.

In the following section, the translation matrix between the coordinate transforma-
tions will be obtained and the changes in the screw motion depending on the coordinate
transformations will be examined.

3. Coordinate Transformations of a Screw in E3(α, β)

The tangent operator of g is L = (A, s), where A is 3× 3 G-skew symmetric matrix
and s is a three-dimensional vector. Let the vector a correspond to matrix A. Then, the
six-dimensional vector l = (a, s) is called a screw. In this section, we will analyze the change
in the coordinates of the screw depending on the change in reference frame for the motion.

Given fixed F and moving frames M, let a motion be described by displacement
g(t) : F → M, with parameter t. The displacements T : F → F

ı
and T : M → M

ı
define

g
ı
(t) = Tg(t)T−1. Then, the motion can be given as g

ı
(t) : F

ı → M
ı
. The tangent operator

L
ı

of g
ı
(t) is obtained from the tangent operator L of g(t) as follows:

L
ı

=
·

(g
′
)(g

′
)−1

= (T
·
gT−1)(Tg−1T−1)

= T
·
gg−1T−1

= TLT−1.
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If we rewrite this equation more clearly for displacement T = (R, n), we obtain

L
ı

=

[
R n
0 1

][
A s
0 0

][
R−1 −R−1n

0 1

]

=

[
RAR−1 −RAR−1n + Rs

0 0

]
.

(3)

From the G-skew symmetric matrix A
ı
= RAR−1, we can obtain the vector a

ı
. From

the relationship between the generalized cross-product and G-skew symmetric matrices,
we have

−RAR−1n = −A
ı
n

= −a
ı ×G n

= n×G a
ı

Thus, the screw l = (a, s) becomes l
ı
= (a

ı
, s

ı
), where

a
ı
= R a

s
ı
= n×G R a + R s

This transformation can be written as[
a

ı

s
ı

]
=

[
R 0

TR R

][
a
s

]
, (4)

Here, T is a G-skew symmetric matrix corresponding to vector n, and 0 is the 3× 3
square zero matrix. Equation (4) describes how the screw changes with the change in
reference frames.

In the following section, it will be examined how the screw motion, which changes
depending on the coordinate transformations, changes the components that make up the
screw, and their specific cases will be discussed.

4. The Forms of a Screw in E3(α, β)

Let us consider a specific case of the change in coordinates in Equation (4). It is the
screw motion obtained as a pure translation g = (I, n) of the fixed and moving frames.
Thus, l = (a, s) transforms to

lı = (a, n×G a + s).

This implies that the linear velocity s of the screw changes depending on the changes
in the origin of the reference frames.

Linear velocity vector a of l = (a, s) can be split into two components: one that is
parallel to a and another that is orthogonal to a. Let pa be a parallel component; then, p is
obtained as follows:

p =
< s, a >G

< a, a >G

. (5)

The orthogonal part is s− pa. Here, we can find a point k on the screw axis such that

k×G a = s− pa.

The solution of the above equation is

k =
a×G s

< a, a >G

. (6)
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Let us change the reference frames by the translation g = (I,−k); then, l = (a, s) is
transformed to the screw l

ı
= (a,−k×G a + s). Since k×G a orthogonal to a, hence

−k×G a + s = pa.

Therefore, in this reference frame, the screw has the form l
ı
= (a, pa). This implies

that in the new frame, the angular and linear velocity vectors are in the same direction of a.
It is clear that the body is moving in a screw motion at time t. The axis of this screw motion
is line d = k + ta, called the instantaneous screw axis in E3(α, β). The general screw l = (a, s)
can be written in the standard form using equation s = k×G a + pa

l = (a, k×G a + pa) (7)

The line d = k + ta and constant p are the axis and the pitch of screw l, respectively.
When p = 0 in Equation (7), we encounter a critical case of the screw where there is no

velocity vector. Let the screw be rewritten:

l = (a, k×G a).

There is an angular velocity and no linear velocity relative to d = k + ta. Thus, the line l
can state the screw, and the components of the l are known as the Plücker coordinates of
the line.

When p = 0, and the screw l = (0, s), we obtain another special case where the screw
degenerates into a line screw. This means that the motion with no angular velocity is pure
translation.

In the generalized scalar product in Equation (1), we have four cases, depending on
the selection of the signs of α and β, which are α,β > 0, α > 0 and β < 0, α < 0 and β > 0,
α, β < 0. However, from the definitions of the scalar product, the last three cases are the
same. Since all possible selections of α and β can be covered by two conditions α, β > 0
and α > 0, β < 0, in the following section, we will consider only these two cases.

In the following section, a dual orthogonal matrix of an orthogonal matrix will be
obtained and this matrix will be used to describe screw motion.

5. Generalized Dual Orthogonal Matrices and Screw Motion in E3(α, β)

Now, we wish to simplify the screw coordinate transformations via matrix multi-
plication and the properties of dual numbers. Let l = (w, s) and l

ı
= (a

ı
, s

ı
) be screws

associated with the dual vectors â = a + εs and âı = a
ı
+ εs

ı
, respectively. Thus, the screw

transformation in Equation (4) can be rewritten as

âı = R̂ â

where
R̂ = R + ε T R (8)

and T is a G-skew symmetric matrix.

Theorem 1. Dual matrix R̂ is a G-dual orthogonal matrix.

Proof. Let dual matrix R̂ be given as in (9), with R as a G-orthogonal matrix and T as a
G-skew symmetric matrix. Then, since

R̂TεR̂ = (R + εTR)Tε(R + εTR)
= RTεR + ε( RTεTR + RTTTεR) + ε2(...)
= RTεR + ε( RTεTR + RT(−εT)R
= RTεR + ε( RTεTR− RTεTR)
= RTεR
= ε
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where ε2 = 0 and RTε = −εR.

Case I (α > 0 and β > 0): By using Equation (8), the G-orthogonal matrix related to
the screw displacement has its angle θ about the axis y, and a distance n along axis y, and
we can obtain

Ŷ = R + ε T R =

 cos θ̂ 0
√

β sin θ̂
0 1 0
− sin θ̂√

β
0 cos θ̂

 (9)

where

R =

 cos θ 0
√

β sin θ
0 1 0
− sin θ√

β
0 cos θ

 and T =

 0 0
√

βt
0 0 0
− t√

β
0 0

.

In addition, the screw displacement has its angle φ about the axis x, and a distance n
along axis x

X̂ = R + ε T R =

 1 0 0
0 cos φ̂ −

√
α sin φ̂

0 sin φ̂√
α

cos φ̂

 (10)

where

R =

 1 0 0
0 cos φ −

√
α sin φ

0 sin φ√
α

cos φ

 and T =

 0 0 0
0 0 −

√
αt

0 t√
α

0


The dual orthogonal transformation

D̂ = Ŷ X̂

and

D̂ =


cos θ̂

√
β sin θ̂ sin φ̂√

α

√
β sin θ̂ cos φ̂

0 cos φ̂ −
√

α sin φ̂

− sin θ̂√
β
− cos θ̂ sin φ̂√

α
− cos θ̂ cos φ̂

.

Case II (α > 0 and β < 0): In this case, we have two subcases where the x-axis and
y-axis are timelike or spacelike.

Case IIa Let x-axis and y-axis be timelike; then, we have Case 1.
Case IIb Let the x-axis and y-axis be spacelike; then,

Ŷ = R + ε T R =

 cosh θ̂ 0
√
−β sinh θ̂

0 1 0
sinh θ̂√
−β

0 cosh θ̂

 (11)

where

R =

 cosh θ 0
√
−β sinh θ

0 1 0
sinh θ√
−β

0 cosh θ

 and T =

 0 0
√
−βt

0 0 0
t√
−β

0 0

.

In the same way, the screw displacement has its angle φ about the axis y, and a distance
n along axis y

X̂ = R + ε T R =

 1 0 0
0 cosh φ̂

√
α sinh φ̂

0 sinh φ̂√
α

cosh φ̂

 (12)
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Here,

R =

 1 0 0
0 cosh φ

√
α sinh φ

0 sinh φ√
α

cosh φ

 and T =

 0 0 0
0 0

√
αt

0 t√
α

0

.

Additionally, the dual orthogonal transformation D̂ = Ŷ X̂

D̂ =


cosh θ̂

√
β sinh θ̂ sinh φ̂√

α

√
β sinh θ̂ cosh φ̂

0 cosh φ̂
√

α sinh φ̂
sinh θ̂√

β

cosh θ̂ sinh φ̂√
α

cosh θ̂ cosh φ̂

.

In Case I and Case II, D̂ is used to refer to the coordinate frames in successive members
of a manipulator.

Example 1. Case 1. Let α = 1 and β = 2. Let the screw displacement have its elliptical angle
θ = 0.6435011 about the axis y, and a distance n along axis y. Substituting Equation (9) into
Equation (8), we obtain the G-dual orthogonal matrix as

R̂ = R + ε T R

=

 4
5 0 3

√
2

5
0 1 0
− 3

5
√

2
0 4

5

+ ε

 0 0
√

2
0 0 0
−
√

2
2 0 0

 ·
 4

5 0 3
√

2
5

0 1 0
− 3

5
√

2
0 4

5



=

 4
5 − ε 3

5 0
√

2( 3
5 + ε 4

5 )
0 1 0

−
√

2
2 ( 3

5 + ε 4
5 ) 0 4

5 − ε 3
5

,

where G-skew symmetric matrix T corresponding to translation vector n = (0, 1, 0) is

T =

 0 0
√

βt
0 0 0
− t√

β
0 0

 =

 0 0
√

2
0 0 0
−
√

2
2 0 0


and for α = 1 and β = 2, the matrix ε is

ε =

 α 0 0
0 β 0
0 0 αβ

 =

 1 0 0
0 2 0
0 0 2

.

Note that RTεR = ε and R̂TεR̂ = ε are the G-orthogonal matrix and G-dual orthogo-
nal matrix, respectively.

Example 2. Case 2. Let α = 1 and β = −2. Let the screw displacement have its hyperbolic angle
θ = 0.51082562376 about the y spacelike axis, and a distance n along y. Substituting Equation (11)
into Equation (8), we have G-dual orthogonal matrix
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R̂ = R + ε T R

=

 17
15 0 8

√
2

15
0 1 0
8

15
√

2
0 17

15

+ ε

 0 0
√

2
0 0 0√

2
2 0 0

 ·
 17

15 0 8
√

2
15

0 1 0
8

15
√

2
0 17

15



=

 17
15 + ε 8

15 0
√

2( 8
15 + ε 17

15 )
0 1 0

−
√

2
2 ( 8

15 + ε 17
15 ) 0 8

15 + ε 17
15

,

where G-skew symmetric matrix T corresponding to the translation vector n = (0, 1, 0) is

T =

 0 0
√
−βt

0 0 0
t√
−β

0 0

 =

 0 0
√

2
0 0 0√

2
2 0 0


and for α = 1 and β = −2, the matrix ε is

ε =

 α 0 0
0 β 0
0 0 αβ

 =

 1 0 0
0 −2 0
0 0 −2

.

Again, note that RTεR = ε and R̂TεR̂ = ε are the G-orthogonal matrix and G-dual
orthogonal matrix, respectively.

In the following section, the exponential equation of the obtained dual orthogonal
matrix for rotation given in (2) will be obtained for the screw motion, and the screw
components will be defined by this exponential equation.

6. Generalized Dual Exponential Matrix in E3(α, β)

Let R̂(t) be a G-dual orthogonal matrix parametrized with t; then, we have the equation
R̂TεR̂ = ε. Differentiating both sides, we obtain

·
(R̂)TεR̂ + R̂Tε

·
R̂ = 0

which can be written as

R̂Tε
·
R̂ = −(R̂Tε

·
R̂)T .

The last equation shows that R̂Tε
·
R̂ = Φ̂ is a skew-symmetric matrix in E3(α, β). Here,

·
R̂ = R̂ε−1Φ̂. Let ε−1Φ̂ = Ω̂ , and

·
R̂ = R̂Ω̂. We obtain G-dual skew-symmetric matrix Ω̂,

called the dual angular velocity matrix in E3(α, β). Let ŵ be a dual vector corresponding
to G-dual skew symmetric matrix Ω̂ in E3(α, β). Then, it can be written as ŵ = w + εw∗.
Let us split w∗ into components parallel and perpendicular to w, as in Section 3, written as
w∗ = k×G w + pw. Here,

k =
w×G w∗

< w, w >G

and p =
< w, w∗ >G

< w, w >G

.

Thus, dual vector ŵ is written as

ŵ = w + ε(k×G w + pw)
= (1 + εp)(w + εk×G w)

(13)

where 1+ εp is a dual scalar. The dual vector w + εk×G w describes an instantaneous screw
axis and p is the pitch of the screw motion defined by R̂(t).
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Dual angular velocity Ω̂ is a constant because R̂TεR̂ = ε. The solution of the matrix
differential equation,

·
R̂ = R̂ Ω̂

with the initial condition R̂(0) = I
R̂(t) = etΩ̂. (14)

R̂(t) is a screw motion; its axis w + εk ×G w is obtained via Ω̂. We have two cases
where k×G w is either equal to zero or not.

Let k×G w = 0. This means that the origin of the fixed frame F is on the screw axis.
Since Equation (13) can be written as ŵ = (1 + εp)w, R̂ has the special G-skew symmetric
matrix such that Ω̂ = (1 + εp)Ω. Using the identity (1 + εp)n = (1 + nεp), Equation (15)
can be rewritten as

e(1+εp)Ωt = I + (1 + εp)Ωt + 1
2 (1 + ε2p)Ω2t2 + . . .

= (I + Ωt + 1
2 Ω2t2 + . . . )

+ εpΩt(I + Ωt + 1
2 Ω2t2 + . . . )

(15)

Now, assume that R(t) is the exponential Ω. Thus, Equation (16) defines the G-dual
orthogonal matrix R̂(t) = R(t) + εpt ΩR(t). Consequently, this transformation describes
a screw motion with rotation about the angle φ(t) = ωt, with axis w, (ω = ‖w‖) and the
amount n(t) = ptw. Moreover, ω is the angular velocity, s = pω is its linear velocity, and p
is the pitch of the motion.

Let k×G w 6= 0, which means that the origin is not on the screw axis. Then, R̂(t) =
T̂ exp((1+ εp)Ωt)T̂−1, where T̂ is the translation T̂ = I + εK and K is the G-skew symmetric
matrix obtained via k. Hence,

T̂ exp((1 + εp)tΩ)T̂−1

= exp(T̂((1 + εp)tΩ)T̂−1)
= exp((1 + εp)(Ω + ε(K Ω−Ω K))t)

(16)

Since (K Ω−Ω K) is the G-skew symmetric matrix, we obtain it from vector k×G w,
and the matrix (Ω + ε(K Ω−Ω K)) describes a screw axis w + εk×G w. Thus, we can write

R̂(t) = R(t) + ε(ptΩR(t) + KR(t)− R(t)K)
= R(t) + ε(ptΩ + K− RKR−1)R(t)

G-skew symmetric matrix ptΩ + K− RKR−1 defines the translation component of the
motion and its vector form

n(t) = ptw + (I − R(t))k.

The above equation defines a displacement affiliated with a screw motion with pitch p
and axis w + εk×G w in E3(α, β).

7. Conclusions

Screw motion has been studied by many authors in Euclidean and Lorentzian spaces.
In this paper, screw motion is studied in generalized space. Thus, the theory of screw
motion in the three-dimensional Euclidean and Lorentzian spaces is generalized into
generalized space. The results obtained in this study reveal that the theory of screw motion
is independent of the choice of the metric tensor in the Euclidean and Lorentzian spaces.

As is known, screw motion is a combination of a rotation around an axis and trans-
lational along the same axis. The rotation part of the screw motion is circular rotation in
Euclidean space and hyperbolic rotation in Lorenz space. However, the rotation part of the
screw motion in generalized space can be circular rotation, hyperbolic rotation, elliptical
rotation, etc., depending on the choice of alpha and beta. Thus, this gives the opportunity to
study a space where rotation motion is richer. The first case of the example in this study is



Symmetry 2022, 14, 2235 12 of 13

the screw motion whose rotation part is elliptical rotation, and the second case is the screw
motion whose rotation part is hyperbolic rotation. As mentioned briefly in the Introduc-
tion, generalized space has many application areas, such as mechanics, electromagnetism,
and astrophysics.

The study of screw motion in the more general space is more difficult and complex
than in the Euclidean and Lorentzian. Nevertheless, this study will make an important
contribution to future studies to better understand and interpret screw motion. Screw
motion in other scalar product spaces is also an open problem for further study.
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