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Abstract: In statistical analyses, especially those using a multiresponse regression model approach, 
a mathematical model that describes a functional relationship between more than one response var-
iables and one or more predictor variables is often involved. The relationship between these varia-
bles is expressed by a regression function. In the multiresponse nonparametric regression (MNR) 
model that is part of the multiresponse regression model, estimating the regression function be-
comes the main problem, as there is a correlation between the responses such that it is necessary to 
include a symmetric weight matrix into a penalized weighted least square (PWLS) optimization 
during the estimation process. This is, of course, very complicated mathematically. In this study, to 
estimate the regression function of the MNR model, we developed a PWLS optimization method 
for the MNR model proposed by a previous researcher, and used a reproducing kernel Hilbert space 
(RKHS) approach based on a smoothing spline to obtain the solution to the developed PWLS opti-
mization. Additionally, we determined the symmetric weight matrix and optimal smoothing pa-
rameter, and investigated the consistency of the regression function estimator. We provide an illus-
tration of the effects of the smoothing parameters for the estimation results using simulation data. 
In the future, the theory generated from this study can be developed within the scope of statistical 
inference, especially for the purpose of testing hypotheses involving multiresponse nonparametric 
regression models and multiresponse semiparametric regression models, and can be used to esti-
mate the nonparametric component of a multiresponse semiparametric regression model used to 
model Indonesian toddlers' standard growth charts.  

Keywords: smoothing spline regression function; MNR; RKHS; consistency; standard growth 
charts 
 

1. Introduction 
A reproducing kernel Hilbert space (RKHS) theory was first introduced by Ar-

onszajn in 1950 [1]. This theory was later developed by [1,2] to solve optimization prob-
lems in regression, especially nonparametric spline original regression. The RKHS ap-
proach was used by [3] for an M-type spline estimator. Next, Ref. [4] used the RKHS ap-
proach for a relaxed spline estimator.  

There are many cases in our daily life that we have to analyze, especially cases in-
volving the functional relationship between different variables. In statistics, to analyze the 
functional relationship between several variables, namely, the influence of the independ-
ent variable or predictor variable on the dependent variable or response variable, regres-
sion analysis is used. In regression analysis, it is necessary to build a mathematical model, 
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which is commonly referred to as a regression model, and this functional relationship is 
expressed by a regression function. In regression analysis, there are two kinds of basic 
regression model approaches, namely, parametric regression models and nonparametric 
regression models. In general, the main problem in regression analysis whether using a 
parametric regression model approach or a nonparametric regression model approach is 
the problem of estimating the regression function. In the parametric regression model, the 
problem of estimating the regression function is the same as the problem of estimating the 
parameters of the parametric regression model where this is different from the nonpara-
metric regression model. In nonparametric regression models, estimating the regression 
function is equivalent to estimating an unknown smooth function contained in a Sobolev 
space using smoothing techniques.  

There are several frequently used smoothing techniques for estimating nonparamet-
ric regression functions, for example, local linear, local polynomial, kernel, and spline. The 
research results of several previous researchers have shown that smoothing techniques 
such as local linear, local polynomial, and kernel are highly recommended for estimating 
nonparametric regression functions for prediction purposes. These researchers include 
[5,6], who used local linear for predicting hypertension risk and predicting Mycobacte-
rium tuberculosis numbers, respectively; Ref. [7] used local linear for determining bound-
ary correction of nonparametric regression function; Ref. [8] used local linear for deter-
mining the bias reduction of a regression function estimate; Ref. [9] used local linear to 
design a standard growth chart for assessing the nutritional status of toddlers; Refs. 
[10,11] used local polynomial for estimating regression functions in cases of errors-in-var-
iable and correlated errors, respectively; Refs. [12,13] used local polynomial to estimate 
the regression function for functional data and for finite population, respectively; Ref. [14] 
discussed smoothing techniques using kernel; Refs. [15,16] discussed consistency kernel 
regression estimation and estimating regression functions for cases of correlated errors 
using kernel, respectively; and Refs. [17,18] discussed estimating covariance matrix and 
selecting bandwidth using kernel, respectively. However, local linear, local polynomial, 
and kernel are highly dependent on the bandwidth in the neighborhood of the target 
point. Thus, if we use these local linear, local polynomial, or kernel approaches to estimate 
a model with fluctuating data, then we require a small bandwidth, and this results in too 
rough an estimation of the curve. This means that these local linear, local polynomial, and 
kernel approaches do not consider smoothness, only the goodness of fit. Therefore, for 
estimation models with fluctuating data in the sub-intervals, these local linear, local pol-
ynomial, and kernel methods are not good to use, as the results of estimation result in a 
large value of the mean square error (MSE). This is different from spline approaches, 
which consider goodness of fit and smoothness factors, as discussed by [1,19], who used 
splines for modeling observational data and estimating nonparametric regression func-
tions. Furthermore, for prediction and interpretation purposes, smoothing techniques 
such as smoothing spline and truncated spline are better and more flexible for estimating 
the nonparametric regression functions [20]. Due to the flexible nature of these splines, 
many researchers have been interested in using and developing them in several cases. For 
examples, M-type splines were used by [21] to analyze variance for correlated data, and 
by [22] for estimating both nonparametric and semiparametric regression functions; trun-
cated splines have been discussed by [23] to estimate mean arterial pressure for prediction 
purpose and by [24] to estimate blood pressure for prediction and interpretation purposes. 
Additionally, Ref. [25] developed truncated spline for estimating a semiparametric regres-
sion model and determining the asymptotic properties of the estimator. Furthermore, Ref. 
[26] discussed the flexibility of B-spline and penalties in estimating regression function; 
Ref. [27] discussed analyzing current status data using penalized spline; Ref. [28] analyzed 
the association between cortisol and ACTH hormones using bivariate spline; and Ref. [29] 
analyzed censored data using spline regression. In addition, Ref. [30] used both kernel 
and spline for estimating the regression function and selecting the optimal smoothing pa-
rameter of a uniresponse nonparametric regression (UNR) model; Refs. [31,32] developed 
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both kernel and spline for estimating the regression function and for selecting the optimal 
smoothing parameter of a multiresponse nonparametric regression (MNR) model; and 
Ref. [33] discussed smoothing techniques, namely, kernel and spline, to estimate the coef-
ficient of a rates model.  

In regression modeling, a common problem involves more than one response varia-
ble observed at several values of predictor variables and between responses that are cor-
related with each other. The multiresponse nonparametric regression (MNR) model ap-
proach is appropriate for modeling the functions which represent the relationship be-
tween the response variable and predictor variable with correlated responses. In this 
model there is a correlation between the responses. Because of this correlation, it is neces-
sary to construct a matrix called a weight matrix. Constructing the weight matrix is one 
of the things that distinguishes the MNR model approach from a classical model ap-
proach, that is, a parametric regression model or uniresponse nonparametric regression 
model approach. Thus, in the estimation process the regression function requires a weight 
matrix in the form of a symmetric matrix, especially a diagonal matrix. Furthermore, in 
the MNR model there are several smoothing techniques which can be used to estimate the 
regression function. One of these smoothing techniques is the smoothing spline approach. 
In recent years, studies on smoothing splines have attracted a great deal of attention and 
the methodology has been widely used in many areas of research, for example, for esti-
mating regression functions of nonparametric regression models, in [34,35] used smooth-
ing spline, mixed smoothing spline, and Fourier series; estimating regression functions 
were conducted by [36,37] for a semiparametric nonlinear regression model and a semi-
parametric regression model; and smoothing spline in an ANOVA model was discussed 
by [38]. Smoothing spline estimator, with its powerful and flexible properties, is one of 
the most popular estimators used for estimating regression function of the nonparametric 
regression model. Although the researchers mentioned above have previously discussed 
splines for estimating regression functions in many cases, none of them have used a re-
producing kernel Hilbert space (RKHS) approach to estimate the regression function of 
the MNR model. On the other hand, even though there are studies, as mentioned above, 
that have used the RKHS approach for estimating regression functions, those researchers 
used the RKHS for estimating regression functions of single–response or uniresponse lin-
ear regression models only. This means that RKHS approaches were not used for estimat-
ing the regression function of the MNR model based on a smoothing spline estimator. In 
addition, although [34] used the RKHS approach to estimate the regression function of the 
MNR model, and also discussed it in a special case involving a simulation study; but Ref. 
[34] assumed that the three responses of the MNR model have the same smoothing pa-
rameter values, which in real life situation is a difficult assumption to fulfill. In addition, 
Ref. [34] did not discuss the consistency of the smoothing spline regression function esti-
mator. Therefore, in this study we provide a theoretical discussion on estimating the 
smoothing spline regression function of the MNR model in case of unequal values of the 
smoothing parameters using the RKHS approach. In other words, in this study we discuss 
it for the more general case. 

2. Materials and Methods 
In this section, we briefly describe the materials and methods used according to the 

needs of this study, following the steps in the order in which they were carried out. 

2.1. Multiresponse Nonparametric Regression Model 
Suppose, given a paired observation {𝑦௥௜, 𝑡௥௜} which satisfies the following multire-

sponse nonparametric regression (MNR) model: 𝑦௥௜ = 𝑓௥(𝑡௥௜) + 𝜀௥௜, 𝑖 = 1,2, … , 𝑛௥, 𝑟 = 1,2, … , 𝑝 (1)

where 𝑦௥௜ is the observation value of the response variable on the 𝑟௧௛ response and the 𝑖௧௛ observation; 𝑓௥(∙) represents an unknown nonparametric regression function of 𝑟௧௛ 
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response which is assumed to be smooth in the sense that it is contained in a Sobolev 
space; 𝑡௥௜ is the observation value of a predictor variable on the 𝑟௧௛ response and the 𝑖௧௛ observation; and 𝜀௥௜  represents the value of the random error on the 𝑟௧௛ response 
and the 𝑖௧௛ observation, which is assumed to have zero mean and variance 𝜎௥௜ଶ  (hetero-
scedastic). In this study, we assume that the correlation between responses is 𝜌௥௦ =൜𝜌௥ 𝑓𝑜𝑟 𝑟 = 𝑠0 𝑓𝑜𝑟 𝑟 ≠ 𝑠 .  

In general, the main problem in MNR modelling is how we estimate the MNR model, 
which in this case is equivalent to the problem of estimating the regression function of the 
MNR model. There are many smoothing techniques that can be used to estimate the MNR 
model presented in (1), for example, kernel, local linear, splines, and local polynomial. 
One of these smoothing techniques is the spline approach, in which the smoothing spline 
is the most flexible estimator for estimating fluctuating data on sub-intervals. The follow-
ing briefly presents the estimation method using the smoothing spline estimator. Further 
details related to the smoothing spline estimator can be found in [20].  

2.2. Smoothing Spline Estimator 
In this study, we estimated the regression function, 𝑓௥(𝑡௥௜) of the MNR model pre-

sented in (1) based on the smoothing spline estimator using the reproducing kernel Hil-
bert space approach, which is discussed in the following section. An estimate of the re-
gression function of the MNR model presented in (1) can be obtained by developing the 
penalized weighted least squares (PWLS) optimization method proposed by [31], which 
is only used for the two-response nonparametric regression model with the same variance 
of errors, namely, the homoscedastic case. We then develop the PWLS optimization to 
estimate a nonparametric regression model with more than two responses, namely, the 
MNR model, in case of unequal variance of errors, which is called as heteroscedastic case. 
Hence, the estimated smoothing spline of the MNR model presented in (1) can be obtained 
by carrying out the following PWLS optimization:  min௙భ,…,௙೛∈ௐమ೘[௔ೝ,௕ೝ]{𝑁ିଵ(𝐲𝟏 − 𝐟𝟏)்𝐖ଵ(𝐲𝟏 − 𝐟𝟏) + ⋯ + ൫𝐲𝒑 − 𝐟𝒑൯்𝐖௣൫𝐲𝒑 − 𝐟𝒑൯ + 

𝜆ଵ න ൫𝑓ଵ(ଶ)(𝑡)൯ଶ௕భ௔భ 𝑑𝑡 + ⋯ + 𝜆௣ න ቀ𝑓௣(ଶ)(𝑡)ቁଶ௕೛௔೛ 𝑑𝑡} 

(2)

where 𝑁 = ∑ 𝑛௥௣௥ୀଵ ; 𝐖𝟏, … , 𝐖𝒑 are symmetric weight matrices, 𝜆ଵ, … , 𝜆௣ are smoothing 
parameters, and 𝐟𝟏, 𝐟𝟐, … , 𝐟𝐩  are unknown regression functions in a Sobolev space 𝑊ଶ௠[𝑎௥, 𝑏௥], where the Sobolev space 𝑊ଶ௠[𝑎௥, 𝑏௥] is defined as follows: 𝑊ଶ௠[𝑎௥, 𝑏௥] = {𝑓|𝑓(௩), 𝑣 = 0,1,2, … , 𝑚 − 1 are absolutely continuous on [𝑎௥, 𝑏௥] and   𝑓(௠) ∈ 𝐿ଶ[𝑎௥, 𝑏௥], where 𝐿ଶ[𝑎௥, 𝑏௥] is the collection of square integrable function on  𝐿ଶ[𝑎௥, 𝑏௥], 𝑟 = 1,2, … , 𝑝} 

Furthermore, to obtain the solution to the PWLS provided in (2), we used the repro-
ducing kernel Hilbert space (RKHS) approach. In the following section, we provide a brief 
review of RKHS. Further details related to RKHS can be found in [39], a paper concerning 
the theory of RKHS, and in [40], a textbook which discusses the use of RKHS in probability 
and statistics.  
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2.3. Reproducing Kernel Hilbert Space 
The need to reproducing kernel Hilbert space (RKHS) arises in various fields, includ-

ing statistics, theory of approximation, theory of machine learning, theory of group rep-
resentation, and complex analysis. In statistics, the RKHS method is often used as a 
method for estimating a regression function based on the smoothing spline estimator for 
prediction purposes. In machine learning, the RKHS method is arguably the most popular 
approach for dealing with nonlinearity in data. Several researchers have discussed the 
RKHS method; for example, Refs. [41,42] discussed the use of RKHS in Support Vector 
Machines (SVM) and optimization problems, respectively, and Refs. [43,44] discussed the 
use of RKHS in asymptotic distribution for regression and machine learning.  

A Hilbert space ℋ is called an RKHS on a set X over field  if the following condi-

tions are met [1,39]:  

(i) ℋ is a vector subspace of (X,), where (X,) is a vector space over ; 

(ii) ℋ is endowed with an inner product 〈 , 〉, making it into a Hilbert space;  
(iii) the linear evaluation functional 𝐸௬: ℋ →  , defined by 𝐸௬(𝑓) = 𝑓(𝑦), is bounded, 

for every 𝑦 ∈ X. 
Furthermore, if ℋ is an RKHS on X, then for every 𝑦 ∈ X there exists a unique vector 𝑘௬ ∈ ℋ such that for every 𝑓 ∈ ℋ, 𝑓(𝑦) = 〈𝑓, 𝑘௬〉. This is because every bounded linear 

functional is provided by the inner product with a unique vector in ℋ. The function 𝑘௬ 
is called a reproducing kernel (RK) for point 𝑦. The reproducing kernel (RK) for ℋ is a 
two–variable function defined by 𝐾(𝑥, 𝑦) = 𝑘௬(𝑥) . Hence, we have 𝐾(𝑥, 𝑦) = 𝑘௬(𝑥) =〈𝑘௬, 𝑘௫〉 and ฮ𝐸௬ฮଶ = ฮ𝑘௬ฮଶ = 〈𝑘௬, 𝑘௬〉 = 𝐾(𝑦, 𝑦).  

In this study, we provide a simulation study to evaluate the performance of the pro-
posed MNR model estimation method.  

2.4. Simulation  
The simulation in this study consists of a simulation to determine the optimal 

smoothing spline based on a generalized cross-validation (GCV) criterion to obtain the 
best estimated MNR model and a simulation to describe the effect of the smoothing pa-
rameters on the estimation results of the regression function of the MNR model based on 
minimal GCV value. We generate samples sized 𝑛 = 100 from the MNR model and pro-
vide an illustration of the effects of the smoothing parameters in order to estimate the 
results of the MNR model by comparing three kinds of different smoothing parameter 
values, namely, small, optimal, and large smoothing parameters values. 

In the following section, we provide the results and discussion of this study covering 
estimation of the regression function of the MNR model using the RKHS approach by 
estimating the symmetric weight matrix and optimal smoothing parameters, a simulation 
study, and investigating the consistency of the smoothing spline regression function esti-
mator.  

3. Results and Discussions 
The results and discussion presented in this section include estimating the regression 

function of the MNR model using RKHS, estimating the weight matrix, estimating the 
optimal smoothing parameter, investigating the consistency of the regression function es-
timator, a simulation study, and an application example using real data. 

3.1. Estimating the Regression Function of the MNR Model Using the RKHS Approach 
The MNR model presented in (1) can be expressed in matrix notation as follows:  𝐲 = 𝐟 + 𝛆 (3)
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where 𝐲 = ൫𝐲𝟏, 𝐲𝟐, … , 𝐲𝒑൯୘, 𝐟 = ൫𝐟𝟏, 𝐟𝟐, … , 𝐟𝒑൯୘, 𝐭 = ൫𝐭𝟏, 𝐭𝟐, … , 𝐭𝒑൯𝑻, 𝛆 = ൫𝛆𝟏, 𝛆𝟐, … , 𝛆𝒑൯୘, 𝐲𝒓 =൫𝑦௥ଵ, 𝑦௥ଶ, … , 𝑦௥௡ೝ൯୘,  𝐟𝒓 = ൫𝑓௥(𝑡௥ଵ), 𝑓௥(𝑡௥ଶ), … , 𝑓௥(𝑡௥௡ೝ)൯୘ , 𝐭௥ = ൫𝑡௥ଵ, 𝑡௥ଶ, … , 𝑡௥௡ೝ൯் , and 𝛆𝒓 =൫𝜀௥ଵ, 𝜀௥ଶ, … , 𝜀௥௡ೝ൯୘.  
We assume that 𝛆 is a zero mean random error with covariance 𝐖ିଵ. In this case, 

the covariance matrix 𝐖ିଵ is a symmetrical matrix, that is, it is a diagonal matrix which 
can be expressed as follows: 𝐖ିଵ = 𝑑𝑖𝑎𝑔൫𝐖𝟏 𝟏, 𝐖𝟐 𝟏, … , 𝐖𝐩 𝟏൯ (4)

where 𝐖𝐫 𝟏 is an 𝑟௧௛-response covariance matrix of 𝛆𝒓 for 𝑟 = 1,2, … , 𝑝. 
To determine the regression function of the MNR model (1) using the RKHS 

approach, we first express the MNR model in a general smoothing spline regression 
model [20]. Therefore, we can express the MNR model (1) as follows: 𝑦௥௜ = ℒ௧ೝ𝑓௥ + 𝜀௥೔; 𝑖 = 1,2, … , 𝑛௥; 𝑟 = 1,2, … , 𝑝 (5)

where 𝑓௥ ∈ ℋ௥ is an unknown smooth function, ℒ௧ೝ ∈ ℋ௥ is a bounded linear functional, 
and ℋ௥ is a Hilbert space.  

Next, the Hilbert space ℋ௥ is decomposed into a direct sum of the Hilbert subspace 𝐺௥ and Hilbert sub space 𝐾௥ , where 𝐺௥  has basis ൛𝛼௥ଵ, 𝛼௥ଶ, … , 𝛼௥௠ೝൟ , 𝐾௥  has basis ൛𝛽௥ଵ, 𝛽௥ଶ, … , 𝛽௥௡ೝൟ, and 𝐺௥ ^ 𝐾௥ is as follows: 

௥ = 𝐺௥Å𝐾௥. (6)

This implies that for 𝑔௥ ∈ 𝐺௥ , 𝑧௥ ∈ 𝐾௥ , and 𝑟 = 1,2, … , 𝑝  we can express every 
function 𝑓௥ ∈ ௥ as follows: 𝑓௥ = 𝑔௥ + 𝑧௥. (7)

Because ൛𝛼௥ଵ, 𝛼௥ଶ, … , 𝛼௥௠ೝൟ  is the basis of the Hilbert subspace 𝐺௥  and ൛𝛽௥ଵ, 𝛽௥ଶ, … , 𝛽௥௡ೝൟ is the basis of the Hilbert subspace 𝐾௥ , the function 𝑓௥  in (7) can be 
expressed as follows: 𝑓௥ = ∑ 𝑏௥௜𝛼௥௜ + ∑ 𝑐௥௝𝛽௥௝௡ೝ௝ୀଵ௠ೝ௜ୀଵ = 𝛂௥் 𝐛௥ + 𝛃௥் 𝐜௥  (8)

where 𝑟 = 1,2, … , 𝑝; 𝑏௥௜, 𝑐௥௝ ∈ ℝ; 𝛂௥ = ൫𝛼௥ଵ, 𝛼௥ଶ, … , 𝛼௥௠ೝ൯்; 𝐛௥ = ൫𝑏௥ଵ, 𝑏௥ଶ, … , 𝑏௥௠ೝ൯்; 𝛃௥ =൫𝛽௥ଵ, 𝛽௥ଶ, … , 𝛽௥௡ೝ൯்; and 𝐜௥ = ൫𝑐௥ଵ, 𝑐௥ଶ, … , 𝑐௥௡ೝ൯்.  
Hence, for 𝑟 = 1,2, … , 𝑝 and 𝑖 = 1,2, … , 𝑛௥, we have ℒ௧ೝ೔𝑓௥ = ℒ௧ೝ೔(𝑔௥ + 𝑧௥) = ℒ௧ೝ೔(𝑔௥) + ℒ௧ೝ೔(𝑧௥) 

                   = 𝑔௥(𝑡௥௜) + 𝑧௥(𝑡௥௜) 

          = 𝑓௥(𝑡௥௜). 

Because ℒ௧ೝ ∈ ௥ is a bounded linear functional in the Hilbert space ௥, according 
to [20] there exists a Riesz representer 𝛿௥௜ ∈ ௥ such that  ℒ௧ೝ೔𝑓௥ = 〈𝛿௥௜, 𝑓௥〉 = 𝑓௥(𝑡௥௜) (9)

where 𝑓௥ ∈ ௥ and 〈∙,∙〉 denote an inner product. Next, by considering Equations (8) and 
(9) and applying the properties of the inner product, the function 𝑓௥(𝑡௥௜) can be written 
as follows:  𝑓௥(𝑡௥௜) = 〈𝛿௥௜, 𝛂௥் 𝐛௥ + 𝛃௥் 𝐜௥〉 = 〈𝛿௥௜, 𝛂௥் 𝐛௥〉 + 〈𝛿௥௜, 𝛃௥் 𝐜௥〉 (10)

Then, based on Equation (10), we can obtain the regression functions 𝑓௥(𝑡௥௜) for 𝑟 =1,2, … , 𝑝, which are the regresion functions for the first response, the second response, …, 
and the pth response, as follows: 
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   For  𝑟 = 1, we have:   𝑓ଵ(𝑡ଵ௜) = 〈𝛿ଵ௜, 𝛂ଵ் 𝐛ଵ〉 + 〈𝛿ଵ௜, 𝛃ଵ் 𝐜ଵ〉, 𝑖 = 1,2, … , 𝑛ଵFor  𝑟 = 2, we have:  𝑓ଶ(𝑡ଶ௜) = 〈𝛿ଶ௜, 𝛂ଶ்𝐛ଶ〉 + 〈𝛿ଶ௜, 𝛃ଶ்𝐜ଶ〉, 𝑖 = 1,2, … , 𝑛ଶ⋮ For  𝑟 = 𝑝, we have:  𝑓௣൫𝑡௣௜൯ = 〈𝛿௣௜, 𝛂௣்𝐛௣〉 + 〈𝛿௣௜, 𝛃௣்𝐜௣〉, 𝑖 = 1,2, … , 𝑛௣⎭⎬
⎫

 (11)

Hence, following Equation (11), we obtain the regression function for 𝑖 = 1  as 
follows:  𝐟𝟏(𝑡ଵ) = ൫𝑓ଵ(𝑡ଵଵ), 𝑓ଵ(𝑡ଵଶ), … , 𝑓ଵ(𝑡ଵ௡భ)൯் = 𝐀𝟏𝐛𝟏 + 𝐂𝟏𝐝𝟏 (12)

where 𝐛𝟏 = ൫𝑏ଵଵ, 𝑏ଵଶ, … , 𝑏ଵ௠భ൯் ; 𝐝𝟏 = ൫𝑑ଵଵ, 𝑑ଵଶ, … , 𝑑ଵ௡భ൯் ;  𝐀𝟏 =
⎝⎜
⎛ 〈𝛿ଵଵ, 𝛼ଵଵ〉 〈𝛿ଵଵ, 𝛼ଵଶ〉 ⋯ 〈𝛿ଵଵ, 𝛼ଵ௠భ〉〈𝛿ଵଶ, 𝛼ଵଵ〉 〈𝛿ଵଶ, 𝛼ଵଶ〉 ⋯ 〈𝛿ଵଶ, 𝛼ଵ௠భ〉⋮〈𝛿ଵ௡భ, 𝛼ଵଵ〉 ⋮〈𝛿ଵ௡భ, 𝛼ଵଶ〉 ⋱⋯ ⋮〈𝛿ଵ௡భ, 𝛼ଵ௠భ〉⎠⎟

⎞
; and  𝐂𝟏 =

⎝⎜
⎛ 〈𝛿ଵଵ, 𝛽ଵଵ〉 〈𝛿ଵଵ, 𝛽ଵଶ〉 ⋯ 〈𝛿ଵଵ, 𝛽ଵ௡భ〉〈𝛿ଵଶ, 𝛽ଵଵ〉 〈𝛿ଵଶ, 𝛽ଵଶ〉 ⋯ 〈𝛿ଵଶ, 𝛽ଵ௡భ〉⋮〈𝛿ଵ௡భ, 𝛽ଵଵ〉 ⋮〈𝛿ଵ௡భ, 𝛽ଵଶ〉 ⋱⋯ ⋮〈𝛿ଵ௡భ, 𝛽ଵ௡భ〉⎠⎟

⎞
. 

Similarly, we obtain the regression functions for 𝑖 = 2, … , 𝑛ଵ , which are 𝐟𝟐(𝑡ଶ) , 𝐟𝟑(𝑡ଷ), …, 𝐟𝒑൫𝑡௣൯, as follows: 𝐟𝟐(𝑡ଶ) = ൫𝑓ଶ(𝑡ଵଵ), 𝑓ଶ(𝑡ଵଶ), … , 𝑓ଶ(𝑡ଵ௡మ)൯் = 𝐀𝟐𝐛𝟐 + 𝐂𝟐𝐝𝟐𝐟𝟑(𝑡ଷ) = ൫𝑓ଷ(𝑡ଵଵ), 𝑓ଷ(𝑡ଵଶ), … , 𝑓ଷ(𝑡ଵ௡య)൯் = 𝐀𝟑𝐛𝟑 + 𝐂𝟑𝐝𝟑⋮𝐟𝒑൫𝑡௣൯ = ቀ𝑓௣(𝑡ଵଵ), 𝑓௣(𝑡ଵଶ), … , 𝑓௣(𝑡ଵ௡೛)ቁ் = 𝐀𝒑𝐛𝒑 + 𝐂𝒑𝐝𝒑⎭⎪⎬
⎪⎫

 (13)

Hence, based on Equations (12) and (13), we obtain the regression function 𝐟(t) of 
the MNR model as follows:  𝐟(𝑡) = ൫𝐟𝟏(𝑡ଵ), 𝐟𝟐(𝑡𝟐), … , 𝐟𝒑(𝑡௣)൯𝑻 = ൫𝐀𝟏𝐛𝟏, 𝐀𝟐𝐛𝟐, … , 𝐀𝒑𝐛𝒑൯𝑻 + ൫𝐂𝟏𝐝𝟏, 𝐂𝟐𝐝𝟐, … , 𝐂𝒑𝐝𝒑൯𝑻 = 𝑑𝑖𝑎𝑔 ൬൫𝐀𝟏, 𝐀𝟐, … , 𝐀𝒑൯൫𝐛𝟏, 𝐛𝟐, … , 𝐛𝒑൯்൰ + 𝑑𝑖𝑎𝑔 ൬൫𝐂𝟏, 𝐂𝟐, … , 𝐂𝒑൯൫𝐝𝟏, 𝐝𝟐, … , 𝐝𝒑൯்൰ = 𝐀𝐛 + 𝐂𝐝 

(14) 

Thus, we can express the MNR model presented in (1) in matrix notation as follows: 𝐲 = 𝐀𝐛 + 𝐂𝐝 + 𝛆 (15)

where 𝐀 = 𝑑𝑖𝑎𝑔(𝐀𝟏, 𝐀𝟐, … , 𝐀𝐩) is an (𝑁 × 𝑀) diagonal matrix with 𝑁 = ∑ 𝑛௥௣௥ୀଵ , 𝑀 =∑ 𝑚௥௣௥ୀଵ ; 𝐛 = ൫𝐛𝟏𝐓, 𝐛𝟐𝐓, … , 𝐛𝐩𝐓൯𝐓  is an (𝑀 × 1)  vector of parameters; 𝐂 =𝑑𝑖𝑎𝑔൫𝐂𝟏, 𝐂𝟐, … , 𝐂𝐩൯ is an (𝑁 × 𝑁) diagonal matrix; and 𝐝 = ൫𝐝𝟏𝐓, 𝐝𝟐𝐓, … , 𝐝𝐩𝐓൯𝐓 is an (𝑁 ×1) vector of parameters.  
Now, we can determine an estimated smoothing spline regression function of the 

MNR model presented in (1) using the RKHS approach by taking the solution of the 
following optimization: Min௙ೝ∈ೝ௥ୀଵ,ଶ,…,௣ ቊฯ𝐖ଵଶ 𝛆ฯଶቋ = Min௙ೝ∈ೝ௥ୀଵ,ଶ,…,௣ ቊฯ𝐖ଵଶ (𝐲 − 𝐟)ฯଶቋ (16)

with a constraint ׬ ൫𝑓௥(௠)(𝑡௥)൯ଶ𝑑𝑡௥௕ೝ௔ೝ < 𝛾௥, where 𝛾௥ ≥ 0 and 𝑟 = 1,2, … , 𝑝. 
Note that determining the solution to Equation (16) is equivalent to determining the 

solution to the following PWLS optimization: 
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Min௙ೝ∈ௐమ೘[௔ೝ,௕ೝ]௥ୀଵ,ଶ,…,௣ ቄ𝑁ିଵ(𝐲 − 𝐟)𝐓𝐖(𝐲 − 𝐟) + ∑ 𝜆௥௣௥ୀଵ ׬ ൫𝑓௥(௠)(𝑡௥)൯ଶ𝑑𝑡௥௕ೝ௔ೝ ቅ  (17)

where 𝑁 = ∑ 𝑛௥௣௥ୀଵ ; 𝑁ିଵ(𝐲 − 𝐟)𝐓𝐖(𝐲 − 𝐟) is a weighted least square that represents the 
goodness of fit, ∑ 𝜆௥௣௥ୀଵ ׬ ൫𝑓௥(௠)(𝑡௥)൯ଶ𝑑𝑡௥௕ೝ௔ೝ  represents a penalty that measures smoothness, 
and 𝜆௥, 𝑟 = 1,2, … , 𝑝  represents a smoothing parameter which controls the trade-off 
between the goodness of fit and the penalty.  

Next, we decompose the penalty presented in (17) as follows: ∑ 𝜆௥௣௥ୀଵ ׬ ൫𝑓௥(௠)(𝑡௥)൯ଶ𝑑𝑡௥௕ೝ௔ೝ = 𝜆ଵ ׬ ൫𝑓ଵ(௠)(𝑡ଵ)൯ଶ𝑑𝑡ଵ௕భ௔భ + ⋯ + 𝜆௣ ׬ ൫𝑓௣(௠)(𝑡௣)൯ଶ𝑑𝑡௣௕೛௔೛   (18)

Because we have 

⎩⎪⎨
⎪⎧ ׬ ൫𝑓ଵ(௠)(𝑡ଵ)൯ଶ𝑑𝑡ଵ௕భ௔భ = 〈𝛃𝟏𝐓𝐝𝟏, 𝛃𝟏𝐓𝐝𝟏〉 = 𝐝𝟏𝐓〈𝛃𝟏, 𝛃𝟏𝐓〉𝐝𝟏 = 𝐝𝟏୘𝐂𝟏𝐝𝟏׬ ൫𝑓ଶ(௠)(𝑡ଶ)൯ଶ𝑑𝑡ଶ = 〈𝛃𝟐𝐓𝐝𝟐, 𝛃𝟐𝐓𝐝𝟐〉 = 𝐝𝟐𝐓〈𝛃𝟐, 𝛃𝟐𝐓〉𝐝𝟐௕మ௔మ = 𝐝𝟐୘𝐂𝟐𝐝𝟐⋮׬ ൫𝑓௣(௠)(𝑡௣)൯ଶ𝑑𝑡௣ = 〈𝛃𝒑𝐓𝐝𝒑, 𝛃𝒑𝐓𝐝𝒑〉 = 𝐝௣𝐓〈𝛃௣, 𝛃𝒑𝐓〉𝐝௣௕೛௔೛ = 𝐝𝒑୘𝐂𝒑𝐝𝐩

 we 

are able to obtain the penalty presented in (17) or (18) as follows: ∑ 𝜆௥௣௥ୀଵ ׬ ൫𝑓௥(௠)(𝑡௥)൯ଶ𝑑𝑡௥௕ೝ௔ೝ = 𝐝𝐓𝐂𝐝  (19)

where  = 𝑑𝑖𝑎𝑔 ቀ𝜆ଵ𝐈௡భ, 𝜆ଶ𝐈௡మ, … , 𝜆௣𝐈௡೛ቁ. Furthermore, we can write the goodness of fit 
component in (17) as follows: 𝑁ିଵ(𝐲 − 𝐟)𝐓𝐖(𝐲 − 𝐟) = 𝑁ିଵ(𝐲 − 𝐀𝐛 − 𝐂𝐝)𝐓𝐖(𝐲 − 𝐀𝐛 − 𝐂𝐝) (20)

Based on Equations (19) and (20), we can express the PWLS optimization presented 
in (17) as follows:  Min𝐛∈ℝ𝒑𝒏,𝐝∈ℝ೛೘{𝐐(𝐛, 𝐝)} = Min𝐛∈ℝ𝒑𝒏,𝐝∈ℝ೛೘{ 𝑁ିଵ(𝐲 − 𝐀𝐛 − 𝐂𝐝)𝐓 × 

 𝐖(𝐲 − 𝐀𝐛 − 𝐂𝐝) + 𝐝𝐓𝐂𝐝} 
(21)

The solution to (21) can be obtained by taking the partial diferentiation 𝐐(𝐛, 𝐝) with 
respecct to 𝐛 and 𝐝. In this step, we obtain the estimations of 𝐛 and 𝐝 as follows: 𝐛መ = (𝐀𝐓𝐃ି𝟏𝐖𝐀)ି𝟏𝐀𝐓𝐃ି𝟏𝐖𝐲, and 𝐝መ = 𝐃ି𝟏𝐖[𝐈 − 𝐀(𝐀𝐓𝐃ି𝟏𝐖𝐀)ି𝟏𝐀𝐓𝐃ି𝟏𝐖]𝐲 

where 𝐃 = 𝐖𝐂 + N𝐈. 
From this step, we obtain the estimation of the smoothing spline regression function 

of the MNR model presented in (1) or (15) as follows: 𝐟መ = 𝐀𝐛መ + 𝐂𝐝መ = 𝐇𝐲 (22)

where 𝐇 = 𝐀(𝐀𝐓𝐃ି𝟏𝐖𝐀)ି𝟏𝐀𝐓𝐃ି𝟏𝐖 + 𝐂𝐃ି𝟏𝐖(𝐈 − 𝐀(𝐀𝐓𝐃ି𝟏𝐖𝐀)ି𝟏𝐀𝐓𝐃ି𝟏𝐖) , 𝐃 = 𝐖𝐂 +N𝐈,  = 𝑑𝑖𝑎𝑔 ቀ𝜆ଵ𝐈௡భ, 𝜆ଶ𝐈௡మ, … , 𝜆௣𝐈௡೛ቁ, 𝐈  is an identity matrix with dimension 𝑁 , and 𝑁 = ∑ 𝑛௥௣௥ୀଵ .  

3.2. Estimating the Symmetric Weight Matrix 
Based on MNR model presented in (3), the 𝐖ି𝟏 from Equation (4) is a covariance 

matrix of the random error 𝛆. To obtain the estimated weight matrix𝐖෡ , where the weight 
matrix 𝐖 is the inverse of the covariance matrix, we first we consider a paired observa-
tion {𝑦௥௜, 𝑡௥௜}, 𝑟 = 1,2, … , 𝑝; 𝑖 = 1,2, … , 𝑛௥ which follows the MNR model presented in (3). 
Second, supposing that 𝐲 = ൫𝐲𝟏, 𝐲𝟐, … , 𝐲𝒑൯𝐓 is a multivariate (i.e., N-variates where 𝑁 =∑ 𝑛௥௣௥ୀଵ ) normally distributed random sample with mean 𝐟 and covariance 𝐖ି𝟏, we have 
the following likelihood function: 
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𝐿(𝐟, 𝐖|𝐲) = ∏ ቊ ଵ(ଶగ)మಿ (𝐖షభ)భమ exp ቀ− ଵଶ ൫𝐲௝ − 𝐟௝൯𝐓𝐖(𝐲௝ − 𝐟௝)ቁቋ௡௝ୀଵ   (23)

Because 𝑁 = ∑ 𝑛௥௣௥ୀଵ  and 𝐖 = 𝑑𝑖𝑎𝑔(𝐖𝟏, 𝐖𝟐, … , 𝐖𝐩) , the likelihood function pre-
sented in (23) can be written as follows: 𝐿(𝐟, 𝐖|𝐲) = ଵ(ଶగ)೙೙భమ (𝐖భషభ)೙మ 𝑒𝑥𝑝 ቀ− ଵଶ ∑ ൫𝐲𝟏𝒋 − 𝐟𝟏𝐣൯𝐓𝐖𝟏௡௝ୀଵ (𝐲𝟏𝒋 − 𝐟𝟏𝐣)ቁ ×  

                ଵ(ଶగ)೙೙మమ (𝐖మషభ)೙మ 𝑒𝑥𝑝 ቀ− ଵଶ ∑ ൫𝐲𝟐𝒋 − 𝐟𝟐𝐣൯𝐓𝐖𝟐௡௝ୀଵ (𝐲𝟐𝒋 − 𝐟𝟐𝐣)ቁ × … ×  

         ଵ(ଶగ)೙೙೛మ ൫𝐖೛షభ൯೙మ exp ൬− ଵଶ ∑ ൫𝐲𝒑𝒋 − 𝐟𝐩𝐣൯𝐓𝐖𝐩௡௝ୀଵ ൫𝐲𝒑𝒋 − 𝐟𝐩𝐣൯൰  

(24)

Next, based on (24), the estimated weight matrix can be obtained by carrying out the 
following optimization: 𝐿(𝐟, 𝐖|𝐲) = Max𝐖𝟏 ቊ ଵ(ଶగ)೙೙భమ (𝐖భషభ)೙మ 𝑒𝑥𝑝 ቀ− ଵଶ ∑ ൫𝐲𝟏𝒋 − 𝐟𝟏𝐣൯𝐓𝐖𝟏௡௝ୀଵ , … (𝐲𝟏𝒋 − 𝐟𝟏𝐣)ቁቋ ×  

        Max𝐖𝟐 ቊ ଵ(ଶగ)೙೙మమ (𝐖మషభ)೙మ 𝑒𝑥𝑝 ቀ− ଵଶ ∑ ൫𝐲𝟐𝒋 − 𝐟𝟐𝐣൯𝐓𝐖𝟐௡௝ୀଵ , … (𝐲𝟐𝒋 − 𝐟𝟐𝐣)ቁቋ ×  ⋯ × 

        Max𝐖𝐩 ൝ ଵ(ଶగ)೙೙೛మ ൫𝐖೛షభ൯೙మ 𝑒𝑥𝑝 ൬− ଵଶ ∑ ൫𝐲𝒑𝒋 − 𝐟𝐩𝐣൯𝐓𝐖𝐩௡௝ୀଵ ൫𝐲𝒑𝒋 − 𝐟𝐩𝐣൯൰ൡ  

(25)

According to [45], the maximum value of each component of the likelihood function 
in Equation (25) can be determined using the following equations: 𝐖෡𝟏 = 𝛆ො𝟏𝛆ො𝟏𝐓ே = ൫𝐲𝟏ି𝐟መ𝟏൯൫𝐲𝟏ି𝐟መ𝟏൯𝐓ே , 𝐖෡𝟐 = 𝛆ො𝟐𝛆ො𝟐𝐓ே = ൫𝐲𝟐ି𝐟መ𝟐൯൫𝐲𝟐ି𝐟መ𝟐൯𝐓ே , …, 𝐖෡𝒑 = 𝛆ො𝐩𝛆ො𝐩𝐓ே = ൫𝐲𝐩ି𝐟መ𝐩൯൫𝐲𝐩ି𝐟መ𝐩൯𝐓ே . 

We may express the estimated smoothing spline regression function presented in (22) 
as follows: 𝐟መ(𝝀, 𝛔𝟐) = 𝐇(𝝀, 𝛔𝟐)𝐲 (26)

where 𝝀 = ൫𝜆ଵ, 𝜆ଶ, … , 𝜆௣൯், and 𝛔𝟐 = ൫𝜎ଵଶ, 𝜎ଶଶ, … , 𝜎௣ଶ൯்.  
Hence, the maximum likelihood estimator for the weight matrix 𝐖 is provided by: 𝐖෡ = 𝑑𝑖𝑎𝑔൫𝐖෡𝟏, 𝐖෡𝟐, … , 𝐖෡𝐩൯ = 𝑑𝑖𝑎𝑔 ൬൫𝐲𝟏ି𝐟መ𝟏൯൫𝐲𝟏ି𝐟መ𝟏൯𝐓ே , ൫𝐲𝟐ି𝐟መ𝟐൯൫𝐲𝟐ି𝐟መ𝟐൯𝐓ே , … , ൫𝐲𝐩ି𝐟መ𝐩൯൫𝐲𝐩ି𝐟መ𝐩൯𝐓ே ൰  

= 𝑑𝑖𝑎𝑔 ቆቀ𝐈𝒏𝟏ି𝐇(𝝀𝟏,𝝈𝟏𝟐)ቁ𝐲𝟏𝐲𝟏𝐓(𝐈𝒏𝟏ି𝐇(𝝀𝟏,𝝈𝟏𝟐))𝐓ே , ቀ𝐈𝒏𝟏ି𝐇(𝝀𝟏,𝝈𝟏𝟐)ቁ𝐲𝟏𝐲𝟏𝐓(𝐈𝒏𝟏ି𝐇(𝝀𝟏,𝝈𝟏𝟐))𝐓ே , … , ቀ𝐈𝒏𝒑ି𝐇(𝝀𝒑,𝝈𝒑𝟐)ቁ𝐲𝐩𝐲𝐩𝐓(𝐈𝒏𝒑ି𝐇(𝝀𝒑,𝝈𝒑𝟐))𝐓ே ቇ. 

This shows that the estimated weight matrix obtained above is a symmetric matrix, 
specifically, a diagonal matrix the main diagonal components of which are the estimated 
weight matrices of the first response, second response, etc., up to the p-th response.  

3.3. Estimating Optimal Smoothing Parameters 
In MNR modeling, selection of the optimal smoothing parameter value λ cannot be 

omitted, and is crucial to obtaining a good regression function fit of the MNR model based 
on the smoothing spline estimator. According to [46], there are several criteria that can be 
used to select λ, including minimizing cross-validation (CV), generalized cross-validation 
(GCV), Mallows’ C௣, and Akaike’s information criterion (AIC). However, according to 
[47], for good regression function fitting based on the spline estimator Mallows’ C௣ and 
GCV are the most satisfactory.  

In this section, we determine the optimal smoothing parameter value for good re-
gression function fitting of the MNR model (1). Taking into account Equation (26), we may 
express the estimated smoothing spline regression function presented in (22) as follows: 
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𝐟መ(𝝀, 𝛔𝟐) = 𝐇(𝝀, 𝛔𝟐)𝐲 

where 𝝀 = ൫𝜆ଵ, 𝜆ଶ, … , 𝜆௣൯் , 𝛔𝟐 = ൫𝜎ଵଶ, 𝜎ଶଶ, … , 𝜎௣ଶ൯் . The mean squared error (MSE) of the 
estimated smoothing spline regression function presented in (26) is provided by 

     𝑀𝑆𝐸 = ൫𝐲ି𝐟መ(𝝀,𝛔𝟐)൯𝐓𝐖൫𝐲ି𝐟መ(𝝀,𝛔𝟐)൯∑ ௡ೝ೛ೝసభ = ൫𝐲ି𝐟መ(𝝀,𝛔𝟐)൯𝐓𝐖൫𝐲ି𝐟መ(𝝀,𝛔𝟐)൯ே   

= ቀ൫𝐈ି𝐇(𝝀,𝛔𝟐)൯𝐲ቁ𝐓𝐖൫𝐈ି𝐇(𝝀,𝛔𝟐)൯𝐲ே   

= ብ𝐖భమ൫𝐈ି𝐇(𝝀,𝛔𝟐)൯𝐲ብమ
ே   

Hereinafter, we define this function as follows: 

𝐺(𝛌) = ேషభብ𝐖భమ൫𝐈ି𝐇(𝝀,𝛔𝟐)൯𝐲ብమ
൬ భಿ  ௧௥௔௖௘൫𝐈ొି𝐇(𝝀,𝛔𝟐)൯൰మ  (27)

Therefore, based on (27), we can obtain the optimal smoothing parameter value, 𝛌𝐨𝐩𝐭 = ൫𝜆ଵ;௢௣௧, 𝜆ଶ;௢௣௧, … , 𝜆௣;௢௣௧൯், by taking the solution of the following optimization: 

           𝐺௢௣௧൫𝛌𝐨𝐩𝐭൯ = Minఒభ,…,ఒ೛∈ℝశ{𝐺(𝛌)} 

= Minఒభ,…,ఒ೛∈ℝశ ൞ேషభብ𝐖భమ൫𝐈ି𝐇(𝝀,𝛔𝟐)൯𝐲ብమ
൬ భಿ  ௧௥௔௖௘൫𝐈ొି𝐇(𝝀,𝛔𝟐)൯൰మൢ  

(28)

where ℝା represents a positive real number set and 𝑁 = ∑ 𝑛௥௣௥ୀଵ .  
Thus, the optimal smoothing parameter value 𝛌𝐨𝐩𝐭 = ൫𝜆ଵ;௢௣௧, 𝜆ଶ;௢௣௧, … , 𝜆௣;௢௣௧൯் is ob-

tained from the minimizing process of the function 𝐺(𝛌) in (27). The function 𝐺(𝛌) in 
(27) is called the generalized cross-validation function [1].  

3.4. Simulation Study 
In this section, we provide a simulation study for estimating the smoothing spline 

regression function of the MNR model, where the performance of the proposed MNR 
model estimation method depends on the selection of an optimal smoothing parameter 
value. For example, we generate samples with size 𝑛 = 100  from an MNR model, 
namely, a three-response nonparametric regression model, as follows: 𝑦ଵ௜ = 5 + 3 sin(2𝜋𝑡ଵ௜ଶ ) + 𝜀ଵ௜, for  𝑖 = 1,2, … , 𝑛𝑦ଶ௜ = 3 + 3 sin(2𝜋𝑡ଵ௜ଶ ) + 𝜀ଶ௜ , for  𝑖 = 1,2, … , 𝑛𝑦ଷ௜ = 1 + 3 sin(2𝜋𝑡ଵ௜ଶ ) + 𝜀ଶ௜ , for  𝑖 = 1,2, … , 𝑛ቑ (29)

where 𝑛 = 100  and with correlations 𝜌ଵଶ = 0.6 , 𝜌ଵଷ = 0.7 , 𝜌ଶଷ = 0.8  and variances 𝜎ଵଶ = 2, 𝜎ଶଶ = 3, 𝜎ଷଶ = 4. Based on the results of this simulation, we obtain a minimum 
generalized cross-validation (GCV) value of 2.526286 and three optimal smoothing pa-
rameter values, which are 𝜆ଵ(௢௣௧) = 2.146156 × 10ି଻  (for the first response), 𝜆ଶ(௢௣௧) =1.084013 × 10ି଻ (for the second response), and 𝜆ଷ(௢௣௧) = 5.930101 × 10ି଼ (for the third 
response).  

Next, we present an illustration of the effects of the smoothing parameters on the 
estimation results of the MNR Model by comparing three kinds of different smoothing 
parameter values, namely, 𝜆ଵ(௦௠௔௟௟) = 10ିଵ଴ , 𝜆ଶ(௦௠௔௟௟) = 2 × 10ିଵ଴ , and 𝜆ଷ(௦௠௔௟௟) = 3 ×10ିଵ଴ , which represent small smoothing parameter values; 𝜆ଵ(௢௣௧) = 2.146156 × 10ି଻ , 𝜆ଶ(௢௣௧) = 1.084013 × 10ି଻ , and 𝜆ଷ(௢௣௧) = 5.930101 × 10ି଼ , which represent optimal 
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smoothing parameter values; and 𝜆ଵ(௟௔௥௚௘) = 10ିହ , 𝜆ଶ(௟௔௥௚௘) = 2 × 10ିହ , and 𝜆ଷ(௟௔௥௚௘) =3 × 10ିହ, which represent large smoothing parameter values. In the following table and 
figures, we provide the results of this simulation study. 

Table 1 shows that the smoothing parameter values of 2.146156 × 10ି଻, 1.084013 ×10ି଻ , and 5.930101 × 10ି଼  are the optimal smoothing parameter values, as these 
smoothing parameters have the lowest GCV value (2.526286) among all the others. Thus, 
according to (28), these smoothing parameter values are the optimal smoothing parame-
ters. We can write them as 𝜆ଵ(௢௣௧) = 2.146156 × 10ି଻ , 𝜆ଶ(௢௣௧) = 1.084013 × 10ି଻ , and 𝜆ଷ(௢௣௧) = 5.930101 × 10ି଼. The optimal smoothing parameters provide the best estimation 
results for the MNR model presented in (29). 

Table 1. Comparison estimation results of MNR Model in (29) for three kinds of smoothing param-
eter values. 𝒏 = 𝟏𝟎𝟎; 𝝆𝟏𝟐 = 𝟎. 𝟔; 𝝆𝟏𝟑 = 𝟎. 𝟕; 𝝆𝟐𝟑 = 𝟎. 𝟖;  𝝈𝟏𝟐 = 𝟐; 𝝈𝟐𝟐 = 𝟑; 𝝈𝟑𝟐 = 𝟒 

Smoothing Parameters Minimum Values of GCV Results of Estimation 𝜆ଵ(௦௠௔௟௟) = 10ିଵ଴𝜆ଶ(௦௠௔௟௟) = 2 × 10ିଵ଴𝜆ଷ(௦௠௔௟௟) = 3 × 10ିଵ଴ቑ (𝑆𝑚𝑎𝑙𝑙 𝑉𝑎𝑙𝑢𝑒𝑠) 4.763234 The estimation results are too rough. 

𝜆ଵ(௢௣௧) = 2.146156 × 10ି଻𝜆ଶ(௢௣௧) = 1.084013 × 10ି଻𝜆ଷ(௢௣௧) = 5.930101 × 10ି଼ൢ (𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝑉𝑎𝑙𝑢𝑒𝑠) 2.526286 The estimation results are the best. 

𝜆ଵ(௟௔௥௚௘) = 10ିହ𝜆ଶ(௟௔௥௚௘) = 2 × 10ିହ𝜆ଷ(௟௔௥௚௘) = 3 × 10ିହൢ (𝐿𝑎𝑟𝑔𝑒 𝑉𝑎𝑙𝑢𝑒𝑠) 4.617504 The estimation results are too smooth. 

The plots of the estimated regression function of the MNR model presented in (29) 
for the three different smoothing parameters are shown in Figures 1–3. 

 
Figure 1. Plots of estimated MNR Models in (29) for small smoothing parameters. 
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Figure 2. Plots of estimated MNR Model in (29) for optimal smoothing parameters. 

 
Figure 3. Plots of estimated MNR Models in (29) for large smoothing parameters. 

Figure 1 shows that for all responses the small smoothing parameter values provide 
estimates of the regression functions of the MNR model presented in (29) that are too 
rough, namely, (𝑦ଵ) for the first response, (𝑦ଶ) for the second response, and (𝑦ଷ) for the 
third response. 

Figure 2 shows that the optimal smoothing parameter values provide the best esti-
mates of the regression functions of the MNR model presented in (29) for all responses, 
namely, (𝑦ଵ) for the first response, (𝑦ଶ) for the second response, and (𝑦ଷ) for the third re-
sponse. 

Figure 3 shows that for all responses the large smoothing parameter values provide 
estimates of the regression functions of the MNR model presented in (29) that are too 
smooth, namely, (𝑦ଵ) for the first response, (𝑦ଶ) for the second response, and (𝑦ଷ) for the 
third response. 
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3.5. Investigating the Consistency of the Smoothing Spline Regression Function Estimator 
We first investigate the asymptotic properties of the smoothing spline regression 

function estimator 𝐟መ based on the integrated mean square error (IMSE) criterion. We de-
velop the IMSE proposed by [14] from the uniresponse case to the multiresponse case. 
Suppose that we decompose the IMSE into two components, 𝑏𝑖𝑎𝑠ଶ(𝛌) and 𝑉𝑎𝑟(𝛌), as fol-
lows: 𝐼𝑀𝑆𝐸(𝛌) = 𝐸 න [൫𝐟(𝐭) − 𝐟መ(𝐭)൯𝐓𝐖൫𝐟(𝐭) − 𝐟መ(𝐭)൯]௕

௔ 𝑑𝐭 = 𝑏𝑖𝑎𝑠ଶ(𝛌) + 𝑉𝑎𝑟(𝛌) (30)

where 𝑏𝑖𝑎𝑠ଶ(𝛌) = ׬ 𝐸[൫𝐟(𝐭) − 𝐸𝐟መ(𝐭)൯𝐓𝐖௕௔ ൫𝐟(𝐭) − 𝐸𝐟መ(𝐭)൯]𝑑𝐭,  and 𝑉𝑎𝑟(𝛌) = ׬ 𝐸[ቀ𝐸𝐟መ(𝐭) −௕௔𝐟መ(𝐭)ቁ𝐓 𝐖 ቀ𝐸𝐟መ(𝐭) − 𝐟መ(𝐭)ቁ]𝑑𝐭. Furthermore, in order to investigate the asymptotic property 
of 𝑏𝑖𝑎𝑠ଶ(𝛌), we assign the solution to PWLS optimization in the following theorem. 

Theorem 1. If 𝐟መ(𝐭) is the solution that minimizes the following penalized weighted least square 
(PWLS): 𝑁ିଵ(𝐲 − 𝐠(𝐭))𝐓𝐖(𝐲 − 𝐠(𝐭)) + ∑ 𝜆௥ ׬ ൫𝑔௥(௠)(𝑡௥)൯ଶ௕ೝ௔ೝ௣௥ୀଵ 𝑑𝑡௥  (31)

then the solution that minimizes the following penalized weighted least square (PWLS): 𝑁ିଵ(𝐟(𝐭) − 𝐠(𝐭))𝐓𝐖(𝐟(𝐭) − 𝐠(𝐭)) + ∑ 𝜆௥ ׬ ൫𝑔௥(௠)(𝑡௥)൯ଶ௕ೝ௔ೝ௣௥ୀଵ 𝑑𝑡௥  (32)

is 𝐠ො ∗(𝐭) = 𝐸𝐟መ(𝐭). 

Proof of Theorem 1. In Section 3.1, we obtained the solution to the PWLS in (31), that is, 𝐟መ = 𝐀𝐛መ + 𝐂𝐝መ = 𝐇𝐲, where as provided in (22), 𝐇 = 𝐀(𝐀𝐓𝐃ି𝟏𝐖𝐀)ି𝟏𝐀𝐓𝐃ି𝟏𝐖 + 𝐂𝐃ି𝟏𝐖(𝐈 −𝐀(𝐀𝐓𝐃ି𝟏𝐖𝐀)ି𝟏𝐀𝐓𝐃ି𝟏𝐖), 𝐃 = 𝐖𝐂 + N,  = 𝑑𝑖𝑎𝑔 ቀ𝜆ଵ𝐈௡భ, 𝜆ଶ𝐈௡మ, … , 𝜆௣𝐈௡೛ቁ, 𝑁 = ∑ 𝑛௥௣௥ୀଵ , 
and 𝐈 is an identity matrix. Next, if we substitute 𝐲 = 𝐟(𝐭) into Equation (31), we find that 
the value that minimizes PWLS (32) is 𝐠ො ∗(𝐭) = 𝐀(𝐀𝐓𝐃ି𝟏𝐖𝐀)ି𝟏𝐀𝐓𝐃ି𝟏𝐖 + 𝐂𝐃ି𝟏𝐖൫𝐈 − 𝐀(𝐀𝐓𝐃ି𝟏𝐖𝐀)ି𝟏𝐀𝐓𝐃ି𝟏𝐖൯𝐲 = 𝐸𝐟መ(𝐭) 

Thus, Theorem 1 is proved. □ 

Furthermore, we investigate the asymptotic property of 𝑏𝑖𝑎𝑠ଶ(𝛌). For this purpose, 
we first provide the following assumptions.  

Assumptions (A): 
(A1) For every 𝑟 = 1,2, … , 𝑝, 𝑛௥ = 𝑛 and 𝜆௥ = 𝜆.  
(A2) For every 𝑖 = 1,2, … , 𝑛, 𝑡௜ = ଶ௜ିଵଶ௡ . 
(A3) For any continuous function 𝑔  and 0 < W𝒊 = W < ∞, 𝑖 = 1,2, … , 𝑛 , the following 

statements are satisfied [48,49]:  

(a) 𝑛ିଵ ∑ 𝑔(𝑡௜)௡௜ୀଵ → ׬ 𝑔(𝑡)௕௔ 𝑑𝑡, as 𝑛 → ∞. 
(b) 𝑛ିଵ ∑ W௜𝑔(𝑡௜)௡௜ୀଵ → ׬ W𝑔(𝑡)௕௔ dt, as 𝑛 → ∞. 

(c) 𝑛ିଵ ∑ 𝜆௜ ׬ ൫𝑔௜(௠)(𝑡௜)൯ଶ𝑑𝑡௜ → 𝜆 ׬ 𝑔(௠)(𝑡)𝑑𝑡௕௔௕೔௔೔௡௜ୀଵ , as 𝑛 → ∞. 

Next, given Assumptions (A), the asymptotic property of 𝑏𝑖𝑎𝑠ଶ(𝛌) is provided in the 
Theorem 2. 

Theorem 2. If the Assumptions in (A) hold, then 𝐵𝑖𝑎𝑠ଶ(𝛌) ≤ 𝑂(𝛌), as 𝑛 → ∞. 

Proof of Theorem 2. Suppose 𝐠ො(𝐭) is the value which minimizes the following penalized 
weighted least square (PWLS): 
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׬ (𝐟(𝐭) − 𝐠(𝐭))𝐓𝐖(𝐟(𝐭) − 𝐠(𝐭))𝑑𝐭 + ∑ 𝜆௥ ׬ ൫𝑔௥(௠)(𝑡௥)൯ଶ௕ೝ௔ೝ௣௥ୀଵ 𝑑𝑡௥௕௔   

then, considering the Assumptions (A), we have 𝑛ିଵ(𝐟(𝐭) − 𝐠(𝐭))𝐓𝐖(𝐟(𝐭) − 𝐠(𝐭)) ≈ ׬ (𝐟(𝐭) − 𝐠(𝐭))𝐓𝐖(𝐟(𝐭) − 𝐠(𝐭))𝑑𝐭௕௔ , as 𝑛 → ∞. 
Hence, we obtain 𝐠ො ∗(𝐭) = 𝐸𝐟መ(𝐭) ≈ 𝐠ො(𝐭). Thus, for every 𝐠 ∈ 𝑊𝟐𝒎[𝑎, 𝑏] we have 

   𝐵𝑖𝑎𝑠ଶ(𝛌) = ׬ 𝐸[൫𝐟(𝐭) − 𝐸𝐟መ(𝐭)൯𝐓𝐖௕௔ ൫𝐟(𝐭) − 𝐸𝐟መ(𝐭)൯]𝑑𝐭  ≤ ׬ 𝐸[ቀ𝐟(𝐭) − 𝐸𝐟መ(𝐭)ቁ𝐓 𝐖௕௔ ቀ𝐟(𝐭) − 𝐸𝐟መ(𝐭)ቁ]𝑑𝐭 + ∑ 𝝀𝒓 ׬ 𝑔ො௥(௠)𝒃𝒂𝒑𝒓ୀ𝟏 (𝑡௥)𝑑𝑡௥  

Because 𝐸𝐟መ(𝐭) ≈ 𝐠ො(𝐭), we obtain 𝐵𝑖𝑎𝑠ଶ(𝛌) ≤ ׬ 𝐸[(𝐟(𝐭) − 𝐠ො(𝐭))𝐓𝐖௕௔ (𝐟(𝐭) − 𝐠ො(𝐭))]𝑑𝐭 + ∑ 𝝀𝒓 ׬ 𝑔ො௥(௠)𝒃𝒂𝒑𝒓ୀ𝟏 (𝑡௥)𝑑𝑡௥  

Thus, we have the following relationship: 𝐵𝑖𝑎𝑠ଶ(𝛌) ≤ ׬ 𝐸[(𝐟(𝐭) − 𝐠(𝐭))𝐓𝐖௕௔ (𝐟(𝐭) − 𝐠(𝐭))]𝑑𝐭 + ∑ 𝝀𝒓 ׬ 𝑔௥(௠)𝒃𝒂𝒑𝒓ୀ𝟏 (𝑡௥)𝑑𝑡௥  (33)

for every 𝐠 ∈ 𝑊𝟐𝒎[𝑎, 𝑏].  
Because every 𝐠 ∈ 𝑊𝟐𝒎[𝑎, 𝑏] satisfies the relationship in (33), by taking 𝐠(𝐭) = 𝐟(𝐭), 

we have 𝐵𝑖𝑎𝑠ଶ(𝛌) ≤ ∑ 𝝀𝒓 ׬ 𝑔௥(௠)𝒃𝒂𝒑𝒓ୀ𝟏 (𝑡௥)𝑑𝑡௥ = 𝑂(𝛌) as 𝑛 → ∞ (34)

where 𝑂(∙) represents “big oh”. Details about “big oh” can be found in [14,50]. 
Thus, Theorem 2 is proved.□ 

Furthermore, the asymptotic property of 𝑉𝑎𝑟(𝛌) is provided in Theorem 3. 

Theorem 3. If Assumptions (A) hold and 𝑟 = 1,2, … , 𝑝, then 𝑉𝑎𝑟(𝜆௥) ≤ 𝑂 ൭ ଵ௡ ఒೝభమ೘൱. 

Proof of Theorem 3. To investigate the asymptotic property of 𝑉𝑎𝑟(𝛌), we first define the 
following function:  𝝎൫𝐟መ, 𝐡, 𝛼൯ = 𝑅൫𝐟መ + 𝛼𝐡൯ + ∑ 𝜆௥𝐽௥௣௥ୀଵ (𝐟መ + 𝛼𝐡)  

where 𝑅(𝐠) = 𝑛ିଵ(𝐲 − 𝐠(𝐭))்𝐖(𝐲 − 𝐠(𝐭)) ; 𝐽௥(𝐠) = ׬ ൣ𝑔௥(௠)(𝑡௥)൧ଶ௕௔ 𝑑𝑡௥ ; 𝐡 ∈ 𝑊ଶ௠[𝑎, 𝑏]  and 𝛼 ∈ ℝ. 
Hence, for any 𝐟, 𝐠 ∈ 𝑊ଶ௠[𝑎, 𝑏] we have 𝝎൫𝐟መ, 𝐡, 𝛼൯ = 𝑛ିଵ(𝐲 − 𝐟(𝐭) − 𝛂𝐠(𝐭))்𝐖(𝐲 − 𝐟(𝐭) − 𝛂𝐠(𝐭)) + ∑ 𝜆௥ ׬ ൫𝑓௥(௠)(𝑡௥) + 𝛼𝑔௥(௠)(𝑡௥)൯ଶ௕ೝ௔ೝ௣௥ୀଵ 𝑑𝑡௥  

Next, by taking the solution to డ𝝎൫𝐟መ,𝐡,ఈ൯డఈ = 𝟎, for 𝛼 = 0 we have 𝑛ିଵ൫𝐲 − 𝐟(𝐭)൯்𝐖𝐠(𝐭) = ∑ 𝜆௥ ׬ ൫𝑓௥(௠)(𝑡௥)𝑔௥(௠)(𝑡௥)൯ଶ௕ೝ௔ೝ௣௥ୀଵ 𝑑𝑡௥  

Furthermore, if 𝛾ଵ, 𝛾ଶ, … , 𝛾௡  are the bases for the natural spline and 𝑓௥(𝑡௥) =∑ 𝛽௥௞𝛾௥௞(𝑡௥)௡௞ୀଵ , 𝑟 = 1,2, … , 𝑝, then according to [51] this implies that 

    ∑ ൫𝑦௥௝ − ∑ 𝛽௥௞𝛾௥௞(𝑡௥௝)௡௞ୀଵ ൯W௥௝𝑔௥௝(𝑡௥௝)௡௝ୀଵ   = 𝑛𝜆௥(−1)௠(2𝑚 − 1)! ∑ 𝑔௥(𝑡௥௜) ∑ 𝛽௥௞𝑑௥௜௞௡௞ୀଵ௡௜ୀଵ   
(35)

where 𝑑௥௜௞ is the rth response diagonal element of matrix H in (26).  
Now, because Equation (35) holds for every 𝑔௥ ∈ 𝑊ଶ௠[𝑎௥, 𝑏௥], 𝑟 = 1,2, … , 𝑝, it follows 

that determining the solution to Equation (35) is equivalent to determining the value of 𝛽௥௞ that satisfies the following equation: 
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𝑦௥௜ = ∑ (𝑛𝜆௥(−1)௠(2𝑚 − 1)! W௥௜ିଵ𝑑௥௜௞ + 𝛾௥௞(𝑡௥௜))𝛽௥௞௡௞ୀଵ  , 𝑖 = 1,2, … , 𝑛 (36)

We can express Equation (36) in matrix notation as follows: 𝐲 = (𝑛𝜆௥(−1)௠(2𝑚 − 1)! 𝐖ିଵ𝐊 + 𝛄)𝜷 (37)

where = {𝒅𝒓𝒊𝒌}, 𝛄 = {𝛾௥௞(𝑡௥௜)}, 𝑟 = 1,2, … , 𝑝, and 𝑖, 𝑘 = 1,2, … , 𝑛. 
Hence, we obtain the estimator for 𝛃 in Equation (37) as follows: 𝛃෡ = 𝑑𝑖𝑎𝑔 ቆ 11 + 𝑛 𝜆௥ ఏభ , … , 11 + 𝑛 𝜆௥ ఏ೙ ቇ 𝛄𝐓𝐲 

where {𝜃ଵ, … , 𝜃௡} ∈ ℋ (here, ℋ is an RKHS) and is perpendicular to 𝛄. 
Thus, the estimator for the regression function 𝐟(𝐭) can be expressed as follows: 𝐟መ(𝐭) = 𝛄(𝐭)𝛃෡ = ∑ ଵଵା௡𝛌ఏೕ௡௝ୀଵ 𝛄௝் 𝐲 𝛄௝(𝐭)  (38)

Hence, for 𝑟 = 1,2, … , 𝑝 Equation (38) results in 

             𝑓መ௥(𝑡௥) = ∑ ଵଵା௡ఒೝఏೝೕ௡௝ୀଵ 𝛄௥௝்𝐲 𝜸𝒓𝒋(𝑡௥)  = ∑ ଵଵା௡ఒೝఏೝೕ௡௝ୀଵ ∑ 𝛾௥௝(𝑡௥௞)𝑦௥௞௡௞ୀଵ 𝛾௥௝(𝑡௥௞)  

Thus, for 𝑟 = 1,2, … , 𝑝 we have 𝑉𝑎𝑟൫𝑓መ௥(𝑡௥)൯ = 𝜎௥ଶ ∑ ఊೝೕమ (௧ೝ)൫ଵା௡ ఒೝ ఏೝೕ൯మ௡௝ୀଵ ∑ 𝛾௥௝(𝑡௥௞) 𝛾௥௝(𝑡௥௞)𝑊௥௞ିଵ௡௞ୀଵ   

≤ ቀmaxଵஸ௜ஸ௡{𝑊௥௜ି ଵ}ቁ 𝜎௥ଶ ∑ ఊೝೕమ (௧ೝ)൫ଵା௡ ఒೝ ఏೝೕ൯మ௡௝ୀଵ   

From this step, for 𝑟 = 1,2, … , 𝑝 we have 𝑉𝑎𝑟(𝜆௥) = ׬ 𝐸 ൤ቀ𝐸𝑓መ௥(𝑡௥) − 𝑓መ௥(𝑡௥)ቁ் 𝑊௥ ቀ𝐸𝑓መ௥(𝑡௥) − 𝑓መ௥(𝑡௥)ቁ൨௕ೝ௔ೝ 𝑑𝑡௥  

≤ ቀmaxଵஸ௜ஸ௡{𝑊௥௜ି ଵ}ቁ 𝜎௥ଶ ∑ ఊೝೕమ (௧ೝ)൫ଵା௡ ఒೝ ఏೝೕ൯మ௡௝ୀଵ ׬ 𝛾௥௝ଶ (𝑡௥)𝑊௥𝑑𝑡௥௕ೝ௔ೝ   

In the next step, Refs. [51,52] provide an approximation for 𝑛 → ∞ as follows: 𝑛ିଵ = 𝑛ିଵ ∑ 𝑊௥௝𝛾௥௝ଶ௡௝ୀଵ (𝑡௥௝) ≈ ׬ 𝛾௥ଶ(𝑡௥)𝑊௥𝑑𝑡௥௕ೝ௔ೝ , and 𝑉𝑎𝑟(𝜆௥) ≤ ቀmaxଵஸ௜ஸ௡{𝑊௥௜ି ଵ}ቁ 𝜎௥ଶ𝑛ିଵ ∑ ଵ൫ଵାఒೝ ఊೕ൯మ௡௝ୀଵ . 

Furthermore, Ref. [51] leads to the following result: 𝑉𝑎𝑟(𝜆௥) ≤ ቀmaxଵஸ௜ஸ௡{𝑊௥௜ି ଵ}ቁ 𝜎௥ଶ𝑛ିଵ ∑ ଵ(ଵାఒೝ (గ௝)మ೘)మ௡௝ୀଵ   

Next, using integral approximation [51], for 𝑟 = 1,2, … , 𝑝 we have 𝑉𝑎𝑟(𝜆௥) ≤ ቀmaxଵஸ௜ஸ௡{𝑊௥௜ି ଵ}ቁ ఙೝమ௡ గ ఒೝభమ೘ ׬ ௗ௫(ଵା௫మ೘)మஶ଴  = ଵ௡ ఒೝభమ೘ 𝐾(𝑚, 𝜎) = 𝑂 ൭ ଵ௡ ఒೝభమ೘൱ 

where (𝑚, 𝜎) = ఙೝమగ ቀmaxଵஸ௜ஸ௡{𝑊௥௜ି ଵ}ቁ ׬ ௗ௫(ଵା௫మ೘)మஶ଴ . Thus, Theorem 3 is proved. □ 

Here, based on Theorems 2 and 3, we obtain the asymptotic property of the smooth-
ing spline regression function estimator of the MNR model presented in (1) based on the 
integrated mean square error (IMSE) criterion, as follows: 𝐼𝑀𝑆𝐸(𝛌) = 𝐵𝑖𝑎𝑠ଶ(𝛌) + 𝑉𝑎𝑟(𝛌) ≤ 𝑂(𝛌) + 𝑂(𝐳) as 𝑛 → ∞ (39)
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where = ൫𝝀𝟏, 𝝀𝟐, … , 𝝀𝒑൯୘ and 𝐳 = ൭ 𝟏𝒏 𝝀𝟏𝟏𝟐𝒎 𝟏𝒏 𝝀𝟐𝟏𝟐𝒎 ⋯ 𝟏𝒏 𝝀𝒑𝟏𝟐𝒎൱𝑻
. 

The consistency of the smoothing spline regression function estimator of the MNR 
model presented in (1) is provided by the following theorem. 

Theorem 4. If 𝐟መ(𝐭) is a smoothing spline estimator for regression function 𝐟(𝐭) of the MNR 
model presented in (1), then 𝐟መ(𝐭) is a consistent estimator for 𝐟(𝐭) based on the integrated mean 
square error (IMSE) criterion. 

Proof of Theorem 4. Based on Equation (39), we have the following relationship: 𝐼𝑀𝑆𝐸(𝛌) = 𝐵𝑖𝑎𝑠ଶ(𝛌) + 𝑉𝑎𝑟(𝛌) ≤ 𝑂(𝛌) + 𝑂(𝐳) ≤ 𝑂(𝑛𝛌) as 𝑛 → ∞. 

Hence, according to [48], for any small positive number 𝛿 > 0 we have Lim௡→ஶ 𝑃 ቀቚூெௌா(𝛌)௡𝛌 ቚ > 𝛿ቁ ≤ Lim௡→ஶ 𝑃(|𝐼𝑀𝑆𝐸(𝛌)| > 𝛿) = 0. (40)

Because 𝑃(|𝐼𝑀𝑆𝐸(𝛌)| > 𝛿) = 1 − 𝑃(|𝐼𝑀𝑆𝐸(𝛌)| ≤ 𝛿), based on Equation (40) and ap-
plying the probability properties we have Lim௡→ஶ(1 − 𝑃(|𝐼𝑀𝑆𝐸(𝛌)| ≤ 𝛿)) = 0 ⇔  1 − Lim௡→ஶ 𝑃(|𝐼𝑀𝑆𝐸(𝛌)| ≤ 𝛿) = 0 ⇔ Lim௡→ஶ 𝑃(|𝐼𝑀𝑆𝐸(𝛌)| ≤ 𝛿) = 1. (41)

Equation (41) means that the smoothing spline regression function estimator of the 
multiresponse nonparametric regression (MNR) model is a consistent estimator based on 
the integrated mean square error (IMSE) criterion. Thus, Theorem 4 is proved. □ 

3.6. Illustration of Theorems 
Suppose a paired observation (𝑦௥௜, 𝑡௥௜) follows the multiresponse nonparametric re-

gression (MNR) model:  𝑦௥௜ = 𝑓௥(𝑡௥௜) + 𝜀௥௜, 𝑡௥௜ ∈ [0,1], 𝑟 = 1,2, … , 𝑝, 𝑖 = 1,2, … , 𝑛௥. (42)

Next, for every 𝑟 = 1,2, … , 𝑝, we assume 𝑓ଵ = 𝑓ଶ = ⋯ = 𝑓௣ = 𝑓  and 𝜀ଵ = 𝜀ଶ = ⋯ =𝜀௣ = 𝜀  such that 𝑦ଵ = 𝑦ଶ = ⋯ = 𝑦௣ = 𝑦 . Hence, we have a nonparametric regression 
model as follows: 𝑦௜ = 𝑓(𝑡௜) + 𝜀௜, 𝑡௜ ∈ [0,1], 𝑖 = 1,2, … , 𝑛. (43)

Based on the model presented in (43), we present an illustration related to the four 
theorems in Section 3.5 through a simulation study with sample size of 𝒏 = 𝟐𝟎𝟎. Based 
on this model, let 𝒇(𝒕) = 𝒔𝒊𝒏𝟑(𝟐𝝅𝒕𝟑), where 𝒕 is generated from a uniform (0,1) distribu-
tion and 𝜺 is generated from a standard normal distribution. The first step is to create 
plots of the observation values (𝒕, 𝒚) and 𝒇(𝒕), as shown in Figure 4. 

 
Figure 4. Plots of observation values (𝒕, 𝒚) and 𝒇(𝒕). 
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It can be seen from Figure 4 that there is a tendency towards 𝒚 variance inequality. 
For larger values of 𝒕, the 𝒚 variance tends to be larger. Next, the data model is approxi-
mated by a weighted spline with a weight of 𝒘𝒊 = 𝟏 𝒕𝒊𝟐⁄ , 𝑖 = 1,2, … ,200. The next step is 
to determine the order, number, and location of the knot points. Here, we use a weighted 
cubic spline model with two knot points, namely, 0.5 and 0.785. This weighted cubic spline 
model can be written as follows: 𝐸(𝑦) = 𝛽଴ + 𝛽ଵ𝑡 + 𝛽ଶ𝑡ଶ + 𝛽ଷ𝑡ଷ + 𝛽ସ(𝑡 − 0.5)ାଷ + 𝛽ହ(𝑡 − 0.785)ାଷ  (44)

The plot of this weighted cubic spline with two knot points is shown in Figure 5. The 
plots of the residuals and the estimated weighted cubic spline are shown in Figure 6.  

 
Figure 5. Plots of (a) weighted cubic spline with two knot points and (b) curve of 𝒇(𝒕). 

 
Figure 6. Plots of residuals and estimation values of weighted cubic spline. 

Figure 6 shows that with weight 𝒘𝒊 = 𝟏 𝒕𝒊𝟐⁄ , the variance of the response variable y 
tends to be the same. Meanwhile, Figure 7 provides a residual normality plot for the 
weighted cubic spline model. The plot in Figure 7 shows no indication towards deviation 
from the normal distribution. 

Next, as a comparison, we investigate a weighted cubic polynomial model with 
weight 𝑤௜ = 1 𝑡௜ଶ⁄ , 𝑖 = 1,2, … ,200 for fitting the model (43). The fitting of the weighted 
cubic polynomial model is shown in Figure 8. From the visualization in Figure 8, it can be 
seen that this weighted cubic polynomial approach tends to approach the function 𝑓(𝑡) very 
globally. This is in contrast to the weighted cubic spline with two knot points in (44), which 
approaches the function 𝑓(𝑡) more locally. Thus, the weighted cubic spline model with two 
knot points is adequate as an approximation model for the model presented in (43). 
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Figure 7. Plot of weighted cubic spline residual normality. 

 
Figure 8. Plots of (a) weighted cubic polynomial and (b) curve 𝑓(𝑡). 

Based on the illustration above and Figures 4–8, if 𝑓መ(𝑡) is an estimator for model 
(43), that is, if 𝑓መ(𝑡)  is the Penalized Weighted Least Squares (PWLS) solution, then 𝑔ො∗(𝑡) = 𝐸(𝑦), from Equation (44) is an estimator for model (43) as well, such that 𝑔ො∗(𝑡) =𝐸[𝑓መ(𝑡)], as provided by Theorem 1. 

The plots of the asymptotic curves of 𝑰𝑴𝑺𝑬(𝛌) , 𝑩𝒊𝒂𝒔𝟐(𝛌) , and 𝑽𝒂𝒓(𝛌) , where 𝑰𝑴𝑺𝑬(𝛌) = 𝑩𝒊𝒂𝒔𝟐(𝛌) + 𝑽𝒂𝒓(𝛌), are shown in Figure 9 [53]. 

 
Figure 9. Plots of asymptotic curves of (a) 𝑰𝑴𝑺𝑬(𝛌), (b) 𝑩𝒊𝒂𝒔𝟐(𝛌), and (c) 𝑽𝒂𝒓(𝛌). 
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Figure 9 shows that the Integrated Mean Square Error (IMSE(λ)) curve represented 
by curve (a) is the sum of the quadratic bias (𝑩𝒊𝒂𝒔𝟐(𝛌)) curve represented by curve (b) 
and the variance curve (𝑽𝒂𝒓(𝛌)) represented by curve (c). It can be seen from Figure 9b 
that 𝐵𝑖𝑎𝑠ଶ(𝛌) ≤ 𝑂(𝛌), as 𝑛 → ∞, that is, Lim Sup௡→ஶ ቚ஻௜௔௦మ(𝛌)𝛌 ቚ < ∞ [14,50,54]. This means that ቚ஻௜௔௦మ(𝛌)𝛌 ቚ remains bounded, as 𝑛 → ∞, which is provided by Theorem 2. Furthermore, Fig-

ure 9c shows that 𝑉𝑎𝑟(𝝀) ≤ 𝑂 ቆ ଵ௡𝛌 భమ೘ ቇ (that is, Lim Sup௡→ஶ ฬቀ𝑛𝛌 భమ೘ቁିଵ 𝛌ൗ ฬ < ∞ [14,50,54]. This 

means that ฬቀ𝑛𝛌 భమ೘ቁିଵ 𝛌ൗ ฬ remains bounded, as 𝑛 → ∞, which is provided by Theorem 3. 
Furthermore, Figure 9 shows that 𝐼𝑀𝑆𝐸(𝛌) = 𝐵𝑖𝑎𝑠ଶ(𝛌) + 𝑉𝑎𝑟(𝛌) ≤ 𝑂(𝑛𝛌). According to 
[14,50,54], this means that Lim Sup௡→ஶ ቚூெௌா(𝛌)௡𝛌 ቚ < ∞ . In other words, 𝐼𝑀𝑆𝐸(𝛌) ≤ 𝑂(𝑛𝛌)  if ቚூெௌா(𝛌)௡𝛌 ቚ remains bounded, as 𝑛 → ∞. According to [14,50,54], for any small positive num-

ber 𝛿 > 0  we have Lim௡→ஶ 𝑃 ቀቚூெௌா(𝛌)௡𝛌 ቚ > 𝛿ቁ ≤ Lim௡→ஶ 𝑃(|𝐼𝑀𝑆𝐸(𝛌)| > 𝛿) = 𝟎 ; hence, Lim௡→ஶ 𝑃(|𝐼𝑀𝑆𝐸(𝛌)| ≤ 𝛿) = 1 is consistent.  

4. Conclusions 
The smoothing spline estimator with the RKHS approach has good ability to estimate 

the MNR model, which is a nonparametric regression model where the responses are cor-
related with each other, because the goodness of fit and smoothness of the estimation 
curve is controlled by the smoothing parameter, making the estimator very suitable for 
prediction purposes. Therefore, selection of the optimal smoothing parameter value can-
not be omitted, and is crucial to good regression function fitting of the MNR model based 
on smoothing spline estimator using the RKHS approach. The estimator of the smoothing 
spline regression function of the MNR model that we obtained is linear with respect to the 
observations in Equation (22), and is a consistent estimator based on the integrated mean 
square error (IMSE) criterion. The main influence of this study is lies in the easier estima-
tion of a multiresponse nonparametric regression model where there is a correlation be-
tween responses using the RKHS approach based on a smoothing spline estimator. This 
approach is easier, and faster, and more optimal, as estimation is carried out simultane-
ously instead of response by response for each observation. In addition, the theory gener-
ated in this study can be used to estimate the nonparametric component of the multire-
sponse semiparametric regression model used to model Indonesian toddlers' standard 
growth charts. In the future, the results of this study can be further developed within the 
scope of statistical inference, especially for the purpose of testing hypotheses involving 
multiresponse nonparametric regression models and multiresponse semiparametric re-
gression models. 
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