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Abstract: In this paper, we investigate the fractal-fractional Malkus Waterwheel model in detail. We
discuss the existence and uniqueness of a solution of the fractal-fractional model using the fixed point
technique. We apply a very effective method to obtain the solutions of the model. We prove with
numerical simulations the accuracy of the proposed method. We put in evidence the effects of the
fractional order and the fractal dimension for a symmetric Malkus Waterwheel model.
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1. Introduction

It is useful to formulate mathematical models to construct real-world problems of
differential equations for various areas of science and engineering problems.

The real-world problems with practical parameters for the model provide the model
with effective knowledge. Mathematical models provide a great deal of knowledge about
real-life issues. There may be various types of real-world problems, such as infectious
diseases, engineering problems, banking and finance info, etc. Via a differential equation,
banking data of two different forms, chimerical and rural, can be effectively modelled
when competitive opportunities occur. Banks are considered to be the position in any
country in the world that collects money from people and spends on their nation for
their improvement. Commercial and rural banks have almost the same goods, and if
there is no enormous difference between their goods then the possibilities of competition
between these banks may exist. Via a mathematical model known as the Lotka–Volterra
style model, such rivalry can be investigated. It should be noted that many researchers are
researching the Lotka–Volterra type model of competition for different problems [1–7]. For
example, through a competition model, Korean mobile company data were studied by the
authors of [5]. As a technical replacement, the competitive model is presented in [6]. More
findings related to the Korean Stock Market Competitiveness Model, modeling and policy
implications, and market dynamics can be seen in [3–6].

As a competition for various phenomena, most of the above models are limited to
integer-study only, except for [6,7]. The development of the fractional calculus day-by-day
showed that the modeling with fractional operators is more useful than the integer order in

Symmetry 2022, 14, 2220. https://doi.org/10.3390/sym14102220 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14102220
https://doi.org/10.3390/sym14102220
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-8304-1574
https://orcid.org/0000-0003-3205-2393
https://orcid.org/0000-0001-9832-1424
https://orcid.org/0000-0002-5513-0801
https://doi.org/10.3390/sym14102220
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14102220?type=check_update&version=1


Symmetry 2022, 14, 2220 2 of 28

which someone can get the best results with a range of choices in the order. Caputo, Caputo–
Fabrizio (CF) and Atangana–Baleanu operators (AB) are some commonly used fractional
operators in fractional calculus. These operators were effectively used by researchers for
their problems [8–12]. The flow of groundwater in fractional derivatives is suggested
in [13]. The impacts of fractional orders for the best setting of variables versus the model
for dengue data are discussed in [14]. A chickenpox simulation with different fractional
operators was studied in [15]. For more details, see [16–27].

Shloofa et al. [28] investigated the fractal-fractional differential equations using op-
erational matrix of derivatives via Hilfer fractal-fractional derivative. Khan et al. [29]
discussed the fractal-fractional COVID-19 mathematical model. The fractal-fractional to-
bacco smoking model was presented in [30]. Dynamics of chaotic systems based on image
encryption through a fractal-fractional operator of non-local kernel is presented in [31].
The role of non-integer and integer order differentiations in the relaxation phenomena
of viscoelastic fluid has been discussed in [32]. The first integral method for non-linear
differential equations with conformable derivative is presented in [33]. The dynamics of
Ebola disease in the framework of different fractional derivatives have been presented
in [34].

W. Malkus and L. Howard constructed a model in Physics (named the Malkus Water-
wheel model nowadays) in the 1970s (see [35]). The Malkus Waterwheel system (or Malkus
system) is a pattern vertical rotation of a cylindrical wheel enclosing a number of discrete
water cups. In this model, water is flowing out of a hollow cylinder high-lying and every
cup runs off the bottom; the hydraulic wheel rotates in one direction and then the other cup
will run haphazardly. An important characteristic of the Malkus design is that the angle of
the wheel is nearer to the horizontal plane than the vertical. This feature keeps water from
flowing directly from one leaking container into another.

Alternatives to the Malkus model can be found in the literature; for example, in Mishra
and Sanghi [36], Alonso and Tereshko [37]. Some important research papers concerning
Malkus models can be seen in the following references [36–47]. These items explore chaotic
properties as stability, bifurcation, parameter estimation and identification, chaos control,
and engineering applications, including the Malkus determinist model image process-
ing connections.

The work of A. A. Mishra and S. Sanghi [36] proposed an asymmetric Malkus Water-
wheel model. The aim of the present work is to propose a new modeling of the Malkus
Waterwheel system considering the symmetry property, given a novel operator known as
the fractal-fractional operator in the context of the Caputo derivative. Initially, we present
detailed mathematical and physical aspects of the Malkus Waterwheel model obtained in
this way, and then, we obtain interesting numerical results for the discussed model.

2. Preliminaries

We state some information about the fractal-fractional calculus in this section (see [48]).

Definition 1 ([48]). Let F(t) be differentiable and continuous on (a, b) with θ, then the fractal-
fractional operator with fractional order ζ in Riemann–Liouville sense with power-law kernel is
expressed as:

FFP
a Dζ,θ

t (F(t)) =
1

Γ(m− ζ)

d
dtθ

∫ t

0
(t− s)m−ζ−1F(s)ds, (1)

and m− 1 < ζ, θ ≤ m ∈ N and dF(s)
dsθ = lim

t→s
F(t)−F(s)

tθ−sθ .

Definition 2 ([48]). Let F(t) be fractal differentiable and continuous on (a, b) with θ, then the
fractal-fractional operator with fractional order ζ in Riemann–Liouville sense with exponential-decay
kernel is expressed as:

FFE
a Dζ,θ

t (F(t)) =
M(ζ)

Γ(m− ζ)

d
dtθ

∫ t

0
exp
(
− ζ

1− ζ

)
F(s)ds, (2)
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and ζ > 0, θ ≤ m ∈ N and M(0) = M(1) = 1.

Definition 3 ([48]). Let F(t) be fractal differentiable and continuous on (a, b) with θ, then the
fractal-fractional operator with fractional order ζ in Riemann–Liouville sense with extended Mittag–
Leffler kernel is expressed as:

FFM
a Dζ,θ

t (F(t)) =
AB(ζ)

Γ(m− ζ)

d
dtθ

∫ t

0
Eζ

(
− ζ

1− ζ
(t− s)ζ

)
F(s)ds, (3)

and ζ > 0, θ ≤ m ∈ N and AB(ζ) = 1− ζ + ζ
Γ(ζ) .

Definition 4 ([48]). Let F(t) be differentiable and continuous on (a, b) with θ, then the fractal-
fractional integral operator with fractional order ζ for F(t) in Riemann–Liouville sense with power
law is expressed as:

FFP
a Jζ,θ

t (F(t)) =
1

Γ(ζ)
d

dtθ

∫ t

0
(t− s)ζ−1sθ−1F(s)ds, (4)

and m− 1 < ζ, θ ≤ m ∈ N and dF(s)
dsθ = lim

t→s
F(t)−F(s)

tθ−sθ .

Definition 5 ([48]). Let F(t) be fractal differentiable and continuous on (a, b) with θ, then the
fractal-fractional integral operator with fractional order ζ for F(t) in Riemann–Liouville sense with
exponentially decaying law is expressed as:

FFE
a Jζ,θ

t (F(t)) =
M(ζ)

Γ(m− ζ)

d
dtθ

∫ t

0
sζ−1F(s)ds +

θ(1− ζ)tθ−1F(t)
M(ζ)

. (5)

Definition 6 ([48]). Let F(t) be fractal differentiable and continuous on (a, b) with θ, then the
fractal-fractional integral operator with fractional order ζ for F(t) in Riemann–Liouville sense with
extended Mittag-Leffler kernel is expressed as:

FFM
a Jζ,θ

t (F(t)) =
ζθ

AB(ζ)Γ(ζ)
d

dtθ

∫ t

0
(t− s)ζ−1sζ−1F(s)ds +

θ(1− ζ)tθ−1F(t)
AB(ζ)

. (6)

Effect of Fractal-Fractional on Simple Processes

In general, incorrect interpretations of the geometrical meaning of nonlocal operators
have been made. This may be in part because even the characteristics of nonlocal operators
are still not fully understood. However, it is crucial to recall the traditional integral calculus,
where Stieltjes extended the Riemann integral and gave it the name Stieltjes–Riemann
integral. In recent decades, this integral has found use in a variety of real-world issues,
such as statistics and the formula for expectation. Additionally, the surface with curvature
was calculated using this integral, which was not possible using the Riemann integral.
Although this operator theoretically and practically opened up significant avenues for
research, its associate derivative has not been proposed. The fractal derivative was used for
the initial attempt.

The fundamental theorem of calculus was utilized to produce an integral that is a
subclass of the Stieltjes–Riemann integral under the assumption that the function being
employed is differentiable. Atangana [48] expanded the fractional derivatives to a fractal-
fractional derivative, which is more suited to reproduce complexity, by making use of
the fact that an integral operator is differentiable. This is simply because we recover all
fractional derivatives when the fractal order or dimension is 1, the fractal derivative when
the fractional order is 1, and the classical derivative, when both are 1.
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We shall illustrate the influence of fractal derivative on a basic decay issue, of course,
this has also been addressed by Chen [49].

dF(t)
dtθ

= −λF(t).

Assume that F(t) is differentiable we have:

dF(t)
dt

= −θtθ−1λF(t),

F′(t)
F(t)

= −θtθ−1λ,

F(t) = F(0)exp(−λtθ),

which leads to stretched exponential function, the figures are fixed below for different
values of θ where as, with the classical derivative θ = 1 we have a simple exponential
function without any memory. In Figure 1, we simulate the solution for different values of
fractal dimension.

0.2 0.4 0.6 0.8 1.0

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 1. Numerical simulation for different values of θ.

Further, let us show the effect of fractal-fractional to a simple equation,

FFP
0 Dζ,θ

t (y(t)) = t2.

By derivation we get
RL
0 Dζ

t (y(t)) = θtθ+1.

Applying Riemann–Liouville integral on both sides yields:

F(t) =
θ

Γ(ζ)

t∫
0

tθ+1(t− τ)ζ−1dτ

=
θtθ+ζ+1

Γ(ζ)
B(θ + 2, ζ)

=
θtθ+ζ+1

Γ(θ + 2 + ζ)
Γ(θ + 2).
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We demonstrate this solution in Figure 2 for fractional order ζ = 1 and different values
of fractal dimension.

0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

0.4

0.5

Figure 2. Numerical simulation for different values of θ.

Figures 1 and 2 show clearly the effect of the fractal dimension and fractal-fractional
derivative respectively.

3. Existence and Uniqueness of a Solution of Fractal-Fractional Differential Equations

In 1963, Edward Lorenz supervised a scientific team in order to develop a simplified
mathematical model for atmospheric convection. The model is a system of three ordinary
differential equations now known as the Lorenz equations [50]. In particular, the equations
describe the rate of change of three quantities with respect to time t: x is proportional
to the rate of convection, y to the horizontal temperature variation, and z to the vertical
temperature variation. The Lorenz equations also occurs in simplified models for lasers,
dynamos, electric circuits, chemical reactions and so on. The Lorenz equations are also the
applied equations for the Malkus Waterwheel model.

We consider further in our study the following Lorenz problem [50]:

x′t = y(t)− ax(t).

y′t = bx(t)z(t)− y(t)
2

.

z′t = −cx(t)y(t) +
1− z(t)

2
.

where x(t), y(t), z(t) are spatial coordinates, where t represents the variable time. In this
model, a, b and c are constant parameters proportional to the Prandtl number, Rayleigh
number, and certain physical dimensions of the layer itself.

The system of nonlinear ordinary differential equations used by Lorenz is named
in related literature as the Lorenz attractor, and is known as a classic example of Chaos
Theory. It is well-known for having chaotic solutions for several parameter values and
initial conditions. In public media the “butterfly effect” it is a consequence of the real-world
implications of the Lorenz attractor. This name is because, in a chaotic physical system, in
the absence of a correct knowledge of the initial conditions our ability to predict its future
course will always decline. When it is plotted in phase space, the shape of the Lorenz
attractor itself may also be seen to have a butterfly shape.
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Following the idea of symmetry, it is well-known that the Lorenz equations have some
properties such as nonlinearity, volume contraction, fixed points and a natural symmetry
identified as (x, y)→ (−x,−y). Then, if (x(t), y(t), z(t)) is a solution, (−x(t),−y(t), z(t))
it is a solution too.

The Malkus model that is a Lorenz-like system of equations is given as a system of
nonlinear ordinary differential equations [51]. A big advantage of fractional derivatives is
that we can formulate models describing much better the systems with memory effects.

Further, we consider in our study the fractional order ζ and the fractal dimension
θ between (0, 1], 0 < ζ, θ ≤ 1. Then, if we replace the classical derivatives of the above
system with the fractal-fractional derivatives and we obtain:

FFM
a Dζ,θ

t x(t) = y(t)− ax(t). (7)

FFM
a Dζ,θ

t y(t) = bx(t)z(t)− y(t)
2

. (8)

FFM
a Dζ,θ

t z(t) = −cx(t)y(t) +
1− z(t)

2
. (9)

Then, we get:

AB(ζ)
1− ζ

d
dt

∫ t

0
x(τ)Eζ

(
−ζ

1− ζ
(t− τ)ζ

)
dτ = θtθ−1(y(t)− ax(t)).

AB(ζ)
1− ζ

d
dt

∫ t

0
y(τ)Eζ

(
−ζ

1− ζ
(t− τ)ζ

)
dτ = θtθ−1

(
bx(t)z(t)− y(t)

2

)
.

AB(ζ)
1− ζ

d
dt

∫ t

0
z(τ)Eζ

(
−ζ

1− ζ
(t− τ)ζ

)
dτ = θtθ−1

(
cx(t)y(t)− 1− z(t)

2

)
.

For simplicity, we define:

A(t, x, y, z) = θtθ−1(y(t)− ax(t)). (10)

B(t, x, y, z) = θtθ−1bx(t)z(t)− y(t)
2

. (11)

C(t, x, y, z) = θtθ−1
(
−cx(t)y(t) +

1− z(t)
2

)
. (12)

Then, we will get

AB(ζ)
1− ζ

d
dt

∫ t

0
x(τ)Eζ

(
−ζ

1− ζ
(t− τ)ζ

)
dτ = A(t, x, y, z).

AB(ζ)
1− ζ

d
dt

∫ t

0
y(τ)Eζ

(
−ζ

1− ζ
(t− τ)ζ

)
dτ = B(t, x, y, z).

AB(ζ)
1− ζ

d
dt

∫ t

0
z(τ)Eζ

(
−ζ

1− ζ
(t− τ)ζ

)
dτ = C(t, x, y, z).

Applying the AB integral gives,

x(t)− x(0) =
1− ζ

AB(ζ)
A(t, x, y, z) +

ζ

AB(ζ)Γ(ζ)

∫ t

0
(t− τ)ζ−1 A(τ, x, y, z)dτ. (13)

y(t)− y(0) =
1− ζ

AB(ζ)
B(t, x, y, z) +

ζ

AB(ζ)Γ(ζ)

∫ t

0
(t− τ)ζ−1B(τ, x, y, z)dτ. (14)

z(t)− z(0) =
1− ζ

AB(ζ)
C(t, x, y, z) +

ζ

AB(ζ)Γ(ζ)

∫ t

0
(t− τ)ζ−1C(τ, x, y, z)dτ. (15)
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Further, we use the fixed point technique to prove the existence and the uniqueness of
a solution of the fractal-fractional differential Equations (7)–(9). It is well-known that the
Banach contraction principle, given by Banach in 1921, became an important tool used in
nonlinear analysis. Let us recall the Banach contraction principle.

Theorem 1 ([52]). Let (X, d) be a complete metric space and T : X → X a mapping. Assume that
there exists ξ ∈ (0, 1) such that:

d(Tx, Ty) ≤ ξd(x, y), for all x, y ∈ X. (16)

Then T has a unique fixed point.

Inspired by the works [53–55], in the following, we use the fixed point technique
to prove the existence and uniqueness of a solution of the fractal-fractional differential
Equations (13)–(15), which resume the initial fractal-fractional differential Equations (7)–(9).

Let us consider X = (C[0, η],R), with η > 0. Concerning geometrical aspects, we
remark that a fractal-fractional operator has different forms for the three axes, Ox, Oy and
Oz. Then, let us take into account a vectorial form of the Banach contraction principle,
considering the metric d : X× X → R3

+ defined as:

d̃(u1, u2) =

 ‖x1 − x2‖∞
‖y1 − y2‖∞
‖z1 − z2‖∞

 =


sup

t∈[0,η]
|x1(t)− x2(t)|

sup
t∈[0,η]

|y1(t)− y2(t)|

sup
t∈[0,η]

|z1(t)− z2(t)|

,

for ui, xi, yi, zi ∈ X, with i = {1, 2}.
Obviously, (X, d) it is a complete metric space. We must put in evidence the property

of symmetry of the metric d, which is a crucial property in view to obtain the existence of a
fixed point in a metric space.

Theorem 2. Let us consider the Equations (13)–(15), for every u1, u2 ∈ X, with θ > 0, and
AB(ζ)Γ(ζ) > θtθ−1a[(1− ζ)Γ(ζ) + tζ ]. Then, Equations (13)–(15) have a unique solution.

Proof. Since the fractal-fractional equations are presented for the three axes, Ox, Oy and
Oz, we will discuss, particularly, the existence of a solution of this differential equations for
the three axes. Then, if we think about the Lorenz equations, the axes describe the behavior
of the rate of change of three quantities with respect to time: the rate of convection, the
horizontal temperature variation, and the vertical temperature variation.

Then, let us consider the Equation (13), for the axis Ox,

x(t)− x(0) =
1− ζ

AB(ζ)
A(t, x, y, z) +

ζ

AB(ζ)Γ(ζ)

∫ t

0
(t− τ)ζ−1 A(τ, x, y, z)dτ.

Then, the other coordinates y and z, are considered constant, working on axis Ox. Let
us define the operator T : (C[0, η],R)→ (C[0, η],R) as:

Tx(t) = x(0) +
1− ζ

AB(ζ)
A(t, x, y, z) +

ζ

AB(ζ)Γ(ζ)

∫ t

0
(t− τ)ζ−1 A(τ, x, y, z)dτ.
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Next, for x1(t), x2(t) ∈ X we have the following estimation:

|Tx1(t)− Tx2(t)| = | 1−ζ
AB(ζ) A(t, x1, y, z) + ζ

AB(ζ)Γ(ζ)

∫ t
0 (t− τ)ζ−1 A(τ, x1, y, z)dτ

− 1−ζ
AB(ζ) A(t, x2, y, z)− ζ

AB(ζ)Γ(ζ)

∫ t
0 (t− τ)ζ−1 A(τ, x2, y, z)dτ|

≤ 1−ζ
AB(ζ) |A(t, x1, y, z)− A(t, x2, y, z)|

+ ζ
AB(ζ)Γ(ζ)

∫ t
0 (t− τ)ζ−1|A(τ, x1, y, z)− A(τ, x2, y, z)|dτ.

(17)

Using the definition (10), and considering that y and z are constant on axis Ox we get
the following relation:

|A(t, x1, y, z)− A(t, x2, y, z)| = |θtθ−1(y− ax1(t))− θtθ−1(y− ax2(t))|
≤ |θtθ−1[y− ax1(t)− y + ax2(t)]|
≤ θtθ−1a|x1(t)− x2(t)|.

Replacing the previous inequality in (17) and taking into consideration that sup
τ∈[0,t]

|x(τ)| =

|x(t)| we obtain the following:

|Tx1(t)− Tx2(t)| ≤ 1−ζ
AB(ζ) θtθ−1a|x1(t)− x2(t)|

+ ζθtθ−1a
AB(ζ)Γ(ζ)

∫ t
0 (t− τ)ζ−1|x1(τ)− x2(τ)|dτ

≤ (1−ζ)θtθ−1a
AB(ζ) |x1(t)− x2(t)|

+ ζθtθ−1a
AB(ζ)Γ(ζ) |x1(t)− x2(t)|

∫ t
0 (t− τ)ζ−1dτ

= (1−ζ)θtθ−1a
AB(ζ) |x1(t)− x2(t)|

+ ζθtθ−1a
AB(ζ)Γ(ζ)

tζ

ζ |x1(t)− x2(t)|

= θtθ−1a[(1−ζ)Γ(ζ)+tζ ]
AB(ζ)Γ(ζ) |x1(t)− x2(t)|.

(18)

Next, we will consider the Equation (14), for the axis Oy,

y(t)− y(0) =
1− ζ

AB(ζ)
B(t, x, y, z) +

ζ

AB(ζ)Γ(ζ)

∫ t

0
(t− τ)ζ−1B(τ, x, y, z)dτ.

In these conditions, the coordinates x and z are considered constant working on the
axis Oy. Then, we will consider the operator T : (C[0, η],R)→ (C[0, η],R) as follows:

Ty(t) = y(0) +
1− ζ

AB(ζ)
B(t, x, y, z) +

ζ

AB(ζ)Γ(ζ)

∫ t

0
(t− τ)ζ−1B(τ, x, y, z)dτ.

Next, for y1(t), y2(t) ∈ X we have the following estimation:

|Ty1(t)− Ty2(t)| = | 1−ζ
AB(ζ)B(t, x, y1, z) + ζ

AB(ζ)Γ(ζ)

∫ t
0 (t− τ)ζ−1B(τ, x, y1, z)dτ

− 1−ζ
AB(ζ)B(t, x, y2, z)− ζ

AB(ζ)Γ(ζ)

∫ t
0 (t− τ)ζ−1B(τ, x, y2, z)dτ|

≤ 1−ζ
AB(ζ) |B(t, x, y1, z)− B(t, x, y2, z)|

+ ζ
AB(ζ)Γ(ζ)

∫ t
0 (t− τ)ζ−1|B(τ, x, y1, z)− B(τ, x, y2, z)|dτ.

(19)

Using the definition (11), and considering x and z as two constant on axis Oy, we get:

|B(t, x, y1, z)− B(t, x, y2, z)| = |θtθ−1bxz− y1(t)
2
− θtθ−1bxz +

y2(t)
2
|

≤ 1
2
|y1(t)− y2(t)|.
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Replacing in (19) and using sup
τ∈[0,t]

|y(τ)| = |y(t)|, we obtain:

|Ty1(t)− Ty2(t)| ≤ 1−ζ
AB(ζ)

1
2 |y1(t)− y2(t)|

+ ζ
AB(ζ)Γ(ζ)

1
2

∫ t
0 (t− τ)ζ−1|y1(τ)− y2(τ)|dτ

≤ 1−ζ
AB(ζ)

1
2 |y1(t)− y2(t)|

+ ζ
AB(ζ)Γ(ζ)

1
2 |y1(t)− y2(t)|

∫ t
0 (t− τ)ζ−1dτ

= (1−ζ)
2AB(ζ) |y1(t)− y2(t)|

+ ζ
2AB(ζ)Γ(ζ)

tζ

ζ |y1(t)− y2(t)|

= (1−ζ)Γ(ζ)+tζ

2AB(ζ)Γ(ζ) |y1(t)− y2(t)|.

(20)

In the following, we will consider the Equation (15), for the axis Oz,

z(t)− z(0) =
1− ζ

AB(ζ)
C(t, x, y, z) +

ζ

AB(ζ)Γ(ζ)

∫ t

0
(t− τ)ζ−1C(τ, x, y, z)dτ.

In these conditions, the coordinates x and y are considered constant working on the
axis Oz. Then, we will consider the operator T : (C[0, η],R)→ (C[0, η],R) as follows:

Tz(t) = z(0) +
1− ζ

AB(ζ)
C(t, x, y, z) +

ζ

AB(ζ)Γ(ζ)

∫ t

0
(t− τ)ζ−1C(τ, x, y, z)dτ.

Next, for z1(t), z2(t) ∈ X we have the following estimation:

|Tz1(t)− Tz2(t)| = | 1−ζ
AB(ζ)C(t, x, y, z1) +

ζ
AB(ζ)Γ(ζ)

∫ t
0 (t− τ)ζ−1C(τ, x, y, z1)dτ

− 1−ζ
AB(ζ)C(t, x, y, z2)− ζ

AB(ζ)Γ(ζ)

∫ t
0 (t− τ)ζ−1C(τ, x, y, z2)dτ|

≤ 1−ζ
AB(ζ) |C(t, x, y1, z)− C(t, x, y2, z)|

+ ζ
AB(ζ)Γ(ζ)

∫ t
0 (t− τ)ζ−1|C(τ, x, y, z1)− C(τ, x, y, z2)|dτ.

(21)

Using the definition (12), and considering x and y as two constant on axis Oz, we get:

|C(t, x, y, z1)− C(t, x, y, z2)| = |θtθ−1(cxy− 1− z1(t)
2

)− θtθ−1(cxy− 1− z2(t)
2

)|

= |θtθ−1(cxy− 1− z1(t)
2

− cxy +
1− z2(t)

2
)|

≤ θtθ−1

2
|z1(t)− z2(t)|.

Replacing in (21) and using sup
τ∈[0,t]

|z(τ)| = |z(t)| we obtain:

|Tz1(t)− Tz2(t)| ≤ 1−ζ
AB(ζ)

θtθ−1

2 |z1(t)− z2(t)|
+ ζ

AB(ζ)Γ(ζ)
θtθ−1

2

∫ t
0 (t− τ)ζ−1|z1(τ)− z2(τ)|dτ

≤ 1−ζ
AB(ζ)

θtθ−1

2 |z1(t)− z2(t)|
+ ζ

AB(ζ)Γ(ζ)
θtθ−1

2 |z1(t)− z2(t)|
∫ t

0 (t− τ)ζ−1dτ

= (1−ζ)θtθ−1

2AB(ζ) |z1(t)− z2(t)|

+ ζθtθ−1

2AB(ζ)Γ(ζ)
tζ

ζ |z1(t)− z2(t)|

= θtθ−1[(1−ζ)Γ(ζ)+tζ ]
2AB(ζ)Γ(ζ) |z1(t)− z2(t)|.

(22)
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Since AB(ζ)Γ(ζ) > θtθ−1a[(1− ζ)Γ(ζ) + tζ ], then it is obviously 2AB(ζ)Γ(ζ) > (1−
ζ)Γ(ζ) + tζ and 2AB(ζ)Γ(ζ) > θtθ−1[(1− ζ)Γ(ζ) + tζ ]. In these conditions, we have:

 |Tx1(t)− Tx2(t)|
|Ty1(t)− Ty2(t)|
|Tz1(t)− Tz2(t)|

 ≤


θtθ−1a[(1−ζ)Γ(ζ)+tζ ]
AB(ζ)Γ(ζ) |x1(t)− x2(t)|
(1−ζ)Γ(ζ)+tζ

2AB(ζ)Γ(ζ) |y1(t)− y2(t)|
θtθ−1[(1−ζ)Γ(ζ)+tζ ]

2AB(ζ)Γ(ζ) |z1(t)− z2(t)|

.

Taking supremum over t ∈ [0, η] and consider ξ ∈ (0, 1) such that

ξ = max{ θtθ−1a[(1− ζ)Γ(ζ) + tζ ]

AB(ζ)Γ(ζ)
,
(1− ζ)Γ(ζ) + tζ

2AB(ζ)Γ(ζ)
,

θtθ−1[(1− ζ)Γ(ζ) + tζ ]

2AB(ζ)Γ(ζ)
},

for ui, xi, yi, zi ∈ X, with i = {1, 2}, we can write:

d̃(Tu1, Tu2) =

 ‖Tx1 − Tx2‖∞
‖Ty1 − Ty2‖∞
‖Tz1 − Tz2‖∞

 ≤


θtθ−1a[(1−ζ)Γ(ζ)+tζ ]
AB(ζ)Γ(ζ) ‖x1 − x2‖∞
(1−ζ)Γ(ζ)+tζ

2AB(ζ)Γ(ζ) ‖y1 − y2‖∞
θtθ−1[(1−ζ)Γ(ζ)+tζ ]

2AB(ζ)Γ(ζ) ‖z1 − z2‖∞

 ≤ ξ d̃(u1, u2).

Then, using the Banach contraction principle—Theorem 1—we prove the existence
and the uniqueness of a solution for the fractal-fractional differential Equations (13)–(15),
respectively for the initial fractal-fractional differential Equations (7)–(9).

Remark 1. Another simple way to prove the existence and the uniqueness of a solution for the
fractal-fractional differential Equations (7)–(9) is to consider for each axis Ox, Oy and Oz the
previous equations as:

FFM
a Dζ,θ

t u(t) + f (t, u(t))) = 0; t ∈ [0, n], with n ∈ R+, (23)

with the boundary conditions u(0) = 0 = u(1), where u(t) = {x(t), y(t), z(t)} ∈ C([0, n],R)
with n ∈ R+ and C([0, n],R) is the set of all continuous functions from [0, n] to R and f :
[0, n]×R→ R is a continuous function.

Further, we can consider a Green function associated with the problem (23), such as, for
example, the following:

G(t, s) =

{
(t(1− s))α−1 − (t− s)α−1 if 0 ≤ s ≤ t ≤ 1
(t(1−s))α−1

Γ(α) , if 0 ≤ t ≤ s ≤ 1.

We define an operator T : C([0, n],R)→ C([0, n],R) such that

Tx(t) =
∫ n

0
G(t, s)g(s, x(s))ds, for all t ∈ [0, n].

Then, with a suitable norm defined on the complete metric space X = C([0, n],R), under
suitable hypothesis and applying Banach contraction principle (1), we get the existence of a fixed
point for the Equation (23), which means a unique solution of the fractal-fractional differential
Equations (7)–(9).

Remark 2. We have chosen to present the existence of a unique solution of the fractal-fractional differ-
ential Equations (7)–(9) by Theorem 2 using the last form of them, respectively the Equations (13)–(15)
evidence the connection between the fractal-differential equations and the Malkus Waterwheel model.
We also followed the physical importance of the three axes of the Lorenz system of equations. We
consider that, even if the proof of Theorem 2 it is a laborious one, it is a new approach of fixed point
technique in fractal-differential calculus that summarize the mathematical and the physical processes of
the proposed model for study, Malkus Waterwheel model.
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4. Numerical Method

We discretize (13)–(15) at tn+1 as:

xn+1 = x0 +
1− ζ

AB(ζ)
A(tn+1, xn, yn, zn)

+
ζ

AB(ζ)Γ(ζ)

∫ tn+1

0
(tn+1 − τ)ζ−1 A(τ, x, y, z)dτ.

yn+1 = y0 +
1− ζ

AB(ζ)
B(tn+1, xn, yn, zn)

+
ζ

AB(ζ)Γ(ζ)

∫ tn+1

0
(tn+1 − τ)ζ−1B(τ, x, y, z)dτ.

zn+1 = z0 +
1− ζ

AB(ζ)
C(tn+1, x, y, z)

+
ζ

AB(ζ)Γ(ζ)

∫ tn+1

0
(t− τ)ζ−1C(τ, x, y, z)dτ.

Then, we obtain [19]:

xn+1 = x0 +
1− ζ

AB(ζ)
A(tn+1, xn, yn, zn)

+
ζ

AB(ζ)

n

∑
j=0

[
hζ A(tj, xn, yn, zn)

Γ(ζ + 2)

(
(n + 1− j)ζ(n− j + 2 + ζ)− (n− j)ζ(n− j + 2 + 2ζ)

)]

− ζ

AB(ζ)

n

∑
j=0

[
hζ A(tj−1, xn−1, yn−1, zn−1)

Γ(ζ + 2)

(
(n + 1− j)ζ+1 − (n− j)ζ(n− j + 1 + ζ)

)]
.

yn+1 = y0 +
1− ζ

AB(ζ)
B(tn+1, xn, yn, zn)

+
ζ

AB(ζ)

n

∑
j=0

[
hζ B(tj, x, yn, z

Γ(ζ + 2)

(
(n + 1− j)ζ(n− j + 2 + ζ)− (n− j)ζ(n− j + 2 + 2ζ)

)]

− ζ

AB(ζ)

n

∑
j=0

[
hζ B(tj−1, xn−1, yn−1, zn−1)

Γ(ζ + 2)

(
(n + 1− j)ζ+1 − (n− j)ζ(n− j + 1 + ζ)

)]
.

zn+1 = z0 +
1− ζ

AB(ζ)
C(tn+1, xn, yn, zn)

+
ζ

AB(ζ)

n

∑
j=0

[
hζC(tj, xn, yn, zn)

Γ(ζ + 2)

(
(n + 1− j)ζ(n− j + 2 + ζ)− (n− j)ζ(n− j + 2 + 2ζ)

)]

− ζ

AB(ζ)

n

∑
j=0

[
hζC(tj−1, xn−1, yn−1, zn−1)

Γ(ζ + 2)

(
(n + 1− j)ζ+1 − (n− j)ζ(n− j + 1 + ζ)

)]
.

We can construct the similar process with power-law and exponential decay kernel.

5. Computational Simulations

In this section, we present the numerical simulations of the model. When we change
the parameters and the initial conditions, we will get different simulations. We take the
fractal dimension 1 in some figures and 0.9 in other ones. In the simulations, we can see
the difference between the kernels and we draw the effect of the fractional-order and the
fractal dimension.

In the next Figures 3–23, we will give the computational simulations of different values
of the fractional order and fractal dimension. We will demonstrate the power-law kernel
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in Figures 3–8, the exponential-decay kernel in Figures 9–14, the Mittag–Leffler kernel in
Figures 15–20. We want to highlight the effect of the fractal dimension in Figures 24–26.
In Figures 27–29, we will draw the chaotic behavior of the solutions for different fractal
dimensions. The initial conditions are: x(0) = 0.51, y(0) = 0.60407, z(0) = 0.07 and
a = b = c = 1 in all figures.
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Figure 3. Numerical simulation for different values of ζ and θ = 1.
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Figure 4. Numerical simulation for different values of ζ and θ = 1.
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Figure 5. Numerical simulation for different values of ζ and θ = 1.
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Figure 6. Numerical simulation for different values of ζ and θ = 0.9.
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Figure 7. Numerical simulation for different values of ζ and θ = 0.9.
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Figure 8. Numerical simulation for different values of ζ and θ = 0.9.
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Figure 9. Numerical simulation for different values of ζ and θ = 1.
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Figure 10. Numerical simulation for different values of ζ and θ = 1.
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Figure 11. Numerical simulation for different values of ζ and θ = 1.
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Figure 12. Numerical simulation for different values of ζ and θ = 0.9.
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Figure 13. Numerical simulation for different values of ζ and θ = 0.9.

0 20 40 60 80 100 120

t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

z
(t

)

Proposed Method

=1.0

=0.95

=0.90

=0.85

Figure 14. Numerical simulation for different values of ζ and θ = 0.9.
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Figure 15. Numerical simulation for different values of ζ and θ = 1.
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Figure 16. Numerical simulation for different values of ζ and θ = 1.
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Figure 17. Numerical simulation for different values of ζ and θ = 1.
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Figure 18. Numerical simulation for different values of ζ and θ = 0.9.



Symmetry 2022, 14, 2220 20 of 28

0 20 40 60 80 100 120

t

0.35

0.4

0.45

0.5

0.55

0.6

0.65

y
(t

)

Proposed Method

=1.0

=0.95

=0.90

=0.85

Figure 19. Numerical simulation for different values of ζ and θ = 0.9.
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Figure 20. Numerical simulation for different values of ζ and θ = 0.9.
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Figure 21. Numerical simulation for different values of ζ and θ = 1.0.
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Figure 22. Numerical simulation for different values of ζ and θ = 1.0.
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Figure 23. Numerical simulation for different values of ζ and θ = 1.0.
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Figure 24. Numerical simulation for different values of θ and ζ = 1.0.
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Figure 25. Numerical simulation for different values of θ and ζ = 1.0.
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Figure 26. Numerical simulation for different values of θ and ζ = 1.0.

Next, we will consider an x-y-z plot for the above figure.
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Figure 27. Numerical simulation for different values of θ = 1 and ζ = 1.0.

Figure 28. Numerical simulation for different values of θ = 0.9 and ζ = 1.0.

Figure 29. Numerical simulation for different values of θ = 0.8 and ζ = 1.0.

6. Discussions and Conclusions

We analyzed the Malkus Waterwheel model with the fractal-fractional derivative in
this manuscript. We used the Banach contraction principle to prove the existence and
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uniqueness of a solution of the fractal-fractional model. We discretized the model and
used the Lagrange polynomial to construct an effective numerical technique. Then, we
demonstrated the numerical simulations by some figures. We used three different kernels
(power-law, exponential-decay and Mittag–Leffler) in the proposed model.

Using the numerical simulations, we obtained some figures, discussing some aspects
concerning the fractional orders of the Malkus model. Thinking about the physical interpre-
tation of the Malkus waterwheel model, its pattern vertical rotation of a cylindrical wheel
encloses a number of discrete water cups. Then, we have here a moving system and the
motion was described on the three directions, Ox, Oy, Oz. We studied the behavior of it on
time, using the Lorenz equations system. Actually, in our study, the Malkus model that is
a Lorenz-like system of equations, is given as a system of nonlinear ordinary differential
equations. As long as our parameters have small values then our system of waterwheels
goes to the state of rest, without any motion. Then, the fractional order goes to very small
values, tending to values close to 0 too.

In Figures 3–23, we demonstrate the numerical simulations of different values of
the fractional order and fractal dimension. We demonstrate the power-law kernel in
Figures 3–8, the exponential-decay kernel in Figures 9–14, the Mittag–Leffler kernel in
Figures 15–20. Additionally, we demonstrate the numerical simulations for small values
of fractional order in Figures 21–23. We can see the effect of the fractal dimension in
Figures 24–26. In Figures 27–29, we demonstrate the chaotic behavior of the solutions for
different fractal dimensions. In these figures, we can see the effect of the fractional-order
and the fractal dimension. We used initial conditions of: x(0) = 0.51, y(0) = 0.60407,
z(0) = 0.07 and a = b = c = 1 in all figures. In the last one case we considered an x-y-z
plot. Additionally, we investigated the effect of the fractal dimension for this three different
kernels. It is well-known that fractional operators with different memory are related to the
different types of relaxation process of the non-local dynamical systems.

We have chosen to characterize the Malkus Waterwheel model using a fractal-fractional
operator, giving it a symmetric interpretation, because the fractional operators with different
memory are related to the different type of relaxation process of the non-local dynamical
systems. A fractal-fractional case helps us to capture the crossover behavior.

Open Questions

Taking into account the analysis of the existence of a unique solution and considering
the fractional functional structure of the solution of the model here presented, it would
be very interesting to see similar investigations in future works, devoted to differential
fractional problems and treating this problem in more motivated sophisticated functional
spaces as Holder space, Schauder space, Hilbert space, etc. We consider that such a supple-
mentary analysis, would deliver some properties of the solution set and its dependence on
the fractional derivative parameters.

Concerning the statistical analysis of experimental data, a variety of statistical tests
are used to assess the concordance between theoretical probabilistic models and measured
data. The Kolmogorov–Smirnov test is a statistical order that applies only to continuous
distributions [56]. Connecting with the classical statistic tests, Pearson’s Chi Square is an
alternative to the Kolmogorov–Smirnov test. Moreover, the Kolmogorov–Smirnov test
is a special case since its value it is based on physical process [57,58]. The Kolmogorov
distribution corresponds to the distribution of the arbitrary variable K = sup

t∈[0,1]
|B(t)|, where

B(t) is the Brownian bridge [57]. Very interesting results can be obtained, establishing new
connections with statistics by applying the Kolmogorov–Smirnov test of the symmetric
Malkus Waterwheel model discussed here.



Symmetry 2022, 14, 2220 26 of 28

Author Contributions: Conceptualization, E.K.A., A.A. and L.G.; methodology, A.A.; software,
E.K.A.; validation, E.K.A., A.A. and M.-F.B.; formal analysis, L.G.; investigation, E.K.A.; resources,
M.-F.B.; writing—original draft preparation, E.K.A., A.A.; writing—review and editing, E.K.A., L.G.;
visualization, M.-F.B.; supervision, M.-F.B., A.A.; project administration, A.A.; funding acquisition,
M.-F.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Acknowledgments: The publication of this article was supported by the 2020 Development Fund
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