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Abstract: The adaptive cubic regularization method solves an unconstrained optimization model by
using a three-order regularization term to approximate the objective function at each iteration. Similar
to the trust-region method, the calculation of the sub-problem highly affects the computing efficiency.
The Lanczos method is an useful tool for simplifying the objective function in the sub-problem. In
this paper, we implement the adaptive cubic regularization method with the aid of the Lanczos
method, and analyze the error of Lanczos approximation. We show that both the error between
the Lanczos objective function and the original cubic term, and the error between the solution of
the Lanczos approximation and the solution of the original cubic sub-problem are bounded up
by the condition number of the optimal Hessian matrix. Furthermore, we compare the numerical
performances of the adaptive cubic regularization algorithm when using the Lanczos approximation
method and the adaptive cubic regularization algorithm without using the Lanczos approximation
for unconstrained optimization problems. Numerical experiments show that the Lanczos method
improves the computation efficiency of the adaptive cubic method remarkably.

Keywords: adaptive cubic regularization sub-problem; Lanczos method; large-scale optimization;
Krylov subspaces

1. Introduction

For the unconstrained optimization problem

min
x∈Rn

f (x),

Cartis et al. [1] proposed an adaptive cubic regularization (ACR) algorithm. It is an
alternative to classical globalization techniques, which uses a cubic over-estimator of the
objective function as a regularization technique, and uses an adaptive parameter σ to replace
the Lipschitz constant in the cubic Taylor-series model. At each iteration, the objective
function is approximated by a cubic function. Numerical experiments in [1] show that the
ACR is comparable with trust-region method for small-scale problems. Despite the fact
that the method has been shown to have powerful local and global convergence properties,
the practicality and efficiency of the adaptive cubic regularization method depend critically
on the efficiency of solving its sub-problem at each iteration.

For solving the trust-region sub-problem, many efficient algorithms have been pro-
posed. These algorithms can be grouped into three broad categories: the accurate methods
for dense problems, the accurate methods for large-sparse problems, and the approximation
methods for large-scale problems. The first category are the accurate methods for dense
problems, such as the classical algorithm proposed by Moré and Sorensen [2], which used
Newton’s method to iteratively solve symmetric positive definite linear systems via the
Cholesky factorization. The second category are the accurate methods for large-sparse
problems. For instance, the Lanczos method was employed to solve the large-scale trust-
region sub-problem through a parameterized eigenvalue problem [3,4]. Another accurate
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approach [5], is based on a parametric eigenvalue problem within a semi-definite frame-
work, which employed the Lanczos method for the smallest eigenvalue as a black box.
Hager [6] and Erway et al. [7] utilized the subspace projection algorithms for accurate
methods. The third category are the approximation methods for large-scale problems.
The generalized Lanczos trust-region method (GLTR) [8,9] was proposed as an improved
Steihaug [10]-Toint [11] conjugate-gradient method. For the GLTR method, Zhang et al. es-
tablished prior upper bounds [12] and posterior error bounds [13] for the optimal objective
value and the optimal solution between the original trust-region sub-problem and their
projected counterparts.

For solving cubic models sub-problems, many algorithms are extensions of trust-region
algorithms. Cartis et al. [1] provided the Newton’s method to solve the sub-problem of
ACR, which employs Cholesky factorization at each iteration. This method usually applies
to small-scale problems. Moreover, Cartis et al. briefly described the process of using
the Lanczos method for the ACR sub-problem in [1]. Carmon and Duchi [14] provided
the gradient descent method to approximate the cubic-regularized Newton step, and gave
the convergence rate. However, the convergence rate of the gradient descent method is
worse than that of the Krylov subspace method. Birgin et al. [15] proposed a Newton-like
method for unconstrained optimization, whose sub-problem is similar to but different
from that of ACR. They introduced a mixed factorization, which is a cheaper factorization
than the Cholesky factorization. Brás et al. [16] used the Lanczos method efficiently to
solve the sub-problems associated with a special type of cubic models, and also embedded
the Lanczos method in a large-scale trust-region strategy. Furthermore, an accelerated
first-order method for the ACR sub-problem was developed by Jiang et al. [17].

In this paper, we employ the Lanczos method to solve the sub-problem of the adaptive
cubic regularization method (ACRL) for large-scale problems. The ACRL algorithm mainly
includes the following three steps. Firstly, the ACRL generates the jth Krylov subspace
using the Lanczos method. Next, we project the original sub-problem onto the jth Krylov
subspace to obtain a smaller-sized sub-problem. Finally, we solve the resulting smaller-
sized sub-problem to get an approximate solution. Such procedures are based on the
minimization of the local model of the objective function over a sequence of small-sized
sub-spaces. As a result, the ACRL is applicable for large-scale problems. Moreover, we
analyze the error of the Lanczos approximation. For unconstrained optimization problems,
we perform numerical experiments and compare our method with the method of not using
the Lanczos approximation (ACRN).

The outline of this paper is as follows. In Section 2, we introduce the adaptive
cubic regularization method and its optimality condition. The method using the Lanczos
algorithm to solve the ACR sub-problem is introduced in Section 3. In Section 4, we show
the error bounds of the approximate solution and approximate objective value obtained
using the ACRL method. Numerical experiments demonstrating the efficiency of the
algorithm are given in Section 5. Finally, we give some concluding remarks in Section 6.

2. Preliminaries

Throughout the paper, a matrix is represented by a capital letter, while a lower case
bold letter is used for a vector and a lower case letter for a scalar.

The adaptive cubic regularization method [1,18] is proposed by Cartis et al. for
unconstrained optimization problems. It mainly uses a cubic over-estimator of the objective
function as a regularization technique to calculate the step at each iteration. Assuming that
xk is the current iteration point, the objective function f (x) is second-order continuously
differentiable, and its Hessian matrix H(x) = ∇xx f (x) is globally Lipschitz continuous.
For any p ∈ Rn, by expressing the Taylor expansion of f (xk + p) at the point xk, we obtain

f (xk + p) = f (xk) + pTg(xk) +
1
2

pT H(xk)p +
∫ 1

0
(1− t)pT [H(xk + tp)− H(xk)]pdt

≤ f (xk) + pTg(xk) +
1
2

pT Hkp +
1
6

L‖p‖3, (1)
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where g(x) = ∇x f (x), H(x) = ∇xx f (x), and L is the Lipschitz constant. Here, and for
the remainder of this paper, ‖ · ‖ denotes an l2 norm. The inequality is obtained by using
the Lipschitz property of ∇xx f (x). In [1], Cartis et al. proposed to replace the constant 1

2 L
in Equation (1) with a dynamic positive parameter σk. In the cubic regularization model,
the matrix H(x) needs not to be globally or locally continuous in general. Furthermore,
the approximation of H(x) by a symmetric matrix Bk is employed at each iteration. There-
fore, the model

min mk(p) := f (xk) + pTg(xk) +
1
2

pT Bkp +
1
3

σk‖p‖3 (2)

is used to estimate f (xk) at each iteration. Then, the adaptive cubic regularization method
sub-problem aims to compute a descent direction vector p. Finally, the sub-problem is
given with the form of

min qk(p) := pTgk +
1
2

pT Bkp +
1
3

σk‖p‖3, (3)

in which gk is short for g(xk).
Cartis et al. introduced the following global optimality result of ACR, which is similar

to the optimality conditions of the trust-region method.

Theorem 1 ([1], Theorem 3.1). The vector popt is a global minimizer of the sub-problem (3) if and
only if there is a scalar λopt ≥ 0 satisfying the following system of equations:

(Bk + λopt I)popt = −gk, (4)

where λopt = σk‖popt‖, and Bk + λopt I is a positive semi-definite matrix. If Bk + λopt I is positive
definite, then popt is unique.

The optimality condition of the trust-region sub-problem [19] aims to minimize gT
k p +

1
2 pT Bkp within an l2-norm trust region ‖p‖ ≤ 4k, where4k > 0 is the trust-region radius.
For a trust-region sub-problem, the vector popt satisfies λopt(4k − ‖popt‖) = 0, which
means either λopt = 0 or ‖popt‖ = 4k. When both the trust-region sub-problem and the
cubic regularization sub-problem approximate the original objective function precisely
enough, we get 4k = λopt/σk from Theorem 1. Therefore, the parameter σk in the ACR
algorithm is inversely proportional to the trust-region radius, and it plays the same role as
the trust region-radius, while we adjust the estimation accuracy of the sub-problem.

3. Computation of the ACR Sub-Problem with the Lanczos Method

The Lanczos algorithm [20] was proposed to solve sparse linear systems and to find
the eigenvalues of sparse matrices. It builds up an orthogonal basis Qj = {q0, q1, . . . , qj}
for the Krylov space Kj(B, g) := {g, Bg, B2g, . . . , Bjg}. By utilizing the orthogonal basis Qj,
the original symmetric matrix B is transformed into a tridiagonal matrix.

Normally, the dimension of the Kj(B, g) increases by 1 as j increases by 1. However,
the Lanczos process may break down and the dimension of Kj(B, g) stops increasing at a
certain j. We define jmax as the smallest nonnegative integer, such that the Lanczos process
breaks down. If the dimension of the Krylov space is much less than the size of the matrix,
it greatly saves the storage space and highly improves the calculation speed by projecting
B onto a j + 1 subspace. Specially, we find a proper Qj using the Lanczos method, such that
QT

j BQj = Tj is tridiagonal. We state the procedure in the following algorithm.
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Algorithm 1 computes an orthogonal matrix Qj = [q0, q1, . . . , qj] ∈ Rn×(j+1), where

Tj =



α0 β1

β1 α1
. . .

. . . . . . . . .
. . . . . . β j−1

β j−1 αj


is tridiagonal. Moreover, it follows directly from Algorithm 1 that

QT
j Qj = I, Tj = QT

j BQj, QT
j g = β0e1, (5)

where e1 is the first unit vector of j + 1 in length.

Algorithm 1 Lanczos algorithm

1: j = 0, β0 = ‖g‖, r0 = g, q0 = r0/‖r0‖
2: while j = 0 or β j 6= 0 do
3: qj+1 = rj/β j
4: j = j + 1
5: αj = qT

j Bqj

6: rj = (B− αj I)qj − β j−1qj−1
7: β j = ‖rj‖
8: end while

For a large-scale trust-region sub-problem, an effective solution is to approximately
calculate it using the Krylov subspace methods. The Lanczos algorithm, as one of the
Kryolv subspace methods, was first introduced in [8] for the trust-region method. Similar
to the trust-region method, the Lanczos algorithm is also suitable for solving the cubic
regularization sub-problem. By employing Algorithm 1, we find

pk
j = Qk

j uk
j := arg min

p∈Kj(Bk ,gk)

qk(p) ∈ Kj(Bk, gk), (6)

where qk(p) is defined by (3). The original sub-problem (3) is transformed into the following
sub-problem

min qk(u) := β0uTe1 +
1
2

uTTju +
1
3

σk‖u‖3
2. (7)

Theorem 1 illustrates that u is a global minimizer of the above sub-problem, if and
only if a pair of (u, λ) satisfies

(Tj + λI)u = −β0e1 and λ2 = σ2
k uTu, (8)

where Tj + λI is positive semi-definite. Equation (8) can finally be solved by Newton’s
method ([1], Algorithm 6.1). Newton’s method for solving the sub-problem requires the
eigenvalue decomposition of B + λI for various λ. When the scale of the original problem
is large, it is very expensive to directly use the iterative method.

In summary, an approximation pk
j of the solution of the ACR sub-problem (3) can be

obtained in the following steps. First, we apply j steps of the Lanczos method to the cubic
function appearing in (3) to obtain a tridiagonal matrix Tj. Then, we use the Newton’s
method for a small-size sub-problem with matrix Tj to compute the Lagrange multiplier
λk and uk

j . Finally, the matrix Qj is used to recover pk
j . Thus, it should be noted that the

Lanczos vectors need to be saved. We sketch the algorithm as follows.
In the GLTR algorithm, ([8], Theorem 5.8) discussed a restarting strategy for the

degenerate case, which means that multiple global solutions popt exist. Similar to the
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GLTR, a restarting strategy also applies to the ACRL, although this is just discussed from
a theoretical perspective. Therefore, we mainly consider the nondegenerate case in the
following analysis.

4. Convergence Analysis

Theorem 1 shows that we aim to seek a pair of (popt, λopt) satisfying

(Bk + λopt I)popt = −gk and λopt = σk‖popt‖. (9)

Then, we have ‖popt‖ = λopt/σk. In this section, we will analyze the error between the
optimal objective function value of the original sub-problem qk(popt) and the the optimal
objective function value qk(pk

j ) of the sub-problem in the subspace Kj(Bk, gk) generated by

the Algorithm 2, as well as the distance between popt and pk
j under the assumption σk > 0

when the Equation (9) was satisfied.

Algorithm 2 The ACRL method

1: for j = 0 . . . do
2: Obtain Tj and Qj from Algorithm 1
3: Solve the tridiagonal sub-problem (7) to get uk

j by Newton’s method

4: pk
j = Qjuk

j
5: j = j + 1
6: end for

We set
Bopt

k := Bk + λopt I, (10)

which is positive definite in the nondegenerate case. The spectral condition number of
Bopt

k is

κ(Bopt
k ) =

θn + λopt

θ1 + λopt
, (11)

where θ1 ≤ θ2 ≤ ... ≤ θn are the eigenvalues of Bk. We define

qopt
k (p) :=

1
2

pT Bopt
k p + pTgk +

1
3

σk‖p‖3 = qk(p) +
1
2

λopt‖p‖2, (12)

in which qk(p) is defined by (3).
Next, for the vector pk

j defined in (6), we analyze the errors

‖pk
j − popt‖ and |qk(p

k
j )− qk(popt)|.

Theorem 2. Suppose (3) is nondegenerate; ‖popt‖ = λopt/σk and pk
j is the jth approximation

of popt generated by ACRL satisfying ‖pk
j ‖ = λopt/σk, then for any nonzero p̃ ∈ Kj(Bk, gk),

we have
0 ≤ qk(p

k
j )− qk(popt) ≤ 2‖Bopt

k ‖‖p̃− popt‖2 (13)

and
‖pk

j − popt‖ ≤ 2κ(Bopt
k )‖p̃− popt‖. (14)

Proof. It can be seen that |‖p̃‖ − λopt
σk
| = |‖p̃‖ − ‖popt‖| ≤ ‖p̃− popt‖. Then, we obtain∣∣∣∣1− λopt

σk‖p̃‖

∣∣∣∣ ≤ ‖p̃− popt‖
‖p̃‖ . (15)
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Let s = v− popt, where

v =
λopt

σk
· p̃
‖p̃‖ . (16)

Based on (16), we obtain

‖v‖ = ‖popt‖ =
λopt

σk
. (17)

We immediately have

‖s‖ = ‖popt − v‖ ≤ ‖popt − p̃‖+ ‖p̃− v‖

= ‖popt − p̃‖+
∥∥∥∥p̃−

λopt

σk
· p̃
‖p̃‖

∥∥∥∥
≤ ‖popt − p̃‖+ ‖p̃‖

∣∣∣∣1− λopt

σk‖p̃‖

∣∣∣∣
≤ 2‖popt − p̃‖, (18)

where the last equality follows from (15).
Furthermore, for any 0 ≤ i ≤ jmax − 1,

qk(p
k
i ) = min

p∈Ki(Bk ,gk)
qk(p) ≥ qk(p

k
i+1) = min

p∈Ki+1(Bk ,gk)
qk(p) ≥ qk(popt) = min qk(p).

Therefore, we have

0 ≤ qk(p
k
j )− qk(popt) ≤ qk(v)− qk(popt) = qk(s + popt)− qk(popt)

=
1
2

sT Bks + sT(Bkpopt + gk) +
1
3

σk(‖v‖3 − ‖popt‖3)

=
1
2

sT Bks− λoptsTpopt
(

by (17) and (9)
)

=
1
2

sT(Bk + λopt I)s (19)

≤
‖Bopt

k ‖
2
‖s‖2 ≤ 2‖Bopt

k ‖‖p̃− popt‖2 (
by (18)

)
. (20)

From

(
λopt

σk
)2 = ‖v‖2 = ‖s‖2 + ‖popt‖2 + 2sTpopt

and (17), we get sTpopt = −‖s‖2/2 = −sTs/2. Then, the equality (19) holds. The conclu-
sion in (13) is given based on the above analysis.

Next, we prove the inequality (14). From the definition of qopt
k in (12), for any pk

j ,

by ‖popt‖ = ‖pk
j ‖, we have

qopt
k (pk

j )− qopt
k (popt) =

(
qk(p

k
j ) +

1
2

λopt‖pk
j ‖2
)
−
(

qk(popt) +
1
2

λopt‖popt‖2
)

= qk(p
k
j )− qk(popt). (21)

Furthermore, we obtain

qopt
k (pk

j )− qopt
k (popt) =

1
2
(pk

j )
T Bopt

k pk
j + (pk

j )
Tgk −

1
2

pT
optB

opt
k popt − pT

optgk

=
1
2
(pk

j − popt)
T Bopt

k (pk
j − popt),
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where the last equality follows from (9) and (10). Then,

qopt
k (pk

j )− qopt
k (popt) ≥

1
2
(θ1 + λopt)‖pk

j − popt‖2. (22)

Combining (13), (21), and (22), we get

1
2
(θ1 + λopt)‖pk

j − popt‖2 ≤ qk(p
k
j )− qk(popt) ≤ 2‖Bopt

k ‖‖p̃− popt‖2.

The inequality (14) holds.

5. Numerical Experiments

In order to show the efficiency of the Lanczos for improving the adaptive cubic regular-
ization algorithm, we perform the following two numerical experiments. In this section, we
compare the numerical performances of the adaptive cubic regularization algorithm when
using the Lanczos approximation method (ACRL) and the adaptive cubic regularization al-
gorithm by just using Newton’s method (ACRN) for unconstrained optimization problems.

The ACRL and ACRN algorithms are implemented with the following parameters

η1 = 0.1, η2 = 0.8, γ1 = 0.25, γ2 = 1.2, and γ3 = 2.

Convergence in both algorithms for the sub-problem occurs as soon as

‖∇qk(p
k
j )‖ ≤ min

(
0.0001,

‖pk
j ‖

max(1, σk)

)
‖∇qk(0)‖

or if more than the maximum number of iterations has been performed, which we set to
2000. All numerical experiments in this paper were performed on a laptop with i5-10210U
CPU at 1.60 GHz and 16.0 GB of RAM.

Example 1 (Generalized Rosenbrock function [21]). The Generalized Rosenbrock function is a
non-convex function, introduced by Howard H. Rosenbrock in 1960, which is defined as follows:

f (x) =
n−1

∑
i=1

c(xi+1 − x2
i )

2 + (1− xi)
2, c = 100. (23)

From the (23), the solution x? is obviously (1, 1, . . . , 1)T , and the minimum f (x?) = 0.
In Table 1, we show the results of the ACRL and the ACRN for computing the minima

of the Generalized Rosenbrock function, with variables from 10 to 2000. In addition to
the dimensions of the Generalized Rosenbrock function, we give the number of iterations
(“Iter.”), the total CPU time required in seconds and the relative error between the com-
putational result and the exact minimum (“Err.”). It can be seen that, using the Lanczos
method to solve the adaptive cubic regularization sub-problem of Generalized Rosenbrock
function is much more efficient than not using the Lanczos method. Moreover, it is not only
faster, but also more accurate to calculate, especially when the scale is relatively large.

Example 2 (Eigenvalues of tensors arising from hypergraphs). Next, we consider the problem
of computing extreme eigenvalues of sparse tensors arising from a hypergraph. An adaptive cubic
regularization method on a Stiefel manifold named ACRCET is proposed to solve the eigenvalues of
tensors [22]. We compare the numerical performances of the ACRL and the ACRN method when
applying to the sub-problem of ACRCET. Before going to the experiment part, we first introduce the
concepts of tensor eigenvalues and hypergraphs.
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Table 1. Results for computing the minima of the Generalized Rosenbrock function.

nnn ACRL ACRN
Iter. Time (s) Err. Iter. Time (s) Err.

10 11 0.01 4.05 × 10−14 8 0.01 4.85 × 10−11

500 17 0.05 8.33 × 10−13 12 0.88 1.10 × 10−13

1000 21 0.27 7.35 × 10−13 12 4.56 5.53 × 10−11

5000 23 6.24 1.47 × 10−15 9 191.95 1.41 × 10−12

10,000 21 20.33 2.42 × 10−15 11 1524.88 6.29 × 10−13

20,000 21 77.8 6.90 × 10−13 14 16,166.62 3.03 × 10−11

A real mth order n-dimensional tensor A ∈ R[m,n] has nm entries:

{ai1i2···im}

for ij ∈ {1, 2, · · · , n} and j ∈ {1, 2, · · · , m}. If the value of {ai1i2···im} is invariable under
any permutation of its indices, A is a symmetric tensor.

Qi [23] defined a scalar Λ ∈ R as a Z-eigenvalue of A and a nonzero vector x ∈ Rn as
its associated Z-eigenvector if they satisfy

Axm−1 = Λx and xTx = 1.

Definition 1 (Hypergraph). A hypergraph is defined as G = (V, E), where V = {1, 2, · · · , n} is
the vertex set and E = {e1, e2, · · · , em} is the edge set for ep ⊂ V, p = 1, 2, · · · , m. If |ep| = r ≥ 2
for p = 1, 2, · · · , m and ei 6= ej when i 6= j, we call G an r-uniform hypergraph.

For each vertex i ∈ V, the degree d(i) is defined as

d(i) = |{ep : i ∈ ep, ep ∈ E}|.

Definition 2 (adjacency tensor and Laplacian tensor). The adjacency tensor A ∈ R[m,n] of a
m-uniform hypergraph G is a symmetric tensor with entries

ai1···im =

{
1

(m−1)! if {i1, · · · , im} ∈ E,

0 otherwise.

For an m-uniform hypergraph G, the degree tensorD is a diagonal tensor whose ith diagonal element
is d(i). Then, the Laplacian tensor L is defined as

L = D −A.

A triangle has three vertices and three edges. In this example, we subdivide the
triangles by connecting the midpoints of each edge of the triangles. Then, the s-order
subdivision of a triangle has 4s faces, and each face is a triangle. As shown in Figure 1,
three vertices as well as the center of the triangles are regarded as an edge of a 4-uniform
graph Gs

T .
We compute the largest Z-eigenvalue of the Laplacian tensor L(Gs

T) via the ACRCET
method, using ACRL and ACRN, respectively. In each run, 10 points on the unit sphere
are randomly chosen, and 10 estimated eigenvalues are calculated. Then, we take the best
one as the estimated largest eigenvalue. For different subdivision order s, the computation
results, including the estimated largest Z-eigenvalue, the total number of iterations, and
the total CPU time (in seconds) of the 10 runs are reported in Table 2.

It can be seen that both the ACRL and the ACRN find all the largest eigenvalues.
However, the ACRL takes almost no time compared to the ACRN. When s = 6, the ACRL
method only costs 236 s, while the ACRN needs 103,900 s. The numerical comparison
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between the ACRL and the ACRN verifies that the Lanczos method dramatically accelerates
the running speed when solving the ACR sub-problem (3), and is powerful for large-
scale problems.

(a) s = 0 (b) s = 1 (c) s = 2

(d) s = 3 (e) s = 4

Figure 1. Four-uniform hypergraphs: subdivision of a triangle.

Table 2. Results for finding the largest Z-eigenvalues of L(Gs
T).

ACRL ACRN
s m n Iter. Time (s) λZ

max(L(Gs
T)) Iter. Time (s) λZ

max(L(Gs
T))

1 10 4 53 0.04 3 53 0.05 3
2 31 16 57 0.05 6 56 0.17 6
3 109 64 55 0.08 6 54 0.79 6
4 409 256 56 0.78 6 54 13.05 6
5 1585 1024 67 13.02 6 66 727.77 6
6 6241 4096 81 236.35 6 85 103,900 6

6. Conclusions

In this paper, we have used the Lanczos method to solve the adaptive cubic regular-
ization method sub-problem (ACRL). The ACRL method first projects a large-scale ACR
sub-problem (3) into a much smaller sub-problem (7) using the Lanczos method, and then
solves the smaller sub-problem (7) using the Newton’s method. For the convergence anal-
ysis, we also established prior error bounds on the differences between the approximate
objective value qk(pk

j ) and the approximate solution pk
j with its corresponding optimal ones.

Numerical experiments illustrate that the ACRL method greatly improves the computing
efficiency and performs well, even for large-scale problems.
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