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Abstract: Least absolute deviation is proposed as a robust estimator to solve the problem when the
error has an asymmetric heavy-tailed distribution or outliers. In order to be insensitive to the above
situation and select the truly important variables from a large number of predictors in the linear
regression, this paper introduces a two-stage variable selection method named relaxed lad lasso,
which enables the model to obtain robust sparse solutions in the presence of outliers or heavy-tailed
errors by combining least absolute deviation with relaxed lasso. Compared with lasso, this method is
not only immune to the rapid growth of noise variables but also maintains a better convergence rate,
which is Op

(
n−1/2

)
. In addition, we prove that the relaxed lad lasso estimator has the property of

consistency at large samples; that is, the model selects the number of important variables with a high
probability of convergence to one. Through the simulation and empirical results, we further verify
the outstanding performance of relaxed lad lasso in terms of prediction accuracy and the correct
selection of informative variables under the heavy-tailed distribution.

Keywords: variable selection; relaxed lasso; least absolute deviation; consistency; heavy-tailed

1. Introduction

With the expansion of datasets, selecting factors that truly affect the response variable
from enormous predictors has been a topic of interest for statisticians for many years.
However, the response variable commonly contains heavy-tailed errors or outliers in
practice. In such a situation, traditional variable selection techniques may fail to produce
robust sparse solutions. In this paper, a new estimator for the heavy-tailed distribution
data is suggested as a way to deal with this problem.

In the past two decades, Tibshirani [1] first combined ordinary least square (OLS) with
L1 penalty and proposed a new variable selection method named least absolute shrinkage
and selection operator (lasso). Lasso is a convex regularization method by adding L1 norm,
which avoids the influence of the sign of OLS on the prediction results. The method can also
perform simultaneously model selection and shrinkage estimation in high-dimensional
data. However, lasso is sensitive in the case of heavy tails on the model distribution, which
arises from the problem of heterogeneity due to the data coming from different sets [2].
So, any small changes in the data can cause the solution path of lasso to contain many
irrelevant noise variables. The above instability can also occur when a single relevant
covariate is randomly selected. It means that applying lasso to the same data may generate
widely different results [3]. In addition, the convergence speed of lasso can be affected by
the rapid growth of noise variables, and the convergence speed itself is slow. Relaxed lasso
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was proposed to overcome the influence of noise variables and perform variable selection
at a faster and more stable speed. Meinshausen [4] defined the relaxed lasso estimator for
λ ∈ [0, ∞] and φ ∈ (0, 1] as

β̂Rlasso = arg min
β

∥∥∥∥∥Y −
p

∑
j=1

XT
j
{

β j · 1M
}∥∥∥∥∥

2

2

+ φλ
p

∑
j=1
|β j|, (1)

where M ⊆ {1, . . . , p}, p is the number of variables with nonzero coefficients selected into

the model, and 1M is an indicator function, that is 1M =

{
0, t ∈ M
1, t /∈ M

, for all t ∈ {1, . . . , p}.

Hastie et al. [5] extended the work of Bertsimas et al. by comparing the lasso, forward
stepwise and relaxed lasso methods with different signal-to-noise ratios (SNRs) scenarios.
The results show that relaxed lasso has an overall outstanding performance at any SNR level.
This superiority is reflected in the relaxation parameter φ. By appropriately modifying
the parameter φ, relaxed lasso ensures that the resulting model is consistent with the
true model, neither favoring excessive compression that would result in the exclusion of
essential variables nor selecting redundant noise variables. This serves as the main reason
why we add the relaxation parameter φ to the lad lasso. Compared to lasso, relaxed lasso
greatly reduces the number of false positives while also achieving a trade-off between
low computational complexity and fast convergence rates [6]. From the perspective of
the closed-form solution, Mentch and Zhou [7] indicate that the relaxed lasso estimator
can be expressed as a weighted average of lasso and least squares. When the weight
of the lasso is increased, it provides a greater amount of regularization, hence reducing
the degree of freedom of the variables in the final model to achieve sparse solutions.
Bloise et al. [8] demonstrated that relaxed lasso has higher predictive power because it is
able to avoid overfitting by tuning two separate parameters. He [9] concluded that relaxed
lasso improves prediction accuracy since it avoids selecting unimportant variables and
excessively removing informative variables. Extensive research has demonstrated that
relaxed lasso has advantages in terms of variable selection, prediction accuracy, convergence
speed, and computational complexity. However, relaxed lasso, like OLS cannot produce
reliable solutions when the response variable contains heavy-tailed errors or outliers.

In order to solve the problem of poor fitting results of relaxed lasso to the heavy-
tailed distribution or outliers, least absolute deviation (LAD) based on robust regression
is introduced. It estimates coefficients by minimizing the sum of the absolute values of
the prediction errors. The traditional squared loss in the objective function used by classic
regularization methods is unsuitable for heavy-tailed distributions and outliers, but LAD
performs admirably in these situations. Gao [10] showed that the LAD loss could provide a
powerful alternative to the squared loss. In recent years, some researchers have combined
robust regression with popular penalty regularization methods. The most typical method
is the lad lasso of Wang et al. [11], which combines lad and adaptive lasso so that the
model can perform robust variable selection. Then, the theoretical properties of lad lasso
under large samples have been systematically studied by Gao and Huang [12] and Xu
and Ying [13]. Arslan [14] proposed a weighted lad lasso to mitigate the effect of outliers
on explanatory and response variables. In addition, lad lasso also has a wide range of
practical applications. For example, Rahardiantoro and Kurnia [15] showed that lad lasso
has a more minor standard error than lasso in the presence of outliers in high-dimensional
data via simulation. Zhou and Liu [16] also applied the lad lasso to the double-truncated
data and showed that it is more accurate to select the real model than the best subset
selection procedure. Li and Wang [17] applied lad lasso to the change point problem in
fields such as statistics and econometrics. Thanks to the superior performance of lad lasso,
we consider proposing a new estimator that can not only perform variable selection but is
also insensitive to the heavy-tailed distribution or outliers in the response variable.
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In this article, we combine lad lasso and the relaxation parameter of relaxed lasso to
propose relaxed lad lasso and study its asymptotic properties in the case of large samples.
It integrates the advantages of relaxed lasso and lad lasso methods into the following three
points. Firstly, the relaxed lad lasso estimator has the same consistency property as the lad
lasso, i.e., the method selects important variables with a high probability of convergence to
one. Secondly, since relaxed lasso has a closed-form solution, solving relaxed lad lasso is
eventually equivalent to solving the LAD program, so we can employ a simple and efficient
algorithm. Thirdly, relaxed lad lasso possesses the robustness of lad lasso to heavy-tailed
errors or outliers in the response variable. In theory, we prove the

√
n-consistency of relaxed

lad lasso under some mild assumptions and illustrate its advantages in convergence speed.
Although the convergence speed of the relaxed lad lasso Op

(
n−1/2

)
is slower than that of

relaxed lasso Op
(
n−1), our method handles outliers and heavy-tailed errors well because it

is not affected by the rapid growth of noise variables. The simulation shows that relaxed
lad lasso has the highest prediction accuracy and probability of the correct selection of
important variables under heavy-tailed distributions compared to other methods. We also
apply relaxed lad lasso to financial data and obtain the same results as the simulation
regarding prediction accuracy.

However, our method has room for improvement, as LAD cannot handle the presence
of outliers in the explanatory variables and is sensitive to leverage points [18]. Hence,
our method suffers from the same problem. Under the framework of LAD regression, re-
searchers have proposed many new methods to improve robustness by reducing the weight
of leverage points. Giloni et al. [19] proposed a weighted least absolute deviation process
(WLAD) to overcome the shortcomings of the LAD method. However, as the proportion of
outliers increases, the robustness of the WLAD estimator significantly decreases [20]. To
obtain a high robustness estimator and abnormal information of observations, Gao and
Feng [21] proposed a penalized weighted least absolute deviation (PWLAD) regression
method. Jiang et al. [22] combined the PWLAD estimator and the lasso method to detect
outliers and select variables robustly. However, it is worth noting that these methods
mainly address the robustness problem when there are leverage points or outliers in the
explanatory variables. Still, our method is suitable in situations with heavy-tailed errors or
outliers in the response variable. In the simulation, we assume that the model error follows
a heavy-tailed distribution such as the t-distribution. Therefore, we do not compare relaxed
lad lasso with the above methods due to the different application scenarios. More specific
details can be found in Section 4.

The remainder of the paper is organized as follows: Section 2 defines the estimator
of relaxed lad lasso and interprets the parameters in the model. In addition, we give the
detailed procedure of the algorithm. Section 3 describes the asymptotic properties of the
loss function and provides the theorems’ assumptions. Section 4 compares the performance
of relaxed lad lasso with conventional lasso methods (such as classical lasso, adaptive
lasso, and relaxed lasso) through simulations under different heavy-tailed distribution
scenarios. Section 5 analyzes empirical data to confirm the robustness of the proposed
method to heavy-tailed distributions. Section 6 summarizes the advantages of the new
method as well as suggestions for further research. The proofs of the theorems are given in
Appendixes A–E.

2. Relaxed Lad Lasso
2.1. Definition

This article considers the linear model

Y = XT β + ε. (2)

The random error term ε does not require it to obey a certain normal distribution
like the traditional regression model. In this model, the condition of random error on the
distribution is relaxed, and only the median is 0. X =

(
X1, . . . , Xp

)
is an n× p dimensional
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matrix from a normal distribution with mean 0 and variance Σ, where Xi is the predictor
matrix of the ith variable and Y is an n× 1 vector of response variables. β =

(
β1, . . . , β j

)T

is the regression coefficient of the model. In addition, the regression coefficient is nonzero
when j ≤ p.

Next, we define relaxed lad lasso, which combines the L1 penalty term with the
relaxation parameter φ, so that the new model can still maintain excellent convergence
speed and variable selection ability when there are outliers in the heavy-tailed distribution
and the response variable.

Definition 1. The solution to relaxed lad lasso is

β̂Reladlasso = arg min
β

∣∣∣∣∣Y− p

∑
j=1

XT
j
{

β j · 1Sλ

}∣∣∣∣∣+ nλφ
p

∑
j=1

∣∣β j
∣∣, (3)

where 1Sλ is an indicator function, Sλ = {1 ≤ t ≤ p | β̂λ
t 6= 0

}
is the set of nonzero coefficients;

the penalty parameter λ ∈ [0, ∞) and φ ∈ [0, 1].

When a regression coefficient belongs to the set Sλ, it is selected into the true model.
If the parameters within the range of the Sλ set take different values, the model will
have different functions. The value of the penalty parameter λ indicates the degree of
compression applied to the coefficients so that it controls the number of predictors entering
the model. When either λ or φ takes 0, minimizing the objective function for relaxed
lad lasso is equivalent to solving the LAD method, and the original intention of variable
selection is lost, so the parameters always start from a value far from 0. In this paper, the
optimal parameters λ, φ are chosen through cross-validation, and the relaxed lad lasso
estimator will be consistent if the important variables are correctly selected.

We define the loss function of relaxed lad lasso as

L(λ, φ) = E
∣∣∣Y − XT β̂

∣∣∣− σ2. (4)

2.2. Algorithm

In the following, we provide a detailed algorithm for solving relaxed lad lasso as
defined in (3). It is well known that the closed-form solution of relaxed lasso is a linear
combination of the lasso and least squares estimator. The same form of the solution can be
extended to relaxed lad lasso. It turns out that the relaxed lad lasso estimator β̂Reladlasso is
the combination of the lad lasso estimator β̂Ladlasso and the LAD estimator β̂Lad, so we can
solve them separately.

Computationally, the relaxed lad lasso estimator can be written as

β̂Reladlasso = φβ̂Ladlasso + (1− φ)β̂Lad, (5)

where the parameter φ ∈ [0, 1]. Firstly, we are interested in estimating β̂Ladlasso by minimiz-
ing the convex problem

β̂Ladlasso = argmin
β

n

∑
i=1
|Yi − Xiβ|+ nλ

p

∑
j=1

∣∣β j
∣∣. (6)

A new dataset
{(

Y
′
i , X

′
i

)}
with i = 1, . . . , n + p can be considered to transform the

lad lasso solution in (6) to the conventional LAD citerion. We set
(

Y
′
i , X

′
i

)
= (Y, Xi) for

1 < i < n and
(

Y
′
n+k, X

′
n+k

)
=(0, nλdk) for 1 ≤ k ≤ p, where dk = (0, . . . , 0, 1kth, 0, . . . , 0)

such that the kth component is equal to 1 and the remaining components are equal to 0. It
should be noted that the lad lasso estimator can be expressed as follows:
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β̂Ladlasso = argmin
β

n+p

∑
i=1

∣∣∣Y′i − X
′
i β
∣∣∣. (7)

Therefore, the computational effort of solving all lad lasso solutions in (7) is identical
to that of computing any unpenalized LAD program. Then, we consider the following lad
lasso solution

β̂Lad = argmin
β

n

∑
i=1
|Yi − Xiβ|. (8)

If β̂lad
j 6= 0, 1 ≤ j ≤ p, then the subgradient of (8) is given by

d‖Y − Xβ‖1
dβ j

= −XTsgn
(

Y− Xβ̂lad
j

)
. (9)

So, the solution of the LAD is given by iterating

β̂Lad
k+1 = β̂Lad

k − α
[
−XTsgn

(
Y− Xβ̂Lad

k

)]
, (10)

where k is the number of iterations and α > 0 is a suitable step size.
The unpunished LAD program in (8) can be solved using the rq function in the

quantreg package of R. The overview of the algorithm is described in Algorithm 1.

Algorithm 1 The algorithm for relaxed lad lasso

Input: Design matrix X ∈ Rn×p, response vector Y ∈ Rn, parameter φ ∈ [0, 1], iteration
number k, stepsize α

Output: The relaxed lad lasso estimator β̂Reladlasso

Initialization: Define β̂Reladlasso = φβ̂Ladlasso + (1− φ)β̂Lad

Compute
1: Set

{(
Y
′
i , X

′
i

)}
with i = 1, . . . , n + p to be the new dataset of lad lasso

2: Set
(

Y
′
i , X

′
i

)
= (Yi, Xi) for 1 ≤ i ≤ n and

(
Y
′
n+k, X

′
n+k

)
=(0, nλdk) for 1 ≤ k ≤ p, where

dk = (0, . . . , 0, 1kth, 0, . . . , 0)

3: The objective functions of Ladlasso and LAD are Q
′
(β) = argmin

β

n+p
∑

i=1

∣∣∣Y′i − X
′
i β
∣∣∣ and

Q(β) = argmin
β

n
∑

i=1
|Yi − Xiβ|

4: Set k = 0
Repeat

5: Update β̂Lad
k+1 ← β̂Lad

k − α
[
−XTsgn

(
Y− Xβ̂Lad

k

)]
6: Update β̂Ladlasso

k+1 ← β̂Ladlasso
k − α

[
−XTsgn

(
Y− Xβ̂Ladlasso

k

)]
7: Update k = k + 1

Until convergence

3. The Asymptotic Properties of Relaxed Lad Lasso

Before obtaining the asymptotic properties, we must first set certain conditions. Re-
garding the covariance matrix Σ, we consider the settings in Fu and Knight [23] and
Meinshausen [4] and put forward the first hypothesis:



Symmetry 2022, 14, 2161 6 of 18

Assumption 1. For all n ∈ N, the covariance matrix cov(X) = Σ is diagonally dominant.
According to the setting of Fu and Knight [23]:

1
n

n

∑
i=1

XiXT
i → Σ, as n→ ∞, (11)

and then, it can be deduced to obtain

1
n

max
1≤i≤n

XT
i Xi → 0, as n→ ∞. (12)

Obviously, the default precondition for diagonal dominance of the covariance matrix
is that the covariance matrix exists. When the strong condition of diagonal dominance
is satisfied, the covariance matrix is positive definite, and the hidden condition is that its
inverse matrix still exists.

Assumption 2. There exist constants c > 0 and s ∈ (0, 1) such that the number of predictors p
grows exponentially with the number of observed variables n. It can be written as

pn ∼ secn. (13)

Assumption 2 sets the growth mode of p to satisfy the requirement that relaxed lad
lasso still retains a better convergence speed in variable selection.

Assumption 3. Define the range L of the penalty parameter λ. For a constant c > 0, we have

L = {λ ≥ 0 : cepn ≤ n}. (14)

Assumption 3 sets the range of penalty parameters necessary to prove consistency.

Assumption 4. The random error term εi does not follow any distribution and has a median of 0.

In other variable selection models, such as lasso and adaptive lasso, the random error
term εi usually obeys the normal distribution. However, for the study of relaxed lad lasso
in this paper, the distribution conditions for the random error term are relaxed, and only the
median is imposed. All of the above assumptions are necessary for proving the consistency
of relaxed lad lasso.

Lemma 1. Let lim inf
n→∞

n∗
n →

1
R with R ≥ 2. Ln∗(λ, φ) be an empirical loss function of L(λ, φ),

where n∗ is its sample size. Then, under Assumptions 1–4,

sup
λ∈L,φ>0

|L(λ, φ)− Ln∗(λ, φ)| = Op

(
n−1/2 log n

)
, n→ ∞. (15)

Lemma 1 will be used to prove the key conclusion in Theorem 4.
According to Lemma 1 of Wang et al. [11], lad lasso’s oracle property is dependent

on the
√

n-consistency, that is,
√

nan → 0. Therefore, an is in a sequence with o(n−1/2) as
n→ ∞. The lad lasso model in this article uses a fixed λ because an is the largest λ in the
nonzero parameters; then, you can obtain λ = o(n−1/2).

Theorem 1. In order to describe the loss under the lad lasso estimator when n→ ∞, according to
Assumptions 1–4, we have:

inf
λ

L(λ) = Op

(
n−1/2

)
. (16)
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Theorem 1 first proves the convergence rate of lad lasso. Lad lasso uses the L1 loss
function. According to Pesme and Flammarion [24], it is shown that the L1 loss function is
non-strongly convex. Since the loss function does not have non-derivable points, we can
still think that the algorithm is convex. The L1 loss’s non-strong convexity can guarantee
O
(

n−1/2
)

convergence speed before and after iteration, and smoothness has no effect on
the above conclusion, which indirectly proves that our conclusion is correct.

Theorem 2. In order to describe the loss under the relaxed lad lasso estimator when n → ∞,
according to Assumptions 1–4, we have:

inf
λ,φ

L(λ, φ) = Op

(
n−1/2

)
. (17)

One of the main contributions of our paper is to prove that the convergence speed
of relaxed lad lasso is equivalent to that of lad lasso, even although adding the relaxation
parameter φ does not improve the convergence speed of relaxed lad lasso. However, when
the number of variables p grows exponentially with the sample n, the number of potential
noise variables likewise increases significantly, but this will not slow down the convergence
speed of relaxed lad lasso. Although the convergence speed of relaxed lad lasso is not
ideally as fast as relaxed lasso, it still outperforms lasso due to the existence of L1 loss and
relaxation parameter φ, which offers good stability.

Theorem 3. Under the condition that the design matrix is positive definite and the prediction error
εi is continuous and has a positive density at the origin, when

√
nan → 0, the estimator of relaxed

lad lasso is
√

n-consistency for ε > 0, which is

lim
n→∞

P
(∣∣Q(β̂)−Q(β)

∣∣ > ε
)
= 0. (18)

Another major contribution of this paper is to prove that the the relaxed lad lasso
estimator is consistent, where the conclusion of Lemma 1 of Wang et al. [11] in lad lasso is
an essential precondition that the important variable’s penalty parameter can converge to 0
faster than n−1/2. It guarantees the consistency of lad lasso, and our proof is also based on
this conclusion.

Theorem 4. Let L
(
λ̂, φ̂

)
be the loss of the relaxed lad lasso estimate and

(
λ̂, φ̂

)
chosen by K-fold

cross-validation with 2 ≤ K ≤ ∞. Under assumptions of relaxed lasso, it holds that

L
(
λ̂, φ̂

)
= Op

(
n−1/2 log n

)
. (19)

We still use K-fold cross-validation when choosing the penalty parameters; that is, we
select the optimal penalty parameters λ̂ and φ̂ by minimizing the empirical loss function
of cross-validation. First, define the empirical loss function on a different observation set
from R = 1, . . . , K as

Lcv(λ, φ) = K−1
K

∑
R=1

LR,ñ(λ, φ), (20)

where each partition of R consists of ñ observations and LR,ñ(λ, φ) is the empirical loss of
the response variable.
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4. Simulation
4.1. Setup

In this section, we present the results of extensive simulations that are conducted to as-
sess how relaxed lad lasso performs in the presence of heavy-tailed errors. For comparison,
the performances of the proposed relaxed lad lasso, lasso, lad lasso, and relaxed lasso are
evaluated along with some metrics through the results of the mean and median of the mean
absolute prediction error (MAPE), the average number of nonzero estimated coefficients
(number of nonzeros), and the average number of correctly (mistakenly) estimated zeros.
The above metrics are selected the same as Wang et al. [11] and Hastie et al. [5]. The
procedure for setting parameters can be summarized as follows:

i. We consider the following regression model Y = XT β + σε in this simulation. The
predictor matrix X is generated from a p-dimension multivariate normal distribution
N(0, Σ) where the covariance matrix Σij = ρ|i−j| with ρ = 0.5. ε is derived from
several heavy-tailed distributions. The density function of the t-distribution shows a
heavy tail compared to the standard normal distribution. Therefore, we set ε to follow
t-distribution with 5 degrees of freedom df(t5) and the standard t-distribution with 3
degrees of freedom df(t3).

ii. We set the fixed dimension p = 8 and vary n = 50, 100, 200 to compare the perfor-
mances of four methods under different sample sizes.

iii. The true regression cofficient β = (0.5, 1, 1.5, 2, 0, 0, 0, 0) is an eight-dimension vector
where its first four elements are important variables taking nonzero coefficients and
otherwise set as 0.

iv. The value of σ is adjusted to achieve different theoretical SNR values. We discuss
σ = 0.5 and σ = 1 in order to test the effects of strong and weak SNR values on the
results.

v. The parameter λ is selected by the five-fold cross-validation, and the mean absolute
error is applied for the loss of cross-validation. In addition, 100 simulation iterations
are completed for each situation to test the performance of relaxed lad lasso.

4.2. Evaluation Metrics

In order to select the optimal parameters by cross-validation, we divide the data into a
training set and a test set. Assume that xtest represents a row from the test set’s predictor
matrix X and that β̂ and ŷtest are the estimated coefficients and the fitting results of xtest on
the test set. The evaluation metrics we use are shown as follows.

The mean absolute prediction error (MAPE):

MAPE = E(|Ytest − ŷtest|) = E
(∣∣∣Ytest − xT

test β̂
∣∣∣). (21)

The number of nonzero estimated coefficients (number of nonzeros):

Number of nonzeros =
∥∥β̂
∥∥

0 =
p

∑
i=1

1
{

β̂i 6= 0
}

. (22)

The number of correctly (mistakenly) estimated zeros (number of zeros):

Correct =
p

∑
i=1

1
{

β̂i = 0,βi = 0
}

. (23)

Incorrect =
p

∑
i=1

1
{

β̂i = 0,βi 6= 0
}

. (24)



Symmetry 2022, 14, 2161 9 of 18

4.3. Summary of Results

As can be seen, the results of the simulation are summarized in Tables 1 and 2. From
the view of the number of selected nonzero and zero variables, all of the methods are
shown to be comparable; however, the mean and median results of prediction accuracy
are rather different. When the SNR is low (i.e., σ = 0.5), relaxed lad lasso outperforms
lasso, lad lasso, and relaxed lasso with the lowest mean and median of MAPE. Additionally,
relaxed lad lasso almost correctly identifies the number of noise variables in the sense that
the variable selection results come close to the number of zero coefficients in the true model.
In particular, since the real regression model has four variables that are nonzero, relaxed
lad lasso correctly selects the number of important variables that is closest to the actual
nonzero variables. When the SNR is high (i.e., σ = 1.0), all methods perform slightly worse
than the low SNR situation; nevertheless, relaxed lad lasso remains a competitive method
and consistently performs well on these evaluation metrics.

It is worth noting that as the number of observations n increases, the difference
between the results of relaxed lad lasso and the worst methods with the same SNR value
becomes smaller. For σ = 0.5 with t5 error, the numerical difference between the relaxed lad
lasso and the lad lasso’s mean MAPE is 0.043 in a small number of observations, i.e., n = 50.
When n increases to 200, the difference between them drops to 0.023. Therefore, relaxed
lad lasso stands out when n is small, but as n increases, the advantage of relaxed lad lasso
starts to decrease because, in that case, the data asymptotically follow a normal distribution
that breaks the condition of heavy-tailed distributions we required. Therefore, we can
conclude that in a normal distribution, the performance of relaxed lad lasso is comparable
to the traditional robust regression and ordinary lasso method. However, when data have
a heavy-tail distribution, relaxed lad lasso has an overall superior performance in terms of
prediction accuracy and correct selection of the number of important information variables.

Table 1. Simulation results for t5 error.

σ n Method Mean MAPE Median MAPE Number of Nonzeros
Number of Zeros

Incorrect Corerect

0.5

50

Lasso 0.150 0.148 4.3 0.02 3.67
Ladlasso 0.176 0.163 2.8 1.23 4.00

Rlasso 0.142 0.139 3.7 0.38 3.95
Rladlasso 0.133 0.131 4.1 0.12 3.77

100

Lasso 0.145 0.141 4.2 0.00 3.76
Ladlasso 0.158 0.152 3.0 1.01 4.00

Rlasso 0.137 0.131 3.8 0.19 3.98
Rladlasso 0.133 0.127 4.2 0.00 3.78

200

Lasso 0.138 0.130 4.1 0.00 3.88
Ladlasso 0.151 0.124 3.1 0.88 4.00

Rlasso 0.129 0.125 4.0 0.03 4.00
Rladlasso 0.128 0.125 4.2 0.00 3.79

1

50

Lasso 0.307 0.306 4.1 0.25 3.65
Ladlasso 0.314 0.313 2.3 1.74 4.00

Rlasso 0.298 0.292 3.1 1.00 3.93
Rladlasso 0.279 0.280 3.9 0.43 3.69

100

Lasso 0.277 0.272 4.1 0.10 3.80
Ladlasso 0.269 0.265 2.8 1.21 4.00

Rlasso 0.267 0.262 3.3 0.76 3.96
Rladlasso 0.258 0.255 4.0 0.20 3.79

200

Lasso 0.251 0.249 4.1 0.02 3.86
Ladlasso 0.248 0.247 3.0 1.01 4.00

Rlasso 0.248 0.243 3.3 0.70 4.00
Rladlasso 0.239 0.235 4.1 0.06 3.83
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Table 2. Simulation results for t3 error.

σ n Method Mean MAPE Median MAPE Number of Nonzeros
Number of Zeros

Incorrect Corerect

0.5

50

Lasso 0.184 0.178 4.2 0.10 3.68
Ladlasso 0.205 0.198 2.7 1.33 4.00

Rlasso 0.172 0.170 3.4 0.62 3.96
Rladlasso 0.157 0.154 4.1 0.17 3.75

100

Lasso 0.172 0.166 4.3 0.02 3.65
Ladlasso 0.175 0.171 3.0 0.99 4.00

Rlasso 0.164 0.159 3.6 0.36 4.00
Rladlasso 0.154 0.150 4.2 0.00 3.79

200

Lasso 0.162 0.160 4.1 0.00 3.88
Ladlasso 0.170 0.171 3.1 0.89 4.00

Rlasso 0.153 0.153 3.9 0.15 4.00
Rladlasso 0.147 0.146 4.2 0.00 3.85

1

50

Lasso 0.339 0.324 3.8 0.59 3.58
Ladlasso 0.340 0.320 2.1 1.89 4.00

Rlasso 0.325 0.314 3.0 1.12 3.92
Rladlasso 0.299 0.290 3.8 0.54 3.70

100

Lasso 0.317 0.311 3.9 0.29 3.82
Ladlasso 0.292 0.288 2.8 1.23 4.00

Rlasso 0.303 0.286 3.0 1.02 4.00
Rladlasso 0.280 0.274 4.0 0.22 3.80

200

Lasso 0.308 0.308 4.0 0.10 3.90
Ladlasso 0.286 0.283 3.0 1.00 4.00

Rlasso 0.295 0.293 3.0 0.96 4.00
Rladlasso 0.279 0.276 4.1 0.06 3.89

5. Application to Real Data
5.1. Dataset

The Research and Development (R&D) investment is critical for a company’s oper-
ations in the current competitive environment, regardless of industry. The problem of
identifying the primary factors affecting the R&D investment has been extensively re-
searched to maintain competitiveness and improve innovation. The real data for this study
came from the CSMAR database, which is considered one of the most professional and
extensively used research databases available. The data have 2137 records, each of which
corresponds to the financial data of a single publicly traded firm in 2021. We split the data
into a training set and a test set with with a ratio of 7:3 so that the training set can be used to
fit the model and the MAPE is measured on the test set. The R&D investment of a corpora-
tion is the response variable, and there are 86 predictor variables, such as management costs,
operating costs, net profit, and other financial indicators that may impact a company’s R&D
expenditure. Table 3 provides a full overview of these factors. Due to the large variance
in the R&D investment between industries, the response variables may have heavy-tailed
errors or outliers. Therefore, we check to find that the residuals differentiated by an OLS fit
have a kurtosis of 144.38, which is significantly greater than the normal distribution’s value.
Furthermore, we show the box plot of R&D investment and the QQ-plot of the OLS fit in
Figures 1 and 2. The block dots in Figure 1 and the blue dots outside the 95% confidence
interval in Figure 2 indicate that the response variable contains a large number of outliers.
Note that we take the logarithm of the response value. Consequently, the dependability of
conventional OLS-based estimators and model selection methods (e.g., lasso, relaxed lasso)
is substantially compromised. To confirm the previously stated conclusion in Section 5,
we continue to calculate the MAPE to compare the performances of the four methods that
appear in the simulation.
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Table 3. Description of variables in R&D investment data.

Variables Description Symbols

R&D investment Research and Development Costs Y
Profitability Finance Costs (x1), Payback On Assets (x2), Operating Costs (x3), . . . x1, . . . , x15

Business Capability Net Accounts Receivable (x16), Business Cycle (x17), Current Assets (x18), . . . x16, . . . , x30
Assets and Liabilities Total Current Liabilities (x31), Taxes Payable (x32), Accounts Payable (x33), . . . x31, . . . , x50

Profits Operating Profit (x51), Total Comprehensive Income (x52), . . . x51, . . . , x70
Cash Flow Cash Paid For Goods (x71), Net Cash Flows From Investing Activities (x72), . . . x71, . . . , x86

Figure 1. The box plot of the company’s R&D investment. The box plot indicates outliers with black
dots above the upper quartile plus 1.5 times the quartile difference or below the lower quartile minus
1.5 times the quartile difference.

Figure 2. The QQ plot of the OLS fit. The red shaded area is the 95% confidence interval for the
standard straight line y = x.



Symmetry 2022, 14, 2161 12 of 18

5.2. Analysis Results

In Table 4, relaxed lad lasso outperforms all competitors in terms of prediction accu-
racy, with the smallest MAPE of 0.184, as has been demonstrated in the simulation. Lad
lasso and relaxed lasso have MAPEs of 0.201 and 0.191, respectively. Lasso is the worst
method. Specifically, the MAPE of lasso is 0.203, which is slightly larger than that of lad
lasso. The relevant variables selected by the best resulting model are listed in Table 5.
We find that Net Accounts Receivable, Funds Paid to and for Staff, Other Income, Gains
and Losses from Asset Disposition, Interest Income, and Basic Earnings Per Share are the
most important factors influencing the R&D spending. Therefore, we can conclude that
relaxed lad lasso obtains the sparse model with the highest prediction accuracy for data
with heavy-tailed errors.

Table 4. Prediction accuracy for R&D investment study.

Method Lasso Ladlasso Rlasso Rladlasso

MAPE 0.203 0.201 0.191 0.184

Table 5. Variables selected by relaxed lad lasso.

Order Number Explanatory Variable Coefficient

x16 Net Accounts Receivable 0.297
x61 Basic Earnings Per Share 0.023
x67 Interest Income 0.115
x68 Other Income 0.197

x70
Gains and Losses from Asset

Disposition 0.154

x74 Funds Paid to and for Staff 0.251

Among the most important variables selected by relaxed lad lasso, Net Accounts
Receivable indicates the volume of products sold by a business that have not been paid for;
Gains and Losses from Asset Disposition, Interest Income, and Other Income measure the
incomes of the company’s operations; Basic Earnings Per Share reflects the profitability of
the enterprise over a certain period; Funds Paid to and for Staff measures the company’s
benefits and rewards provided to its staff. The estimated coefficients of Net Accounts
Receivable and Funds Paid to and for Staff are 0.297 and 0.251, which both have relatively
large positive effects on R&D investment. Then, the coefficients of Other Income, Profit and
Loss from Asset Disposal, and Interest Income are 0.197, 0.154, and 0.115 as the decline of
influence to the response variable. It is not surprising that the sales volume of products and
profits influence the company’s decision to promote innovation and improve technological
development. To a certain extent, with a significant volume of sales and a consistent and
large cash flow, the accumulated capital can be used to invest in the company’s R&D
investment. What is more, welfare-oriented businesses with attractive compensation will
help executives act in the company’s long-term interest to maximize shareholders’ interests
so that they will pay more attention to the innovation of their companies. In general, raising
a company’s R&D investment is heavily driven by a few critical factors, which can be
summarized as sales volume, profitability, and staff welfare.

6. Conclusions

In this paper, we develop the relaxed lad lasso method for both variable selection
and shrinkage estimation that is resistant to heavy-tailed errors or outliers in the response.
As a combination of the ideas of relaxed lasso and lad lasso, the new estimator inherits
good properties of lad lasso and can be solved using the same efficient algorithm for
solving the LAD program. Theoretically, we have proven that relaxed lad lasso has the
same convergence rate as lad lasso with Op

(
n−1/2

)
, and it is

√
n-consistent under mild
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conditions on predictors and the growth mode of the variable dimension. Additionally,
we have shown that the rate to choose parameters

(
λ̂, φ̂

)
by K-fold cross-validation is

Op

(
n−1/2 log n

)
fast. In the simulation, the proposed method produces more correct

variable selection results and lower prediction errors than lasso, relaxed lasso, and lad lasso.
It also performs well in the application of the company’s R&D investment data. For further
research, it is suggested that the comparable idea can be extended to Huber’s M-estimation
for a faster convergence rate. From the perspective of regression models, Contreras-Reyes
et al. [25] uses a log-skew-t non-linear regression to analyze the Von Bertalanffy growth
models (VBGMs). Motivated by this, the non-linear regression can also be improved by the
proposed method under the heavy-tailed distribution.
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Appendix A. Appendix Proof of Lemma 1

Proof. In Section 2, we have already known that the solutions of relaxed lad lasso can be
viewed as a combination of lad lasso and the LAD estimator. Thus, we define the set of
relaxed lad lasso solutions H1, . . . Hm as

Ht =
{

β̂∗ = φβ̂Ladlasso + (1− φ)β̂Lad
}

. (A1)

where 0 < φ < 1. We arrange the λ sequences in descending order, that is λm > . . . > λ1.
Let λt, t = 1, . . . , m be the largest penalty parameter selected such that St = Sλ, where St is
the set of models estimated by lad lasso.
The loss function of relaxed lad lasso is as follows:

L(λ, φ) = E

∣∣∣∣∣∣Y− ∑
t∈{1,...,p}

β̂∗t Xt

∣∣∣∣∣∣. (A2)

Simplify Formula (A2) by using (A1) to obtain

L(λ, φ) = E

∣∣∣∣∣∣Y− ∑
t∈{1,...,p}

β̂LadXt − φ
(

β̂Ladlasso − β̂Lad
)

Xt

∣∣∣∣∣∣. (A3)

To simplify the representation, for any λ, set

Wλ = Y− ∑
t∈{1,...,p}

β̂LadXt, (A4)

and

Zλ = φ

 ∑
t∈{1,...,p}

β̂Ladlasso − ∑
t∈{1,...,p}

β̂Lad

Xt. (A5)
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Then, we have
L(λ, φ) ≥ E|Wλ| − E|Zλ|. (A6)

We set |Wλ| = c. Bernstein’s inequality indicates that there exists a small constant g such
that

P

(
1
n ∑ ci − Ec <

g
n

log(1− θ) +

√
−2var(c)log(θ)

n

)
≥ 1− θ. (A7)

Let θ = 1
n ; then, we have

P
(

En∗ |Wλ| − E|Wλ| < kn∗−1/2 log n
)
≥ 1− 1

n
, (A8)

where k > 0, so for any ε > 0, taking the limit gives

lim sup
n→∞

P
(
|En∗ |Wλ| − E|Wλ|| > kn∗−1/2 log n

)
< ε. (A9)

For Zλ, we use the same steps to obtain

lim sup
n→∞

P
(
|En∗ |Zλ| − E|Zλ|| > kn∗−1/2 log n

)
< ε. (A10)

From (A9), (A10) and simple algebraic operations, we obtain

lim sup
n→∞

P

(∣∣∣∣∣ sup
λ∈L,φ>0

|L(λ, φ)− Ln∗(λ, φ)|
∣∣∣∣∣ > kn∗−1/2 log n

)
< ε, (A11)

which completes the proof.

Appendix B. Appendix Proof of Theorem 1

Proof. We have defined the loss function L(λ, φ) for relaxed lad lasso. Similarly, the loss
for the lad lasso estimator with the selected parameter λ can be written as

L(λ) = ∑
t∈{1,··· ,p}

∣∣∣β̂λ
t − βt

∣∣∣. (A12)

Let λ∗ denote the smallest penalty parameter so that unimportant variables can no longer
enter the active set. The definition is as follows:

λ∗ = min
λ≥0

{
λ|β̂λ

t = 0, ∀t > q
}

. (A13)

Only nonzero coefficients, or components of t ≤ q in (A12), are included in our summation.
When λ ≥ λ∗, the lower bound of the loss L(λ) satisfies

inf
λ≥λ∗

L(λ) ≥ q(1− ε)λ∗. (A14)

Let M = β− β̂λ∗ , Nλ = β̂λ − β̂λ∗ ; then, we can write in another way, that is∣∣∣β̂λ
t − βt

∣∣∣ = √M2
t − 2MtNλ

t +
(

Nλ
t
)2. (A15)

For n → ∞, any δ > 0, we have P(|Mt| > (1− δ)λ∗) = 1. Then, |Mt| < (1 + δ)λ∗ is
always established. Hence, for all t ≤ q, there is∣∣∣β̂λ

t − βt

∣∣∣ ≥ √(1− δ)2λ2∗ − 2(1− δ2)λ∗(λ∗ − λ) + (1− δ)2(λ∗ − λ)2. (A16)
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Therefore, taking the lower bound on the right-hand side of the inequality yields

inf
λ≥λ∗

L(λ) ≥
[
(1− δ)2 + 2

√
q
(

1− δ2
)
+ q(1− δ)2

]
λ∗. (A17)

According to lad lasso’s
√

n-consistency: λ ∼ n−
1
2 ,

inf
λ≥λ∗

L(λ) ∼ Op

(
n−

1
2

)
, (A18)

which completes the proof.

Appendix C. Appendix Proof of Theorem 2

Proof. Let S∗ = {1, . . . , q} represent the active set, i.e., the set of variables whose coeffi-
cients are nonzero. Define event A as

∃λ : Sλ = S∗. (A19)

Let constant c > 0. Using the conditional probability inequality, there is

P
(

inf
λ,φ

L(λ, φ) > cn−1/2
)
≤ P

(
inf
λ,φ

L(λ, φ) > cn−1/2|A
)

P(A) + P(Ac). (A20)

We define the lad estimator’s loss function as L∗; then, we have

P
(

inf
λ,φ

L(λ, φ) > cn−1/2
)
≤ P

(
L∗ > cn−1/2

)
+ P(Ac). (A21)

The second term on the right-hand side of the above inequality is 0 because for n → ∞,
we have P(Ac) → 0. From the property of the lad estimator which has been shown in
Theorem 1, the first item on the right-hand side in (A21) satisfies

lim sup
n→∞

P
(

L∗ > cn−1/2
)
< ε, (A22)

which completes the proof.

Appendix D. Appendix Proof of Theorem 3

Proof. To prove the consistency, we need to prove the following formula

P
{

inf
‖v‖=C

Q
(

β̂
)
> Q(β)

}
≥ 1− ε, (A23)

where v =
√

n
(

β̂− β
)

is a vector with p dimensions such that ‖v‖ = C, C is a large

constant. Q(β) is the relaxed lad lasso criterion. Define Dn(v) ≡ Q
(

β + v√
n

)
−Q(β), then

Dn(v) =
n

∑
i=1

{∣∣∣∣Yi − X
′
i

(
β +

v√
n

)∣∣∣∣− ∣∣∣Yi − X
′
i β
∣∣∣}+ nλφ

p

∑
j=1

{∣∣∣∣β j +
v√
n

∣∣∣∣− ∣∣β j
∣∣}

≥
n

∑
i=1

{∣∣∣∣Yi − X
′
i

(
β +

v√
n

)∣∣∣∣− ∣∣∣Yi − X
′
i β
∣∣∣}−√nanφ

p

∑
j=1

∣∣β j
∣∣. (A24)

According to Fu and Knight [23], for a 6= 0, it is true that

|a− b| − |a| = −b[I(a > 0)− I(a < 0)] + 2
∫ b

0
[I(a ≤ s)− I(a ≥ s)]ds. (A25)
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Applying the foregoing equation,

n

∑
i=1

{∣∣∣∣Yi − X
′
i

(
β +

v√
n

)∣∣∣∣− ∣∣∣Yi − X
′
i β
∣∣∣} (A26)

can be expressed as

− v′√
n

n

∑
i=1

[I(εi > 0)− I(εi < 0)] + 2
n

∑
i=1

∫ v′Xi√
n

0
[I(εi > 0)− I(εi < 0)]ds. (A27)

According to the central limit theorem, the distribution of the first item converges to v′W,
where W is a matrix with a mean of 0 and a variance of Σ = cov(X1). Denote the item∫ v′Xi√

n

0
[I(εi > 0)− I(εi < 0)]ds by Fni(v). It is difficult to directly find what value

n
∑

i=1
Fni(v)

converges to according to the probability. We hope to use
n
∑

i=1
[Fni(v)− E(Fni(v))] = op(1)

to transform the desired problem and then prove the “bridge”. Hence,

nE
[

F2
ni(v)I

(
|v′Xi|√

n
≥ c
)]
≤nE


 ∫ v′Xi√

n

0
2ds

2

I
(
|v′Xi|√

n
≥ c
)

=4E
[∣∣v′Xi

∣∣2 I
(∣∣v′Xi

∣∣ ≥ √nc
)]

=o(1).

(A28)

Alternatively, owing to the continuity of g(x) , there exist c > 0 and 0 < d < ∞ such that
sup|x|<cg(x) < g(0) + d. Then, nE

[
F2

ni(v)I
(
|v′Xi |√

n < c
)]

is dominated by

nE
[

F2
ni(v)I

(
|v′Xi|√

n
< c
)]
≤2ncE

[
F2

ni(v)I
(
|v′Xi|√

n
< c
)]

≤2ncE


∫ v′Xi√

n

0
[G(s)− G(0)]ds· I

(∣∣v′Xi
∣∣ < √nc

)
≤2nc{g(0) + d}E


∫ v′Xi√

n

0
sds· I

(∣∣v′Xi
∣∣ < √nc

)
≤c{g(0) + d}E

∣∣v′Xi
∣∣2,

(A29)

which converges to 0 as c→ 0. Therefore, as n→ ∞, nE
[
F2

ni(v)
]
→ 0, we have

var

(
n

∑
i=1

Fni

)
=

n

∑
i=1

var(Fni) ≤ nE
[

F2
ni(v)

]
→ 0. (A30)



Symmetry 2022, 14, 2161 17 of 18

This completes the proof of
n
∑

i=1
[Fni(v)− E(Fni(v))] = op(1). Furthermore, we turn the

problem to what value E
(

n
∑

i=1
Fni

)
will converge to probabilistically, and

n
∑

i=1
Fni will also

converge to this value.

E

(
n

∑
i=1

Fni

)
= nE[Fni(v)]

= nE


∫ v′Xi√

n

0
[G(s)− G(0)]ds


= nE


∫ v′Xi√

n

0
sg(0)ds

+ o(1)

=
1
2

g(0)v′

(
XiX

′
i

)
n

v

(A31)

due to P
{

n−1/2max(|v′X1|, . . . , |v′Xn|) > c∗
}
→ 0. According to the law of large numbers,

n

∑
i=1

Fni →p
1
2

g(0)v′Σv. (A32)

Therefore, the second item on the right side of (A27) converges to g(0)v′Σv according to
probability. The proof is completed by choosing C large enough so that the second term
of (A27) uniformly dominates the first term with ‖v‖ = C.

Appendix E. Appendix Proof of Theorem 4

Proof. Firstly, from Lemma 1, we can obtain the following inequality for λ̂, φ̂ and c > 0,

P
(

L
(
λ̂, φ̂

)
> cn−1/2 log n

)
≤ 2ε. (A33)

Then, we have

P
(

L
(
λ̂, φ̂

)
> cn−1/2 log n

)
≤ P

(
Lcv
(
λ̂, φ̂

)
> cn−1/2 log n

)
≤ 2P

(
sup

∣∣L(λ̂, φ̂
)
− Lcv

(
λ̂, φ̂

)∣∣ > 1
2

cn−1/2 log n
)
+ P

(
inf L

(
λ̂, φ̂

)
>

1
2

cn−1/2 log n
)

.
(A34)

The last term of this equation is given by the Bonferroni’s inequality. Hence, for each ε > 0,
there exists c > 0 such that

lim sup
n→∞

P
(

L
(
λ̂, φ̂

)
> cn−1/2 log n

)
< ε, (A35)

which completes the proof.

References
1. Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B Methodol. 1996, 58, 267–288. [CrossRef]
2. Wu, C.; Ma, S. A selective review of robust variable selection with applications in bioinformatics. Briefings Bioinform. 2015,

16, 873–883. [CrossRef] [PubMed]
3. Uraibi, H.S. Weighted Lasso Subsampling for HighDimensional Regression. Electron. J. Appl. Stat. Anal. 2019, 12, 69–84.
4. Meinshausen, N. Relaxed lasso. Comput. Stat. Data Anal. 2007, 52, 374–393. [CrossRef]
5. Hastie, T.; Tibshirani, R.; Tibshirani, R.J. Extended comparisons of best subset selection, forward stepwise selection, and the lasso.

arXiv 2017, arXiv:1707.08692.

http://doi.org/10.1111/j.2517-6161.1996.tb02080.x
http://dx.doi.org/10.1093/bib/bbu046
http://www.ncbi.nlm.nih.gov/pubmed/25479793
http://dx.doi.org/10.1016/j.csda.2006.12.019


Symmetry 2022, 14, 2161 18 of 18

6. Hastie, T.; Tibshirani, R.; Tibshirani, R.J. Rejoinder: Best Subset, Forward Stepwise or Lasso? Analysis and Recommendations
Based on Extensive Comparisons. Stat. Sci. 2020, 35, 625–626. [CrossRef]

7. Mentch, L.; Zhou, S. Randomization as regularization: A degrees of freedom explanation for random forest success. J. Mach.
Learn. Res. 2020, 21, 1–36.

8. Bloise, F.; Brunori, P.; Piraino, P. Estimating intergenerational income mobility on sub-optimal data: A machine learning approach.
J. Econ. Inequal. 2021, 19, 643–665. [CrossRef]

9. He, Y. The Analysis of Impact Factors of Foreign Investment Based on Relaxed Lasso. J. Appl. Math. Phys. 2017, 5, 693–699.
[CrossRef]

10. Gao, X. Estimation and Selection Properties of the LAD Fused Lasso Signal Approximator. arXiv 2021, arXiv:2105.00045.
11. Wang, H.; Li, G.; Jiang, G. Robust regression shrinkage and consistent variable selection through the LAD-Lasso. J. Bus. Econ.

Stat. 2007, 25, 347–355. [CrossRef]
12. Gao, X.; Huang, J. Asymptotic analysis of high-dimensional LAD regression with LASSO. Stat. Sin. 2010, 20, 1485–1506.
13. Xu, J.; Ying, Z. Simultaneous estimation and variable selection in median regression using Lasso-type penalty. Ann. Inst. Stat.

Math. 2010, 62, 487–514. [CrossRef]
14. Arslan, O. Weighted LAD-LASSO method for robust parameter estimation and variable selection in regression. Comput. Stat.

Data Anal. 2012, 56, 1952–1965. [CrossRef]
15. Rahardiantoro, S.; Kurnia, A. Lad-lasso: Simulation study of robust regression in high dimensional data. Forum Statistika dan

Komputasi. 2020, 20.
16. Zhou, X.; Liu, G. LAD-lasso variable selection for doubly censored median regression models. Commun. Stat. Theory Methods

2016, 45, 3658–3667. [CrossRef]
17. Li, Q.; Wang, L. Robust change point detection method via adaptive LAD-LASSO. Stat. Pap. 2020, 61, 109–121. [CrossRef]
18. Croux, C.; Filzmoser, P.; Pison, G.; Rousseeuw, P.J. Fitting multiplicative models by robust alternating regressions. Stat. Comput.

2003, 13, 23–36. [CrossRef]
19. Giloni, A.; Simonoff, J.S.; Sengupta, B. Robust weighted LAD regression. Comput. Stat. Data Anal. 2006, 50, 3124–3140. [CrossRef]
20. Xue, F.; Qu, A. Variable selection for highly correlated predictors. arXiv 2017, arXiv:1709.04840.
21. Gao, X.; Feng, Y. Penalized weighted least absolute deviation regression. Stat. Interface 2018, 11, 79–89. [CrossRef]
22. Jiang, Y.; Wang, Y.; Zhang, J.; Xie, B.; Liao, J.; Liao, W. Outlier detection and robust variable selection via the penalized weighted

LAD-LASSO method. J. Appl. Stat. 2021, 48, 234–246. [CrossRef]
23. Fu, W.; Knight, K. Asymptotics for lasso-type estimators. Ann. Stat. 2000, 28, 1356–1378. [CrossRef]
24. Pesme, S.; Flammarion, N. Online robust regression via sgd on the l1 loss. Adv. Neural Inf. Process. Syst. 2020, 33, 2540–2552.
25. Contreras-Reyes, J.E.; Arellano-Valle, R.B.; Canales, T.M. Comparing growth curves with asymmetric heavy-tailed errors:

Application to the southern blue whiting (Micromesistius australis). Fish. Res. 2014, 159, 88–94. [CrossRef]

http://dx.doi.org/10.1214/20-STS733REJ
http://dx.doi.org/10.1007/s10888-021-09495-6
http://dx.doi.org/10.4236/jamp.2017.53058
http://dx.doi.org/10.1198/073500106000000251
http://dx.doi.org/10.1007/s10463-008-0184-2
http://dx.doi.org/10.1016/j.csda.2011.11.022
http://dx.doi.org/10.1080/03610926.2014.904357
http://dx.doi.org/10.1007/s00362-017-0927-3
http://dx.doi.org/10.1023/A:1021979409012
http://dx.doi.org/10.1016/j.csda.2005.06.005
http://dx.doi.org/10.4310/SII.2018.v11.n1.a7
http://dx.doi.org/10.1080/02664763.2020.1722079
http://dx.doi.org/10.1214/aos/1015957397
http://dx.doi.org/10.1016/j.fishres.2014.05.006

	Introduction
	Relaxed Lad Lasso
	Definition
	Algorithm

	The Asymptotic Properties of Relaxed Lad Lasso
	Simulation
	Setup
	Evaluation Metrics
	Summary of Results

	Application to Real Data
	Dataset
	Analysis Results

	Conclusions
	Appendix Proof of Lemma 1
	Appendix Proof of Theorem 1
	Appendix Proof of Theorem 2
	Appendix Proof of Theorem 3
	Appendix Proof of Theorem 4
	References

