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Abstract: A widely used method that constructs features with the incorporation of so-called gram-
matical evolution is proposed here to predict the COVID-19 cases as well as the mortality rate. The
method creates new artificial features from the original ones using a genetic algorithm and is guided
by BNF grammar. After the artificial features are generated, the original data set is modified based on
these features, an artificial neural network is applied to the modified data, and the results are reported.
From the comparative experiments done, it is clear that feature construction has an advantage over
other machine-learning methods for predicting pandemic elements.
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1. Introduction

The world changed in December 2019, when the first reports emerged of a mysterious
infection in China. Subsequently, the WHO (World Health Organization) declared a new
global pandemic on 11 March 2020. The name given to the new coronavirus was SARS-CoV-
2 (Severe Acute Respiratory Syndrome), and the name given to the corresponding disease
was COVID-19. As Andersen mentioned [1], the virus’s origin is natural selection in an
animal host before zoonotic transfer or natural selection in humans following zoonotic
transfer. At the time of writing, the number of diagnosed cases of COVID-19 is about
650,000,000 and the number of people who have died is over 6,500,000. So, the fatality rate
was about 1%, although this rate may be lower since many people have fallen ill without
undergoing any diagnostic tests.

Due to the seriousness of the topic, since the beginning of the pandemic until now, a
multitude of publications have appeared in the relevant literature on this topic, and many
of them use computational techniques to predict the course of the disease. For example,
Wang [2] used the patient-information-based algorithm (PIBA), which uses real-time data
collected from patients in Wuhan. With this data, he wrote an algorithm to forecast the
death rates. Additionally, Tomar and Gupta [3] used long short-term memory (LSTM) to
predict the number of COVID-19 cases. Zhang et al. [4] used a Poisson model to analyze the
COVID-19 cases in Canada, France, Germany, Italy, the UK, and the USA. Pinter et al. [5]
used an ANFIS system and a multilayered perceptron- imperialist competitive algorithm
(MLP-ICA) to predict the mortality rate for Hungary. Smith et al. [6] used machine-learning
techniques for a dataset made of blood samples taken from COVID-19 patients from a
hospital in the region of Wuhan, in order to estimate the mortality rate. Additionally,
papers [7,8] used machine-learning techniques to recognize faces behind masks.

The current work utilizes a feature-construction method initially presented in [9] to
predict the COVID-19 cases and deaths for a series of randomly selected countries. The
method is based on grammatical evolution [10] and creates artificial features from the
original ones without a priori knowledge of the structure of the problem. The method has
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been used with success in a series of scientific fields such as spam identification [11], fetal
heart classification [12], epileptic oscillations [13], etc. Additionally, recently a software that
implements the feature-construction method using modern programming approaches has
been published [14]. In the case of the COVID-19 data, the only feature is the recording time
in ascending form, and the output is the number of cases or deaths on that recording. The
proposed method creates 1-3 artificial features from the recording time and, subsequently,
an artificial neural network [15,16] is trained on the modified data. The experimental results
are compared against other methods used to train neural networks, and the proposed tech-
nique appears to significantly outperform the others in terms of accuracy. The grammatical
evolution utilizes a genetic algorithm [17,18] to produce new features from the old ones.

Additionally, genetic algorithms have been used in a variety of symmetry problems
from the relevant literature [19–21]. Recently, Krippendorf and Syvaeri used artificial
neural networks to detect symmetries in datasets [22], Qiao et al. [23] used deep-learning
techniques to predict the energy solutions of the Schrödinger equations using symmetry-
adapted atomic orbital features, Xi et al. [24] used deep-learning methods on high-symmetry
material space, Selvaratnam et al. [25] used symmetry functions on large chemical spaces
through convolutional neural networks, and Wang et al. [26] used symmetry-adapted
graph neural networks for constructing molecular dynamics force fields.

Furthermore, a series of recent works has been proposed to model the dynamics of
the COVID-19 virus using fractional derivatives [27–29] or the work of Huzaifa et al. [30],
which was used for another virus, the Ebola virus.

The rest of this article is organized as follows: in Section 2, the main aspects of
grammatical evolution and the steps of the proposed technique are outlined in detail; in
Section 3, the experimental results are outlined; and finally in Section 4, some conclusions
and guidelines for the extension of the proposed technique are listed.

2. Method Description

The proposed technique is divided into two phases. During the first phase, artificial
new features are created from the original ones using grammatical evolution and a genetic
algorithm. The new features are evaluated using a radial basis function (RBF) network [31]
with H processing units. The RBF network is selected as the evaluator because the training
procedure of RBF is much faster than those of artificial neural networks. Subsequently, in
the second phase, the original dataset is transformed using the best located features and a
genetic algorithm is used to train a neural network on the modified dataset. A schematic
representation of the whole process is shown in Figure 1.

Figure 1. Flowchart of the proposed algorithm.
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2.1. Grammatical Evolution

Grammatical evolution is an evolutionary approach, where the chromosomes are
random numbers standing for production rules of a given BNF (Backus–Naur form) gram-
mar [32]. The grammatical evolution was initially used for regression [33,34] and to solve
trigonometric identities [35], but it has been applied in a variety of scientific fields, such as
the automatic composition of music [36], neural network construction [37,38], automatic
constant creation [39], the evolution of video games [40,41], energy-demand estimation [42],
combinatorial optimization [43], and cryptography [44]. The BNF grammar is defined as
the set G = (N, T, S, P) where

• N is the set of the non-terminal symbols, used to produce a series of terminal symbols
through production rules.

• T is the set of terminal symbols of grammar. For example, terminal symbols could be
the digits in an arithmetic expression of the operators.

• S is the starting non-terminal symbol of grammar. The production of a valid expression
is initiated from this symbol.

• P is the set of production rules. Every rule is in the form A → a or A → aB, A, B ∈
N, a ∈ T.

The original grammar is expanded in grammatical evolution, with the addition of a
sequence number for each production rule. The chromosomes in grammatical evolution
are integer numbers representing sequence numbers of production rules. Subsequently,
the production procedure starts from the start symbol of the grammar and produces valid
programs by replacing non-terminal symbols with the right hand of the selected production
rule. The selection of the rule has two steps:

1. Retrieve the next element from the given chromosome and denote it as V.
2. The next production rule R is calculated by

R = V MOD K

where K is the total number of production rules for the current non-terminal symbol.
In the current work, the extended BNF grammar is illustrated in Figure 2. The
non-terminal symbols are enclosed in the symbols < >, and the number N denotes
the number of original features. For the COVID-19 case, N is considered as 1. An
example of producing a valid expression is shown in the Table 1. The chromosome
is x = [9, 8, 6, 4, 16, 10, 17, 23, 8, 14] and N = 3. The valid expression finally created is
f (x) = x2 + cos(x3).

Considering the above mapping procedure, the steps to produce N f artificial features
for a given chromosome g are

1. Divide the chromosome into N f parts . Each part gi, i = 1, . . . , N f will construct a
separate feature.

2. A feature ti is constructed for every gi using the grammar given in Figure 2.
3. Construct a mapping function

FC(−→x , g) =
(

t1
(−→x , g1

)
, t2
(−→x , g2

)
, . . . , tN f

(−→x , gN f

))
(1)

with −→x being the pattern from the original set.
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S::=<expr> (0)
<expr> ::= (<expr> <op> <expr>) (0)

| <func> ( <expr> ) (1)
|<terminal> (2)

<op> ::= + (0)
| - (1)
| * (2)
| / (3)

<func> ::= sin (0)
| cos (1)
|exp (2)
|log (3)

<terminal>::=<xlist> (0)
|<digitlist>.<digitlist> (1)

<xlist>::=x1 (0)
| x2 (1)
.........
| xN (N)

<digitlist>::=<digit> (0)
| <digit><digit> (1)
| <digit><digit><digit> (2)

<digit> ::= 0 (0)
| 1 (1)
| 2 (2)
| 3 (3)
| 4 (4)
| 5 (5)
| 6 (6)
| 7 (7)
| 8 (8)
| 9 (9)

Figure 2. The grammar of the proposed method.

Table 1. Steps to produce a valid expression from the BNF grammar.

String Chromosome Operation

<expr> 9,8,6,4,16,10,17,23,8,14 9 mod 3 = 0

(<expr><op><expr>) 8,6,4,16,10,17,23,8,14 8 mod 3 = 2

(<terminal><op><expr>) 6,4,16,10,17,23,8,14 6 mod 2 = 0

(<xlist><op><expr>) 4,16,10,17,23,8,14 4 mod 3 = 1

(x2<op><expr>) 16,10,17,23,8,14 16 mod 4 = 0

(x2+<expr>) 10,17,23,8,14 10 mod 3 = 1

(x2+<func>(<expr>)) 17,23,8,14 17 mod 4 = 1

(x2+cos(<expr>)) 23,8,14 23 mod 2 = 1

(x2+cos(<terminal>)) 8,14 8 mod 2 = 0

(x2+cos(<xlist>)) 14 14 mod 3 = 2

(x2+cos(x3))

2.2. Feature Creation Step

In this step, a genetic algorithm in conjunction with the mapping procedure of Section 2.1
is used to produce artificial features. The fitness function of the genetic algorithm is the
training error of an RBF neural network with H processing units. The steps are as follows:

1. Initialization step
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(a) Set iter= 0, the current number of generations.
(b) Consider the set TR =

{(−→x1 , y1
)
,
(−→x2 , y2

)
, . . . ,

(−→xM, yM
)}

, the original train-
ing set.

(c) Set Nc as the number of chromosomes in the genetic population.
(d) Set N f as the number of constructed features.
(e) Initialize randomly in range [0, 255] every element of each chromosome.
(f) Set Ng as the maximum number of generations.
(g) Set ps ∈ [0, 1] as the selection rate.
(h) Set pm ∈ [0, 1] as the mutation rate.

2. Termination check step. If iter >= Ng terminate.
3. Calculate the fitness fi of every chromosome gi with the following procedure:

(a) Create N f features using the mapping procedure of Section 2.1.
(b) Construct the mapped training set

TN =
{(

FC
(−→x1 , gi

)
, y1
)
,
(
FC
(−→x2 , gi

)
, y2
)
, . . . ,

(
FC
(−→xM, gi

)
, yM

)}
(2)

(c) Train an RBF neural network C with H processing units on the new set TN
and obtain the following training error:

Ei =
M

∑
j=1

(
C
(
FC
(−→xj , Zi

))
− yj

)2 (3)

(d) Set fi = Ei

4. Genetic Operators

(a) Selection procedure: The chromosomes are sorted according to their fitness.
The best ps×Nc are copied intact to the next generation. The genetic operations
of crossover and mutation are applied to rest of the chromosomes.

(b) Crossover procedure: During this process (1− ps) × Nc, offspring will be
created. For every couple of produced offspring, two parents (z, w) are selected
using the well-known procedure of tournament selection. For every pair (z, w)
of parents, two offspring z̃ and w̃ are produced through one-point crossover.
An example of one-point crossover is shown in Figure 3 .

(c) Mutation procedure: For each element of every chromosome, a random num-
ber r ∈ [0, 1] is produced. Subsequently, we randomly change the correspond-
ing element if r ≤ pm.

5. Set iter = iter + 1 and goto Step 2.

Figure 3. An example of one-point crossover. A randomly selected point is chosen, and the two
subparts of the parents are exchanged.
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2.3. Feature Evaluation Step

During this step, the best chromosome gb of the first step is obtained and used to
create the modified train set

TN =
{(

FC
(−→x1 , gb

)
, y1
)
,
(
FC
(−→x2 , gb

)
, y2
)
, . . . ,

(
FC
(−→xM, gb

)
, yM

)}
Afterwards, a genetic algorithm is used to train an artificial neural network with H hidden
nodes for this dataset. The neural network used here is defined as a function N(x, w), where
w is the weight vector to be estimated through the genetic algorithm after the minimization
of the following training error:

E(N(x, w)) =
M

∑
i=1

(N(FC(xi, gb), w)− yi)
2 (4)

The neural network has a form also used in [45]. If the neural network has one
processing level, every output of each hidden node is in the form:

oi(x) = σ
(

pT
i x + θi

)
, (5)

where pi is the weight vector and θi is considered as the bias for output i. The function σ(x)
is the well-known sigmoid function given by

σ(x) =
1

1 + exp(−x)
(6)

For a neural network with H hidden nodes, the final output is given by:

N(x) =
H

∑
i=1

vioi(x), (7)

where vi is the weight for hidden node i. Hence, if we use one weight w for hidden nodes
and biases, the following form could be used for the neural network:

N
(−→x ,−→w

)
=

H

∑
i=1

w(d+2)i−(d+1)σ

(
d

∑
j=1

xjw(d+2)i−(d+1)+j + w(d+2)i

)
(8)

The value d the size of input vector −→x . Additionally, the total number of parameters
of vector −→w is (d + 2) × H. The genetic algorithm used here is a global optimization
technique [17,18] that has been applied with success in many problems such as electro-
magnetic problems [46], combinatorial problems [47], and the design of water distribution
networks [48]. Additionally, it has been used to train artificial networks in some works
from the relevant literature [49–51]. The steps of the genetic algorithm used in the second
step of the proposed method are as follows:

1. Initialization step.

(a) Set as Nc, the number of chromosomes that will participate.
(b) Set as Ng, the maximum number of allowed generations.
(c) Set as pm, the mutation rate.
(d) Set as ps, the selection rate.
(e) Set ε, a small positive number, i.e., ε = 10−8.
(f) Randomly initialize the chromosomes gi, i = 1, . . . , Nc. For the case of neu-

ral networks, every element of each chromosome is considered as a double
precision number. Additionally, the size of each chromosome is (d + 2)× H.

(g) Set iter = 0
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2. Check for termination.

(a) Obtain the best fitness
f ∗ = min

i∈[0,...,N]
fi

(b) Terminate if iter ≥ Ng OR f ∗ ≤ ε

3. Calculate fitness.

(a) For i = 1, . . . , Nc do

i. Create a neural network using the chromosome gi as a parameter vector.
ii. Calculate the fitness value fi = f (gi) using Equation (4).

(b) EndFor

4. Application of genetic operators.

(a) Selection operation. During selection, the chromosomes are classified accord-
ing to their fitness. The first ps × Nc are copied without changes to the next
generation of the population. The rest will be replaced by chromosomes that
will be produced at the crossover.

(b) Crossover operation. In the crossover operation, ps × Nc chromosomes are
produced. For every couple of produced offspring, two parents (z, w) are
selected using tournament selection. For every pair (z, w) of parents, two
offspring z̃ and w̃ are produced according to the following equations:

z̃i = aizi + (1− ai)wi

w̃i = aiwi + (1− ai)zi (9)

where ai is a random number with the property ai ∈ [−0.5, 1.5] [52].
(c) Mutation operation. For each element of every chromosome, a random num-

ber r ∈ [0, 1] is produced, and the element is altered if r ≤ pm.
(d) Set iter = iter + 1.

5. Goto step 2.

3. Experimental Results

The data were freely available from the https://ourworldindata.org/explorers/coronavirus-
data-explorer (accessed on 10 September 2022), and were downloaded for the start of the
pandemic until 10 September 2022. To enable the machine-learning models to better fit the
data, the following fair normalization took place in every dataset.

1. The number of cases was divided by 105.
2. The number of deaths was divided by 103.

The following countries were selected for testing: Algeria, Argentina, Australia, Brazil,
Bulgaria, Canada, Germany, Greece, Egypt, and Japan. For every country, two distinct
datasets were obtained from the COVID-19 database, one dataset for the number of cases
on every day of the pandemic and one dataset for the number of deaths on every day
of the pandemic. Every run was executed 30 times for every dataset, and averages were
measured. The random-number generator used was the drand48() of the C programming
language. The parameters for the proposed method are listed in Table 2. The results for
the COVID-19 cases are shown in the Table 3, and the results for the COVID-19 deaths are
illustrated in Table 4. The columns in both tables have the following meaning:

1. The column COUNTRY contains the name of the country.
2. The column ADAM stands for the Adam optimization method [53] used to train a

neural network with 10 processing nodes. The ADAM method is implemented in
OptimLib, and it is available from https://github.com/kthohr/optim (accessed on 10
September 2022).

https://ourworldindata.org/explorers/coronavirus-data-explorer
https://ourworldindata.org/explorers/coronavirus-data-explorer
https://github.com/kthohr/optim
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3. The column MLPPSO represents the results using a neural network trained with the
help of Particle Swarm Optimization method [54,55]. The number of PSO particles was
set to Nc, and the maximum number of allowed iterations was set to Ng. The values
for thes parameters are shown in the Table 2. Additionally, the BFGS method [56] was
applied to the best particle of the swarm when the PSO finished, in order to enhance
the results.

4. The column MLPGEN stands for the results obtained by a neural network with ten
processing units that was trained using a genetic algorithm [17,18]. The parameters
for this algorithm are listed in the Table 2. Additionally, the BFGS was applied to the
best chromosome after the termination of the genetic algorithm.

5. The column FC1 stands for the results obtained by the proposed method with one

constructed feature
(

N f = 1
)

.

6. The column FC2 stands for the results obtained by the proposed method with two

constructed features
(

N f = 2
)

.

7. The column FC3 stands for the results obtained by the proposed method with three

constructed features
(

N f = 3
)

.

Additionally, in both tables, an additional row was added to indicate the average error
and is denoted by AVERAGE. This extra column is graphically plotted in Figures 4 and 5
for case predictions and deaths prediction, respectively.

From the execution of the above experiments, it is clear in principle that the efficiency
of the methods depends to a great extent on the country in question. In some countries, the
test error is high, and in others it’s quite low. This is probably due to the different courses
of the number of cases and the mortality rate in each country. For example, if one looks at
the experimental results for Brazil, one will find that all the methods present a relatively
high error. This may be due to the large and abrupt changes that the disease has caused
in this country, as shown in Figure 6, which shows the course of deaths in this country
and is available from Johns Hopkins University. However, even in this country using the
proposed methodology, there was a large reduction in approximation error of 90%.

Moreover, the proposed method has higher accuracy than the other techniques, even if
only one artificial feature is created. In fact, in some countries, the test error of the proposed
technique is so low that it is almost zero. Using more than one feature appears to drastically
reduce the error, although the reduction appears to be more significant between one and
two features and less when a third constructed feature is added. Additionally, the Adam
method appears to achieve worse results than the PSO and the genetic algorithm methods,
and this is expected since this method is a local optimization technique, while the PSO and
the genetic algorithms are global optimization methods.

Additional experiments were performed to evaluate the parameters used in the proposed
method. Figure 7 shows the average error of the proposed method with two constructed
features for all experiment countries. In these experiments, a varying number of chromosomes
was used from 100 to 1000. As expected, the proposed method reduces the average error as the
number of chromosomes increases. This means, however, that the execution time of the method
increases as well as the memory that will be needed to store the computational structures.
Therefore, the value of 500 used in the proposed method for the number of chromosomes is a
good compromise between the speed and efficiency of the proposed technique.

Regarding the number of generations of the genetic algorithm, similar experiments
were carried out with this number between 50 and 400. The results of these experiments
are shown in Figure 8. Again, increasing the number of generations seems to reduce the
error, although the reduction is not as drastic as it was with the increase in chromosomes.
Again, the choice of 200 made for the number of generations in the experiments appears to
be a fair compromise.

The Wilcoxon signed-rank test was used to compare the total test error for the predic-
tion of COVID-19 cases in different countries of the proposed method (FC1, FC2, and FC3)
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with the respective total test error for the ADAM, MLPPSO, and MLPGEN optimization
methods. The results obtained through those statistical tests are shown in Figure 9. We also
compared the average error in predicting deaths per country of the proposed method (FC1,
FC2, and FC3) with the average error for ADAM, MLPPSO, and MLPGEN optimization
methods using the Wilcoxon signed-rank test. The results obtained through those statistical
tests are shown in Figure 10.

Table 2. Experimental parameters.

Parameter Value

Nc 500

Ng 200

H 10

ps 0.10

pm 0.05

ε 10−8

Table 3. Total test error for the prediction of COVID-19 cases.

Country ADAM MLPPSO MLPGEN FC1 FC2 FC3

Algeria 0.31 0.08 0.286 0.0025 0.0006 0.0002

Argentina 178.60 21.03 69.20 3.21 0.81 0.91

Australia 144.46 20.33 30.96 1.52 0.37 0.34

Brazil 198.26 81.94 75.79 11.93 8.97 6.50

Bulgaria 4.01 1.29 2.67 0.037 0.0098 0.01

Canada 27.68 6.12 20.65 0.33 0.20 0.15

Germany 274.34 135.15 92.50 25.05 25.11 14.36

Greece 25.07 12.08 9.25 3.62 1.60 2.75

Egypt 0.24 0.13 0.44 0.005 0.029 0.003

Japan 271.11 95.56 75.76 8.92 2.15 1.82

Average 112.41 37.37 37.75 5.46 3.92 2.68

Table 4. Predicted deaths per country.

Country ADAM PSOGEN MLPGEN FC1 FC2 FC3

Algeria 0.40 0.15 0.66 0.009 0.002 0.002

Argentina 18.50 19.70 25.81 2.03 1.35 1.70

Australia 1.69 0.44 1.00 0.05 0.03 0.03

Brazil 416.54 282.46 230.52 52.42 16.75 16.57

Bulgaria 3.80 2.76 16.50 0.15 0.10 0.08

Canada 9.12 4.78 18.12 0.27 0.15 0.15

Germany 116.56 37.06 40.49 3.03 2.07 4.17

Greece 3.29 2.97 2.86 0.74 0.08 0.07

Egypt 2.57 0.79 8.88 0.07 0.03 0.02

Japan 43.10 22.07 13.74 0.32 0.12 0.13

Average 61.56 37.32 35.86 5.91 2.07 2.29
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Figure 4. Graphical representation of average error for predicting COVID-19 cases.

Figure 5. Graphical representation of average error for predicting COVID-19 deaths.

Figure 6. The daily confirmed deaths for Brazil, available from John Hopkins University.
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Figure 7. Average test error for COVID-19 cases and deaths for different numbers of chromosomes
and two constructed features.

Figure 8. Average test error for COVID-19 cases and deaths for different numbers of generations and
two constructed features.

Figure 9. Box plot comparing the total test error for predicting COVID-19 cases among the optimiza-
tion methods of different countries.
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Figure 10. Box plot comparing the average error in predicting deaths per country among the
optimization methods.

4. Conclusions

In this paper, the use of a feature-construction technique to predict the cases of
COVID19 disease and to predict the mortality due to it was presented. The prediction was
made on widely available data for 10 randomly selected countries. The proposed method
constructs new features from existing ones using grammatical evolution and evaluates
them using a radial basis network (RBF). After the evaluation, the best resulting features are
used to train an artificial neural network. The results of the proposed methodology were
compared with those of other artificial neural network training techniques, and in all cases
there was a dramatic reduction in the network’s error for both case-number prediction
and mortality prediction. Furthermore, the more artificial features that are created, the
lower the neural network error. Future research should include the physical interpretation
of the generated features in relation to the nature of the problem. Additionally, future
improvements to the method may include:

1. The incorporation of more advanced stopping rules for the genetic algorithms of the
two phases.

2. The usage of other machine-learning models instead of the RBF network, to evaluate
the constructed features.

3. The usage of parallel techniques to speed up the feature-creation process.
4. The use of a data technique that will also contain the demographic characteristics of

each country, in order to establish whether there is a correlation of the rate of cases or
mortality with the particular characteristics of some countries.
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