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Abstract: Nonlocal gravity (NLG) is a classical nonlocal generalization of Einstein’s theory of gravita-
tion based on a certain analogy with the nonlocal electrodynamics of media. The history dependence
enters NLG through a constitutive relation involving a causal kernel that should ultimately be de-
termined via observational data. The purpose of this paper is to reformulate nonlocal gravity such
that the nonlocal aspect of the constitutive relation directly connects measurable quantities as in the
nonlocal electrodynamics of media. The resulting constitutive relation turns out to coincide with the
recent suggestion of Puetzfeld, Obukhov, and Hehl. With the new constitutive relation of NLG, it is
possible to show that de Sitter spacetime is not a solution of NLG.
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1. Introduction

In the theory of relativity, gravitation has to do with the deviation of the spacetime
manifold from flat Minkowski spacetime. The fundamental microphysical laws of physics
have been formulated with respect to the ideal inertial observers that are all at rest in a
global inertial frame in Minkowski spacetime with Cartesian coordinates Xµ = (cT, X) and
corresponding metric

dS2 = ηαβdXαdXβ , (1)

where the Minkowski metric tensor ηµν is given by diag(−1, 1, 1, 1) and we use units such
that c = 1, unless specified otherwise. Moreover, in our convention, Greek indices run from
0 to 3, while Latin indices run from 1 to 3. The ideal inertial observers carry orthonormal
tetrads Meµ

α̂ = δ
µ
α that consist of unit vectors that point along the Cartesian coordinate axes

and are therefore globally parallel. We use hatted indices to enumerate tetrad axes in the
local tangent space, while indices without hats are ordinary spacetime indices. Minkowski
spacetime contains an equivalence class of all such parallel frame fields that are related to
each other by constant elements of the global Lorentz group.

Inertial observers may choose any smooth admissible system of curvilinear coordinates
xµ = xµ(Xα) in Minkowski spacetime with the corresponding metric

dS2 = γµνdxµ dxν . (2)

The associated fundamental globally parallel tetrad frame field is now given by
MEµ

α̂ = ∂xµ/∂Xα and the orthonormality condition takes the form

ηα̂β̂ = γµν
MEµ

α̂
MEν

β̂ . (3)

Nonlocal gravity (NLG) is a classical history-dependent generalization of Einstein’s
general relativity (GR) theory patterned after the nonlocal electrodynamics of media. In-
deed, the theory involves a certain average of the gravitational field over past events. The
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purpose of the 16 partial integro-differential equations that constitute the field equation of
NLG is to find the 16 components of eµ

α̂, the fundamental tetrad frame field of the theory.
The fundamental tetrads are adapted to the fundamental observers of NLG theory. The
preferred tetrads are orthonormal, namely,

ηα̂β̂ = gµνeµ
α̂eν

β̂ , gµν = ηα̂β̂eµ
α̂eν

β̂ , (4)

where gµν(x) is the spacetime metric in arbitrary smooth admissible coordinates,

ds2 = gµν(x)dxµ dxν . (5)

In the absence of the gravitational field, the fundamental observers reduce to the
ideal global inertial observers at rest in an inertial frame in Minkowski spacetime with
eµ

α̂(x) = MEµ
α̂(x). The description of NLG requires an extended GR framework. A

comprehensive account of NLG is contained in Ref. [1].
As will be explained in some detail in the next section, the introduction of history

dependence in NLG is based on a certain analogy with Maxwell’s electrodynamics of media.
Consider Maxwell’s equations in a medium in Minkowski spacetime. The electromagnetic
field strength is given by (E, B) 7→ Fµν such that in an inertial reference frame, source-free
Maxwell’s equations imply

Fµν = ∂µ Aν − ∂ν Aµ , (6)

where Aµ is the vector potential. The medium, in the presence of Fµν, responds via
its polarizability and magnetizability resulting in net electromagnetic field excitations
(D, H) 7→ Hµν, such that

∂ν Hµν =
4π

c
Jµ , (7)

where Jµ is the current 4-vector associated with free electric charges. For the fundamental
ideal inertial observers, the field variables are the same as the observed quantities in
Equations (6) and (7), namely, field projections on the fundamental tetrads. That is, Hα̂β̂ =

Hµν
Meµ

α̂
Meν

β̂ = Hαβ and Fα̂β̂ = Fµν
Meµ

α̂
Meν

β̂ = Fαβ, since Meµ
α̂ = δ

µ
α . The constitutive

relation, which connects measured quantities Hα̂β̂ and Fα̂β̂, is characteristic of the background
medium. For instance, for a medium where the relation is local and linear,

Hα̂β̂ =
1
2

χα̂β̂
µ̂ν̂ Fµ̂ν̂ , (8)

where χα̂β̂
µ̂ν̂ is the electromagnetic constitutive tensor that is antisymmetric in its first and

last two indices.
The electromagnetic properties of material media, especially magnetic materials, gen-

erally exhibit history dependence (“hysteresis”). The causal connection between the input
(Fα̂β̂) and the output (Hα̂β̂) could be nonlinear; however, for the sake of simplicity, we
assume linearity throughout this work [2–4].

The main purpose of this paper is to reformulate the constitutive relation of NLG
theory in complete correspondence with the electrodynamics of media described above.
That is, the new constitutive relation will be formulated in such a way that it corresponds
to measurable quantities as determined by the preferred observers of the theory and their
adapted fundamental tetrad frame field eµ

α̂(x).

2. GR and Teleparallelism

To describe nonlocal gravity as an extension of GR, we need a framework that involves
the Levi-Civita connection as well as the Weitzenböck connection. They are both compatible
with the spacetime metric tensor gµν(x). As in GR [5], free test particles and light rays
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follow timelike and null geodesics, respectively. The symmetric Levi-Civita connection is
given by

0Γµ
αβ =

1
2

gµν(gνα,β + gνβ,α − gαβ,ν) (9)

and its associated Riemann curvature tensor is

0Rα
µβν = ∂β

0Γα
νµ − ∂ν

0Γα
βµ + 0Γα

βγ
0Γγ

νµ − 0Γα
νγ

0Γγ
βµ . (10)

A left superscript “0” is employed to refer to all geometric quantities related to the
Levi-Civita connection. Einstein’s gravitational field equation is given by [5]

0Gµν + Λ gµν = κ Tµν , (11)

where 0Gµν is the Einstein tensor

0Gµν := 0Rµν −
1
2

gµν
0R . (12)

Here, Tµν is the symmetric energy-momentum tensor of matter, Λ is the cosmological
constant and κ := 8πG/c4. The trace of the Riemann tensor, 0Rα

µαν = 0Rµν, is the Ricci
tensor and its trace, gµν 0Rµν = 0R, is the scalar curvature. In GR, Einstein’s equation with
Λ = 0 reduces to Poisson’s equation of Newtonian gravitation in the correspondence limit
(where we formally let c→ ∞).

Next, consider a smooth orthonormal frame field eµ
α̂(x) adapted to a congruence

of preferred observers in spacetime. We use the frame field to define the Weitzenböck
connection [6]

Γµ
αβ = eµ

ρ̂ ∂α eβ
ρ̂ . (13)

This connection is nonsymmetric and curvature free. The Weitzenböck covariant derivative
of the preferred tetrad frame vanishes, i.e.,

∇ν eµ
α̂ = 0 , (14)

which means that the fundamental frame field is globally parallel. The existence of a global
set of parallel frame fields renders the spacetime manifold parallelizable. In this framework
of teleparallelism [7–9], two distant vectors, tensors, etc., are defined to be parallel to each
other if they have the same components with respect to their local preferred tetrad frames.
Furthermore, Equation (14) implies that the Weitzenböck connection is compatible with the
spacetime metric; that is,

∇γ gαβ = 0 , gαβ,γ = Γµ
γα gµβ + Γµ

γβ gµα . (15)

The difference between two connections on a manifold is a tensor. For the Weitzenböck
connection, we define the torsion tensor by

Cµν
α := Γα

µν − Γα
νµ = eα

β̂

(
∂µeν

β̂ − ∂νeµ
β̂
)

(16)

and the contorsion tensor by
Kµν

α = 0Γα
µν − Γα

µν . (17)

It can be shown that [1]

Kµν
α =

1
2

gαβ(Cµβν + Cνβµ − Cµνβ) . (18)
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The contorsion tensor Kαβγ is antisymmetric in its last two indices, while the torsion
tensor Cαβγ is antisymmetric in its first two indices. It proves interesting to introduce an
auxiliary torsion tensor via

Cαβγ := Cα gβγ − Cβ gαγ + Kγαβ , (19)

where Cµ is the torsion vector Cµ := Cα
µα = −Cµ

α
α.

The field equation of NLG can be expressed as

∂

∂xν
Hµν

α̂ +

√−g
κ

Λ eµ
α̂ =

√
−g (Tα̂

µ + Tα̂
µ) , (20)

where g := det(gµν),
√−g = det(eµ

α̂) and

Hµνρ :=
√−g

κ
(Cµνρ + Nµνρ) . (21)

Here, Nµνρ = −Nνµρ is the nonlocality tensor. The antisymmetry of Hµνρ in its first two
indices implies

∂

∂xµ

[√
−g (Tα̂

µ + Tα̂
µ − Λ

κ
eµ

α̂)
]
= 0 , (22)

which expresses the law of conservation of total energy-momentum tensor. That is, Tµν

is, as before, the symmetric energy-momentum tensor of matter, while Tµν is the traceless
energy-momentum tensor of the gravitational field in nonlocal gravity,√

−g Tµν := CµρσHν
ρσ − 1

4 gµν CρσδHρσδ . (23)

Before we specify the nonlocality tensor Nµνρ, it is necessary to point out that in the
absence of this tensor, Nµνρ = 0, the theory described by Equations (20)–(23) is indeed
equivalent to Einstein’s GR.

2.1. Teleparallel Equivalent of General Relativity (TEGR)

We can start from 0Γα
µν = Γα

µν + Kµν
α and express GR in terms of the torsion tensor.

The Einstein tensor can be written as [1]

0Gµν =
κ√−g

[
eµ

γ̂ gνα
∂

∂xβ
Hαβ

γ̂ −
(

Cµ
ρσ Hνρσ − 1

4 gµν Cαβγ Hαβγ

)]
, (24)

where Hµνρ is defined by

Hµνρ :=
√−g

κ
Cµνρ . (25)

Einstein’s field Equation (11) then takes the form

∂

∂xν
Hµν

α̂ +

√−g
κ

Λ eµ
α̂ =

√
−g (Tα̂

µ +Tα̂
µ) , (26)

where Tµν is the trace-free energy-momentum tensor of the gravitational field in TEGR,
namely,

κ Tµν := Cµρσ Cν
ρσ − 1

4 gµν Cρσδ C
ρσδ . (27)

The total energy-momentum tensor is conserved,

∂

∂xµ

[√
−g (Tα̂

µ +Tα̂
µ − Λ

κ
eµ

α̂)
]
= 0 . (28)

This form of Einstein’s theory bears a certain resemblance to Maxwell’s electrodynam-
ics. The spacetime torsion (16) is analogous to the electromagnetic field strength. Indeed,
for each α̂ in

Cµν
α̂ = ∂µeν

α̂ − ∂νeµ
α̂ , (29)
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we have an expression relating Cµν
α̂ with eµ

α̂ that is reminiscent of the connection between
the electromagnetic field tensor Fµν and the vector potential Aµ. Furthermore, the auxil-
iary torsion field Hµν

α̂ in Equation (26) is analogous to the electromagnetic excitation in
Equation (7). Finally, we can regard Equation (25), namely,

Hαβγ =

√−g
κ

[
1
2 (Cγαβ + Cαβγ − Cγαβ) + Cα gβγ − Cβ gαγ

]
, (30)

as the local constitutive relation of TEGR, since it connects Hαβγ to Cαβγ.
The source of the analogy with electrodynamics has to do with the fact that TEGR is

the gauge theory of the 4-parameter Abelian group of spacetime translations [10]. Therefore,
TEGR, though nonlinear, is formally analogous to electrodynamics and can be rendered
nonlocal via history-dependent constitutive relations as in the nonlocal electrodynamics of
media. These considerations led F. W. Hehl to suggest that GR could be made nonlocal in
this way and the idea was subsequently worked out in Refs. [11,12]. For further discussion
of these ideas, see [1,13–18].

To introduce history dependence as in the nonlocal electrodynamics of media, we
modify the constitutive relation of TEGR while keeping the gravitational field equation
intact; equivalently, NLG reduces to TEGR when Nµνρ = 0. This connection between NLG
and TEGR makes it possible to find the nonlocally modified Einstein’s field equation. To
this end, we use Equations (21) and (25) to write

Hµνρ := Hµνρ −
√−g

κ
Nµνρ . (31)

Substituting this relation in Equation (24) and using the field Equation (20) of NLG,
we get the nonlocal GR field equation

0Gµν + Λgµν = κTµν −Nµν + Qµν . (32)

Here, Nµν is a nonlocal tensor given by

Nµν = gναeµ
γ̂ 1√−g

∂

∂xβ
(
√
−gNαβ

γ̂) (33)

and Qµν := κ(Tµν −Tµν) is traceless, i.e.,

Qµν = Cµρσ Nν
ρσ − 1

4 gµν Cδρσ Nδρσ . (34)

It is natural to split the nonlocal GR field equation into its symmetric and antisymmet-
ric parts; that is,

0Gµν + Λgµν = κTµν −N(µν) + Q(µν) (35)

and
N[µν] = Q[µν] . (36)

Of the 16 components of the fundamental tetrad eµ
α̂, 10 fix the components of the

metric tensor gµν via the orthonormality condition (4), while the other 6 are local Lorentz
degrees of freedom (i.e., boosts and rotations). Similarly, as illustrated by Equations (35)
and (36), the 16 field equations of NLG for the 16 components of the fundamental tetrad
eµ

α̂ naturally split into 10 nonlocally modified equations of GR plus 6 integral constraint
equations for the nonlocality tensor Nµνρ. These constraints disappear in the Newtonian
regime of NLG, while the nonlocal modification of GR has the interpretation of effective
dark matter [1,19–23].

It remains to specify the exact nonlocal connection between Nµνρ and Cµνρ.
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2.2. Old Nonlocal Constitutive Relation

In NLG, we have assumed that [1]

Nµνρ(x) = −
∫

Ωµµ′Ωνν′Ωρρ′ K(x, x′) Xµ′ν′ρ′(x′)
√
−g(x′) d4x′ , (37)

where Ω(x, x′) is Synge’s world function [24], K is the causal scalar kernel of the nonlocal
theory and Xµνρ(x) is a tensor that is antisymmetric in its first two indices and is given by

Xµνρ = Cµνρ + p̌ (Čµ gνρ − Čν gµρ) . (38)

Here, p̌ 6= 0 is a constant dimensionless parameter and Čµ is the torsion pseudovector
defined via the Levi-Civita tensor Eαβγδ by

Čµ :=
1
3!

Cαβγ Eαβγµ . (39)

Let us note that the relationship between Xµνρ and Cαβγ in Equation (38) is local and
linear and is of the general form

Xµνρ =
1
2

χµνρ
αβγ Cαβγ . (40)

Gravitational constitutive tensors χµνρ
αβγ have been thoroughly studied and classified in

Ref. [14].
At first sight, the constitutive relation (37), which involves a spacetime average of the

gravitational field (i.e., torsion tensor) over past events via a causal constitutive kernel,
appears natural and simple, since Ωµµ′(x, x′) = Ωµ′µ(x, x′) is a bitensor that is dimension-
less and has a natural coincidence limit in terms of the spacetime metric tensor, namely,
for x′ → x, Ωµµ′(x, x′)→ −gµµ′(x). In practice, however, this bitensor has a complicated
mathematical structure [25]. Furthermore, it has not been possible to find a nontrivial solu-
tion of NLG theory. Indeed, it is important to point out that the only known exact solution
of NLG is the trivial solution; that is, we recover Minkowski spacetime in the absence of
the gravitational field. The structure of Equation (37) appears to be partly responsible for
the fact that no exact nontrivial solution of NLG is known.

The known observational implications of NLG are all based on the linearized form
of Equation (37); that is, to first order in the deviation from Minkowski spacetime, the
implications of linearized NLG have been extensively studied [1,19–22]. In searching
for a replacement for Equation (37), we must make sure that this constitutive relation is
preserved at the linear order.

2.3. New Nonlocal Constitutive Relation

In nonlocal electrodynamics, the components of Hµν, as measured by the fundamental
inertial observers in Minkowski spacetime, namely, Hα̂β̂, are connected to the corresponding
measured components of Fµν, namely, Fα̂β̂, via the constitutive relation of the theory. That
is, the input of the constitutive relation is Fµ̂ν̂ and the output is Hµ̂ν̂. The analogy with
the nonlocal electrodynamics of media suggests that the components of Nµνρ, as measured by the
fundamental observers of the theory with adapted tetrads eµ

α̂, must be physically related to the
corresponding measured components of Xµνρ; that is, we must replace Equation (37) with

Nµ̂ν̂ρ̂(x) =
∫
K(x, x′) Xµ̂ν̂ρ̂(x′)

√
−g(x′) d4x′ , (41)

where
Xµ̂ν̂ρ̂ = Cµ̂ν̂ρ̂ + p̌ (Čµ̂ ην̂ρ̂ − Čν̂ ηµ̂ρ̂) . (42)

In this way, the new constitutive relation directly refers to scalar gravitational field quantities.
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The new constitutive relation (41) coincides with the simple form of the nonlocal
constitutive relation previously suggested in Ref. [25], where the bitensor −Ωµµ′(x, x′) is
replaced by the parallel propagator eµ

α̂(x) eµ′ α̂(x′) for the sake of simplicity. This is possible
within the framework of teleparallelism. That is, independently of the issue of measurability
of field quantities that appear in the new constitutive relation, the fundamental orthonormal
frame field eµ

α̂ is parallel throughout spacetime. At the linear order, the new ansatz
coincides with the old one, as already noted in Ref. [25] as well.

Henceforth, we will adopt Equation (41) as the constitutive relation of NLG theory.
In a previous attempt at finding nontrivial exact solutions of NLG, conformally flat

spacetimes were considered [26]. These are discussed in this paper in Appendices A and B.
We work out the explicit form of the new constitutive relation for conformally flat spacetimes
in Appendix A; however, we are still unable to solve the field equation of NLG. Instead, we
discuss in the rest of this paper the issue of whether de Sitter spacetime is a solution of NLG.

3. Is De Sitter Spacetime a Solution of NLG?

The spacetime of constant positive curvature is given by de Sitter metric, which is
conformally flat and has the same form as Equation (A1), namely,

ds2 =
1

(λ t)2 ηµνdxµdxν , λ :=
(

Λ
3

)1/2
. (43)

This is a solution of the vacuum Einstein equation with cosmological constant Λ > 0; hence,
it is also a solution of NLG provided Nµν = Qµν.

We can use the results of Appendix A in our calculations keeping in mind that λ t =
e−U . The new constitutive relation (41) is given by Equation (A7). Let us write it in the form

Nµν
ρ(x) = 2 λ2t (η0µδν

ρ − η0νδ
µ
ρ )I , (44)

where Uµ = −(1/t)δ0
µ and I is the spacetime invariant defined by

I :=
∫
KdS(x, x′)

√
−g(x′) d4x′ =

1
λ4

∫ 1
t′4
KdS(x, x′) d4x′ . (45)

We find that

N0i
ρ(x) = −2 λ2t δi

ρ I , Nij
ρ(x) = 0 , Nαβ

β = −6 λ2t δα
0 I . (46)

On the other hand, we have from Equation (A9),

Qµ
ν = Uµ Nνρ

ρ −Uρ Nνρ
µ −

1
2

δν
µ Uα Nαβ

β . (47)

Therefore,
Qµ

ν = λ2(4δ0
µδν

0 − δν
µ)I . (48)

This should equal Nµ
ν, which can be expressed using Equation (A8) as

Nµ
ν(x) = t3 ∂

∂xβ

( 1
t3 Nνβ

µ

)
. (49)

It is clear from Equation (46) that N0
0 = 0, while Q0

0 = 3λ2 I . Indeed, it turns out
that de Sitter spacetime is a solution of NLG provided

I = 0 . (50)

Let us next consider the coordinate transformation (t, x) 7→ (T, X), where

t =
1
λ

e−λT , x = X . (51)
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Then, de Sitter metric takes the form

ds2 = −dT2 + e2λTδijdXidX j , (52)

from which we recover the Minkowski metric for λ→ 0+. The fundamental tetrad frame
is now given by dSeµ

0̂ = δ
µ
0 and dSeµ

î = e−λTδ
µ
i .

In these new coordinates, the vanishing invariant I can be written as

I =
∫
KdS(X, X′) e2λT′ d4X′ = 0 . (53)

In the limiting situation when λ→ 0+, we expect KdS → KM, where KM is the causal
constitutive kernel in the case of Minkowski spacetime. It therefore seems that in the
limiting case of vanishing cosmological constant we must have∫

KM(X, X′) d4X′ = 0 . (54)

However, according to Equation (7.151) of Ref. [1], we have in NLG∫
KM(X, X′) d4X′ = χ̂(0) , (55)

where χ̂(0) is a negative number such that

− 1 < χ̂(0) < 0 . (56)

We conclude that de Sitter spacetime is not a solution of NLG theory. The rest of this
section is devoted to the calculation of KdS.

KdS

Let us first recall that in a global inertial frame with coordinates Xµ = (T, X) in
Minkowski spacetime, the fundamental inertial observers have adapted tetrads Meµ

α̂ = δ
µ
α

and the world function is [1,26]

MΩ(X, X′) = −1
2
[(T − T′)2 − |X− X′|2] . (57)

The nonlocal causal kernel is a function of the invariants [1,26]

MΩµ(X, X′) Meµ
α̂|X = −MΩµ(X, X′) Meµ

α̂|X′ = ηαβ(Xα − X′α) . (58)

As described in detail in Section (7.5) of [1], the kernel of NLG for Minkowski spacetime
can be written as

KM(X, X′) = Θ(T − T′ − |X− X′|) kM(T − T′, X− X′) . (59)

Here, Θ is the Heaviside unit step function such that Θ(t) = 0 for t < 0 and Θ(t) = 1 for
t ≥ 0. Moreover, kM is a definite universal function as described in detail in Section (7.5)
of [1]. This kernel is determined via its reciprocal kernel described briefly in Appendix C.

The world function in de Sitter spacetime (43) is given by dSΩ(x, x′) = −τ2/2,
where [27]

cosh (λ τ) =
t2 + t′2 − |x− x′|2

2t t′
:= Q . (60)

Here, Q ≥ 1 and
λ τ = ln (Q+

√
Q2 − 1) . (61)

Under the coordinate transformation (51), invariant Q takes the form

Q = cosh[λ(T − T′)]−L , (62)
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where
L :=

1
2

λ2 eλ(T+T′) |X− X′|2 . (63)

One can check that in terms of the new coordinates, dSΩ→ MΩ as λ→ 0. Moreover, the
requirement that Q ≥ 1 becomes cosh[λ(T − T′)] ≥ 1 + L. It is now straightforward to
show that

dSΩµ(X, X′) dSeµ
0̂|X =

λτ

λ sinh(λτ)

{
− sinh[λ(T − T′)] +L

}
(64)

and
dSΩµ(X, X′) dSeµ

î|X =
λτ

sinh(λτ)
eλT′(X− X′) . (65)

Similarly,
dSΩµ(X, X′) dSeµ

0̂|X′ =
λτ

λ sinh(λτ)

{
sinh[λ(T − T′)] +L

}
(66)

and
dSΩµ(X, X′) dSeµ

î|X′ = −
λτ

sinh(λτ)
eλT(X− X′) . (67)

We note that KdS(X, X′) must be a function of the above invariants, which reduce to
the corresponding Minkowski invariants when λ→ 0. Based on these results, let

U :=
1
λ

ln (S+
√
S2 − 1) , S := 1 +L , (68)

V :=
λτ

λ sinh(λτ)

{
sinh[λ(T − T′)] +L

}
, (69)

W :=
λτ

sinh(λτ)
eλT(X− X′) . (70)

Then,
KdS(X, X′) = Θ(T − T′ −U) kM(V,W) . (71)

For λ→ 0, we find KdS → KM.

4. Discussion

Nonlocal gravity (NLG) has been patterned after the electrodynamics of media and
therefore involves a nonlocal constitutive relation. Linearized NLG has been mainly studied
thus far, since no exact nontrivial solution of the theory is known at present. This could
be in part due to the complicated nature of the constitutive relation. In this paper, we
adopt a new constitutive relation for NLG and use it to show that de Sitter spacetime is
not a solution of NLG. The new constitutive relation, which is the same as the one recently
suggested in Ref. [25], is more physically motivated and simpler than the old one; besides,
it appears to be more amenable to finding exact solutions of NLG.
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Appendix A. New Constitutive Relation for Conformally Flat Spacetimes

Consider a conformally flat spacetime with

ds2 = e2U ηµν dxµ dxν , (A1)

where U(x) is a scalar function. The fundamental observers in this case are all at rest in
space with adapted orthonormal tetrads

eµ
α̂(x) = e−U δ

µ
α , eµ

α̂(x) = eU δα
µ . (A2)

The Einstein tensor for metric (A1) is given by [28]

0Gµν = −2 (Uµν −Uµ Uν) + ηµνηαβ(Uα Uβ + 2 Uαβ) . (A3)

Here, Uµ := ∂µU, Uµν = ∂µ∂νU, etc. The gravitational source could be a perfect fluid of
energy density ρ and pressure p with energy-momentum tensor

Tµν = ρ uµ uν + p (gµν + uµ uν) , (A4)

where uµ is the fluid’s 4-velocity vector.
From the preferred tetrad frame field (A2), we find the torsion tensor and the tor-

sion vector
Cαβγ = e2U (Uα ηβγ −Uβ ηγα) , Cα = −3 Uα . (A5)

Furthermore, the contorsion tensor and the auxiliary torsion tensor are given by

Kαβγ = Cβγα , Cαβγ = −2 Cαβγ . (A6)

The torsion pseudovector vanishes in the conformally flat case, namely, Čα = 0; hence,
Xµνρ = Cµνρ. The new constitutive relation of NLG thus implies

Nµνρ(x) = −2
∫
[Uµ(x′)ηνρ −Uν(x′)ηµρ]K(x, x′) e3[U(x)+U(x′)] d4x′ . (A7)

In terms of Nµνρ, we can write the nonlocal parts of the field Equation (32) as

Nµν = e−U ηνα
∂

∂xβ

(
e3 U Nαβ

µ

)
, (A8)

and
Qµν = Uµ Nν

ρ
ρ −Uρ Nν

ρ
µ −

1
2

gµν Uα Nαβ
β . (A9)

The symmetric parts of these tensors contribute to Equation (35), while the six supple-
mentary constraints given by N[µν] = Q[µν] can be expressed as

gµα
∂Nαβ

ν

∂xβ
− gνα

∂Nαβ
µ

∂xβ
+ Uµ Nν

α
α −Uν Nµ

α
α + 4Uβ (Nµ

β
ν − Nν

β
µ) = 0 . (A10)

Appendix B. 2D Spacetimes

Any two-dimensional spacetime is conformally flat [28]; therefore, its metric can be
written as

ds2 = e2U(t,x)(−dt2 + dx2) . (A11)

In this case, gµν = exp(2U) η̃µν,
√−g = exp (2U) and η̃µν := diag(−1, 1). Using

formulas given in Section (3.7) of Ref. [28], one can show that the Ricci tensor, scalar
curvature and Einstein tensor in 2D are given by

0Rµν = −η̃µν η̃αβUαβ , 0R = −2 e−2U η̃αβUαβ , 0Gµν = 0 . (A12)
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We assume that in a 2D spacetime, Λ = 0 and Tµν = 0; therefore, any 2D spacetime is
a solution of the GR field equation.

On the other hand, the field equation of NLG in 2D reduces toNµν = Qµν, where both
sides vanish if Nαβγ = 0. Let us note that in 2D,

Cµνρ = Uµgνρ −Uνgµρ , Kµνρ = Cνρµ , Cµ = −Uµ , Čα = 0 (A13)

and
Cµνρ = 0 . (A14)

The connection of Nαβγ and Cµνρ via the new (or old) constitutive relation of NLG then
implies that Nµνρ = 0 in 2D. This circumstance leads to the fact that, just as in GR, the field
equation of NLG is always satisfied in 2D.

In Section (5) of Ref. [26], the nonzero 4D value of Cµνρ was inadvertently employed
in 2D leading to erroneous conclusions. Indeed, the parts of the treatment given in Section
(5) of Ref. [26] that use Cµνρ 6= 0 in 2D are incorrect.

Appendix C. Reciprocal KernelRM(X− X ′)

The kernel of NLG for Minkowski spacetime,KM(X, X′), or equivalently,KM(X−X′),
given by Equation (59), has a reciprocal kernelRM(X− X′) such that

KM(X− X′) +RM(X− X′) +
∫
KM(X− X′′)RM(X′′ − X′) d4X′′ = 0 , (A15)

see Section (7.2) of [1]. In principle, the kernel can be determined once its reciprocal is
known. According to Equation (7.143) of [1],

RM(X− X′) = ν e−ν(T−T′−|X−X′ |) Θ(T − T′ − |X− X′|) q(|X− X′|) , (A16)

where ν−1 is a constant length to be determined via future observational data and q(r)
is a spherically symmetric L1 and L2 function of r = |X − X′|. Two simple possible
forms for q have been considered based on the nearly flat rotation curves of nearby spiral
galaxies, namely,

q1(r) =
1

4π`0

1 + µ0 (a0 + r)
r (a0 + r)

e−µ0 r , q2(r) =
r

a0 + r
q1(r) . (A17)

Here, `0, µ−1
0 and a0 are three constant lengths; moreover, `0 is the main nonlocality

parameter, since the reciprocal kernel tends to zero as `0 tends to infinity. Observational
data regarding nearby spiral galaxies and clusters of galaxies are consistent with [19]

µ0 = 0.059± 0.028 kpc−1 , `0 ≈ 3± 2 kpc . (A18)

Finally, solar system data provide a lower bound for a0, namely, a0 & 1015 cm [20,23].

References
1. Mashhoon, B. Nonlocal Gravity; Oxford University Press: Oxford, UK, 2017.
2. Landau, L.D.; Lifshitz, E.M. Electrodynamics of Continuous Media; Pergamon: Oxford, UK, 1960.
3. Jackson, J.D. Classical Electrodynamics, 3rd ed.; Wiley: Hoboken, NJ, USA, 1999.
4. Hehl, F.W.; Obukhov, Y.N. Foundations of Classical Electrodynamics: Charge, Flux, and Metric; Birkhäuser: Boston, MA, USA, 2003.
5. Einstein, A. The Meaning of Relativity; Princeton University Press: Princeton, NJ, USA, 1955.
6. Weitzenböck, R. Invariantentheorie; Noordhoff: Groningen, The Netherlands, 1923.
7. Maluf, J.W.; Faria, F.F. Conformally invariant teleparallel theories of gravity. Phys. Rev. D 2012, 85, 027502. [CrossRef]
8. Aldrovandi, R.; Pereira, J.G. Teleparallel Gravity: An Introduction; Springer: New York, NY, USA, 2013.
9. Maluf, J.W. The teleparallel equivalent of general relativity. Ann. Phys. 2013, 525, 339–357. [CrossRef]
10. Cho, Y.M. Einstein Lagrangian as the translational Yang–Mills Lagrangian. Phys. Rev. D 1976, 14, 2521–2525. [CrossRef]
11. Hehl, F.W.; Mashhoon, B. Nonlocal Gravity Simulates Dark Matter. Phys. Lett. B 2009, 673, 279–282. [CrossRef]

http://doi.org/10.1103/PhysRevD.85.027502
http://dx.doi.org/10.1002/andp.201200272
http://dx.doi.org/10.1103/PhysRevD.14.2521
http://dx.doi.org/10.1016/j.physletb.2009.02.033


Symmetry 2022, 14, 2116 12 of 12

12. Hehl, F.W.; Mashhoon, B. Formal framework for a nonlocal generalization of Einstein’s theory of gravitation. Phys. Rev. D 2009,
79, 064028. [CrossRef]
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