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Abstract: Chaotic maps have simple structures but can display complex behavior. In this paper, we
apply discrete memristance and a nonlinear term in order to design new memristive maps. A general
model for constructing memristive maps has been presented, in which a memristor is connected
in serial with a nonlinear term. By using this general model, different memristive maps have been
built. Such memristive maps process special fixed points (infinite and without fixed point). A typical
memristive map has been studied as an example via fixed points, bifurcation diagram, symmetry,
and coexisting iterative plots.
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1. Introduction

Discrete maps, memristor, and hidden attractor have attracted significant attention
in recent years [1–4]. Discrete maps are noticeable examples of simple structures, which
can exhibit complex dynamics [5,6]. Both chaos and hyperchaos were observed in discrete
maps [7–9]. In the literature, numerous chaotic maps were reported range from common
discrete maps to recent fractional maps. Discrete maps are suitable for developing various
applications such as audio encryption, robot motion, secure systems, and so on [10–15].
Interestingly, Lu et al. develop a symmetric algorithm using trigonometric map for image
encryption [16]. Application of hyperchaotic maps in generative adversarial nets is reported
in [17].

Memristor is a basic circuit element presenting the relationship between charge and
magnetic flux. With the development of memristor models and memristive devices, various
structures of memristive systems have been established, and their dynamics have been
explored [18–20]. Memristive neural networks propose novel research directions about
artificial neural networks [21]. Xu et al. introduced a jerk system using a generalized
memristor [22]. In the work [23], the authors investigated a memristor circuit. Asymmetric
bifurcations were discovered in an asymmetric memristive jerk circuit [24]. Asymmetric
coexisting bifurcations, multistability, and similar features in asymmetric circuits are the
attractive features. Recently, memristors have been used to develop memristive maps [25,26].

Studies on chaotic attractors in nonlinear systems have been published in several
papers [27–32]. It is noted that chaotic attractors found in a conventional system belong to
a common type of self-excited attractor [33]. In order to obtain chaos, the initial states are
located closely to the unstable equilibrium points. However, there are hidden attractors
characterized by the existence of stable equilibrium or the absence of equilibrium [34–37].
It is challenge to find and analyze this kind of attractor [38–40].
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The combination of three research topics (discrete map, memristor, and hidden attrac-
tor), as illustrated in Figure 1, opens up new research directions. For example, memristor-
based systems with hidden attractors have been discovered when combining two research
topics (memristor and hidden attractor). This work focuses on the overlap of three such
research topics by introducing an approach to design discrete maps with a memristor. It
is worth noting that the designed discrete maps belong to systems with a hidden attrac-
tor. We believe that memristor-based discrete maps have special features such as chaos,
multistability, an infinite number of fixed points, etc. There are a few published works on
memristor-based maps [25,26].

Figure 1. Relationships of three research topics. The overlapped area of three circles shows the
memristive maps with hidden attractor.

The remainder of the work is organized as follows. A general model for designing
memristive maps is proposed and analyzed in Section 2. In Section 3, a typically designed
map (the MM1 map) is investigated via fixed points, bifurcation diagram, symmetry,
iterative plots, and implementation. Finally, the conclusions are presented in Section 4.

2. General Model

Motivated by the flexibility, practicability, and attention of discrete maps, memristors,
and hidden attractors, we would like to introduce an approach to building new memristive
maps. The general map is designed as illustrated in Figure 2. The two main components
needed to construct the map are a memristor and a nonlinear term F(.), which are connected
serially. The amplifiers b and a indicate the effect of the memristor and the nonlinear term
on the structure, respectively. In addition, there is the presence of a controller c used to
control the fixed points.

Figure 2. Design of map with memristor and nonlinear function F(.).
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By denoting the discrete memristance as M(y(n)), the general model is characterized by{
x(n + 1) = aF(bM(y(n))x(n)) + c
y(n + 1) = y(n) + x(n)

(1)

with parameters a, b, c. The nonlinear term F(.) satisfying F(0) = 0. Equation (1) presents
the general model of memristor-based discrete maps. It is used to design discrete maps
with a memristor.

If P(x∗, y∗) is the fixed point of model (1), we have{
x∗ = aF(bM(y∗)x∗) + c
y∗ = y∗ + x∗

(2)

Therefore, we get {
aF(bM(y∗)x∗) + c = 0
x∗ = 0

(3)

The number of fixed points in the model (1) depends on c. There are two attractive
cases. In the first case, there is no fixed point for c 6= 0. In the second case, there are infinite
fixed points given by P(0, y∗).

Based on the proposed general model, different maps can be constructed with ap-
propriated discrete memristance and nonlinear terms. For instance, when applying the
following discrete memristance M(y(n)), and nonlinear term F(.){

M(y(n)) = cos(y(n))
F(.) = sin(.)

(4)

we obtain the MM1 memristive map{
x(n + 1) = a sin(b cos(y(n))x(n)) + c
y(n + 1) = y(n) + x(n)

(5)

Chaotic dynamics of the MM1 map are illustrated in Figure 3a for a = 2.6, b = 1.1,
c = 0.001, and (x(0), y(0)) = (1, 2).

Three other new memristive maps are found and listed in Table 1. It is noted that
Equation (1) is classified and presented in Table 1 based on the selected discrete memristance
and nonlinear term. These memristive maps displayed chaos, as shown in Figure 3.

(a) (b)
Figure 3. Cont.
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(c) (d)
Figure 3. Iterative plots obtained from : (a) MM1 map, (b) MM2 map, (c) MM3 map, and (d)
MM4 map.

Table 1. Constructed maps using memristor and nonlinear term.

Map Equations Parameters (x(0), y(0))

MM1 x(n + 1) = a sin(b cos(y(n))x(n)) + c a = 2.6, b = 1.1 x(0) = 1
y(n + 1) = y(n) + x(n) c = 0.001 y(0) = 2

MM2 x(n + 1) = a sin(b sin(y(n))x(n)) + c a = 2.6, b = 1 x(0) = 1
y(n + 1) = y(n) + x(n) c = 0.001 y(0) = 2

MM3 x(n + 1) = a tanh(b cos(y(n))x(n)) + c a = 2.6, b = 1.3 x(0) = 1
y(n + 1) = y(n) + x(n) c = 0.001 y(0) = 2

MM4 x(n + 1) = a tanh(b sin(y(n))x(n)) + c a = 2.7, b = 1.1 x(0) = 1
y(n + 1) = y(n) + x(n) c = 0.001 y(0) = 2

3. MM1 Map

We focus on the MM1 map described by Equation (5) to illustrate noticeable features
of such newly constructed maps. The fixed point P(x∗, y∗) of the MM1 map must satisfy
the condition {

x∗ = a sin(b cos(y∗)x∗) + c
y∗ = y∗ + x∗

(6)

In the first case, there is no fixed point for c 6= 0. In the second case, there are infinite
fixed points given by P(0, y∗). The Jacobian matrix of the map is

J =
[

ab cos(b cos(y∗)x∗) cos(y∗) −ab cos(b cos(y∗)x∗)x∗ sin(y∗)
1 1

]
(7)

Therefore, at P(0, y∗), we obtain

J|P(0,y∗) =

[
ab cos(y∗) 0

1 1

]
(8)

As a result, we get its characteristic equation

λ2 + ab cos(y∗)λ = 0 (9)

From the characteristic equation, the fixed point is stable for

cos2(y∗) <
1

a2b2 (10)

otherwise P(0, y∗) is unstable.
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3.1. Case 1 When c 6= 0

For c 6= 0, there is no fixed point in the map. We study the map with b = 1.1, c = 0.001
and varying a. Both the bifurcation plot in Figure 4a and Lyapunov exponents in Figure 4b
exhibit dynamical behavior in the range a ∈ [2.3, 2.7]. Positive Lyapunov exponents appear
when increasing a and indicate chaos in the map.

(a)

(b)
Figure 4. (a) Bifurcation diagram, (b) Lyapunov exponents of MM1 map when changing a from 2.3 to
2.7. The red and blue colors present the first and second Lyapunov exponents, respectively.

It is noted that the map is symmetrical via the transformation

(x, y)↔ (x, y± 2kπ) (11)

Figure 5 show seven iterative plots, which coexist with a = 2.6, b = 1.1, c = 0.001 for
different values of (x(0), y(0)).
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Figure 5. Coexisting iterative plots are observed when changing (x(0), y(0)): (0.1, 0.2 + 6π) (yellow),
(0.1, 0.2 + 4π) (magenta), (0.1, 0.2 + 2π) (red), (0.1, 0.2) (black), (0.1, 0.2− 2π) (blue), (0.1, 0.2− 4π)

(green), (0.1, 0.2− 6π) (cyan).

3.2. Case 2 When c = 0

When c = 0, the map is given by{
x(n + 1) = a sin(b cos(y(n))x(n))
y(n + 1) = y(n) + x(n)

(12)

The symmetry of the MM1 map is confirmed by

(x, y)↔ (−x,−y) (13)

The coexistence of two iterative plots is shown in Figure 6 for a = 2.6, b = 1.1 with
two values (x(0), y(0)) = (1, 2) (black color) and (x(0), y(0)) = (−1,−2) (red color).

Figure 6. The presence of two iterative plots for (x(0), y(0)) = (1, 2) (black) and (x(0), y(0)) =

(−1,−2) (red).

Similar to Case 1, the MM1 map can generate various iterative plots when keeping
a = 2.6, b = 1.1 and changing (x(0), y(0)) (see Figure 7).
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Figure 7. Coexistence of seven iterative plots for different values (x(0), y(0)): (0.1, 0.2 + 6π) (yellow),
(0.1, 0.2 + 4π) (magenta), (0.1, 0.2 + 2π) (red), (0.1, 0.2) (black), (0.1, 0.2− 2π) (blue), (0.1, 0.2− 4π)

(green), (0.1, 0.2− 6π) (cyan).

3.3. Discussion

The purposed memristive maps display attractive behavior. In addition, such maps
can be implemented using a hardware platform, for example, microcontroller or FPGA. We
have used a microcontroller to realize the MM1 map by applying the general approach [13].
The microcontroller-based approach is a simple one and can be implemented conveniently
[41]. A display is connected to the microcontroller directly to show the iterative plot, which
is reported in Figure 8. The feasibility and chaos of the map are suitable for practical
applications.

Figure 8. Experimental result of the MM1 map, which is captured from the microcontroller.

4. Conclusions

The ability to connect the memristor and nonlinear term to propose chaotic maps
was examined in this work. Our finding reveals that constructed maps depend on the
selected discrete memristance and nonlinearity. We study a typical map as an example and
observe its dynamical behaviors. Numerical simulations demonstrate the chaos, symmetry,
and coexistence of iterative plots in the map. The implementation of the MM1 map with
microcontroller confirms its feasibility. We believe that memristive maps can provide
advantages in practical applications such as random signal generators.
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