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Abstract: The fractional Hilbert transform, a generalization of the Hilbert transform, has been
extensively studied in the literature because of its widespread application in optics, engineering, and
signal processing. In the present work, we expand the fractional Hilbert transform that displays an
odd symmetry to a space of generalized functions known as Boehmians. Moreover, we introduce a
new fractional convolutional operator for the fractional Hilbert transform to prove a convolutional
theorem similar to the classical Hilbert transform, and also to extend the fractional Hilbert transform
to Boehmians. We also produce a suitable Boehmian space on which the fractional Hilbert transform
exists. Further, we investigate the convergence of the fractional Hilbert transform for the class of
Boehmians and discuss the continuity of the extended fractional Hilbert transform.

Keywords: convolution; Boehmian; fractional Hilbert transform; Hilbert transform; equivalence
class; delta sequences; compact support

1. Introduction

The space of Boehmians is a class of generalized functions that include all regular
operators and generalized functions or distributions, and other objects. The theory of
Boehmians with two convergences, introduced by Mikusinski [1], broadens the concept
of Boehme’s regular operators [2]. In contrast to the theory of distributions in which
generalized functions are treated as members of the dual space of any space of testing
function, the space of Boehmians treats distributions more as algebraic objects. Several
integral transforms for various spaces of Boehmians were studied and their properties were
investigated in [3–13]. Currently, a large number of studies are available on the extension
of classical integral transforms to Boehmians. Karunakaran and Roopkumar introduced
the Hilbert transform as continuous linear mapping defined on some space of Boehmians
into another space of Boehmians [7]. They also studied the Hilbert transform for the space
of ultradistributions [8]. The pioneering work of Zayed [13], Al-Omari, and Agarwal [6]
introduced an extension of fractional integral transform to Boehmians by extending the
fractional Fourier and Sumudu transforms to the space of integrable Boehmians. The
properties and generalizations of various quaternion integral transform [14] and fractional
integral transforms were also studied from the perspective of q-calculus analysis [15,16]
and rapidly decaying functions [17]. In recent years, the extension of fractional integral
transforms to the space of Boehmians has been an active area of research. Many well-
known fractional integral transforms have been extended to the space of Boehmians, but an
extension of the fractional Hilbert transform (FHT) has not yet been reported. So, the goal
of this paper is to extend the FHT to some space of Boehmians. Different definitions of FHT
exist in the literature [18–20], but in the generalization of the classical Hilbert transform, it
might rightly be said that the fractionalization of Hilbert transform is given by Zayed and
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is mathematically elaborated in [21]. The fractional Hilbert transform of a function f (x),
denoted by Hα[ f (x)], is defined as [20]

Hα[ f (x)] =
1
π

∫ ∞

−∞

e−i x2−t2
2 cot α

x− t
f (t)dt for α 6= 0, π/2, π, (1)

where the integral is taken in the sense of the Cauchy principal value. The special case
α = π/2 reduces FHT into the standard Hilbert transform. Indeed, the FHT allows for
converting a real signal into a complex signal by suppressing the negative frequency. Such
a signal has a wide variety of applications in optics, signal processing, and image pro-
cessing [22–25]. It also does not flip the domain of the signal—the signal remains in the
same domain. However, it lacks detailed mathematical analysis, so we require a thorough
mathematical theory of FHT to understand its strengths and limitations. Consequently,
we need to extend the existing theory on such a significant transformation in terms of
generalized functions. An extension of FHT to some space of Boehmians may have appli-
cations in engineering and other sciences, as it may apply in converting functions with
discontinuities into smooth functions that consequently lead to the description of various
physical occurrences such as point charges [26].

The present paper is organized as follows: Section 1 covers the introduction. Section 2
covers the important definitions and theorems, and we also discuss the abstract construction
of Boehmians to render the paper self-contained. Section 3 covers results that comprise a
new convolutional operator and a new convolutional theorem for FHT, and proves auxiliary
results required for the construction of two Boehmian spaces. Lastly, we extend the FHT to
some spaces of Boehmians. Section 4 presents our conclusions.

2. Preliminaries

Let R be the set of all real numbers, L1(R) = L1 be the collection of complex-valued
measurable functions f defined on R for which

‖ f ‖1 =
∫ ∞

−∞
| f (x)|dx < ∞,

and C∞ = C∞(R) be the set of all infinitely differentiable functions defined on R, such that
functions and their derivatives converge uniformly on compact sets in R.

Theorem 1 ([27] Theorem 9.5). For any function f on R and for all t ∈ R, let ft be defined by

ft(x) = f (x− t).

If p ≥ 1 and f ∈ Lp, then mapping t→ ft is uniformly continuous from R into Lp(R).

Definition 1. Let f and g be any two functions on R; their convolution, denoted by f ∗ g, is
defined as

f ∗ g =
∫ ∞

−∞
f (t)g(x− t)dt. (2)

The Hilbert transform of convolutional operation ∗ is given as follows:

Theorem 2. If f , g ∈ L1(R) with Hilbert transforms H f , Hg respectively, so that H f , Hg ∈
L1(R), then

H[ f ∗ g] = H f ∗ g = f ∗ Hg.

The FHT may not act as agreeably with the classical convolutional operator as the
classical Hilbert transform (Theorem 2).
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Boehmian Space

The members of Boehmian spaces are called Boehmians, which are equivalence classes
of “quotients of sequences”. These equivalence classes are formulated from an integral do-
main of continuous functions. The integral domain operations for Boehmians are addition
and convolution. This convolutional operation may differ from the standard convolutional
operation given in Definition 2.

We now present a brief introduction to Boehmians.
Let G be a complex linear space, (H, .) is a commutative semigroup, and let ⊗ :

G× H → G, so that the conditions given below hold:

• ( f ⊗ φ)⊗ ψ = f ⊗ (φ.ψ), ∀ f ∈ G, ∀φ, ψ ∈ H;
• ( f + g)⊗ φ = f ⊗ φ + g⊗ φ, ∀ f , g ∈ G, ∀φ ∈ H;
• λ( f ⊗ φ) = (λ f ⊗ φ) ∀ f ∈ G, ∀φ ∈ H, λ ∈ C;
• If fn → f as n→ ∞ and φ ∈ H then fn ⊗ φ→ f ⊗ φ as n→ ∞.

Let ∆ be a collection of sequences on H, so that

• If {φn}, {ψn} ∈ ∆ then {φn.ψn} ∈ ∆;
• If fn → f as n→ ∞ and {φn} ∈ ∆ then fn ⊗ φn → f as n→ ∞.

A pair of sequences { fn, φn} with fn ∈ G for all n ∈ N and {φn} ∈ ∆ are a quotient of
sequences, denoted by fn

φn
, if

fn ⊗ φm = fm ⊗ φn ∀m, n ∈ N.

Two quotients of sequences fn
φn

and gn
ψn

are equivalent (∼) if, for every n ∈ N

fn ⊗ ψn = gn ⊗ φn.

The equivalence class of fn
φn

induced by “∼” is denoted by
[

fn
φn

]
. Every equivalence

class is called a Boehmian. The space of all Boehmians is denoted by B = B(G, H,⊗, ∆).
B is a vector space under the operations of addition and scalar multiplication defined
as follows:

• λ
[

fn
φn

]
=
[

λ fn
φn

]
;

•
[

fn
φn

]
+
[

gn
ψn

]
=
[

fn⊗φn+gn⊗ψn
φn⊗ψn

]
.

If we define an isomorphism f →
[

f⊗φn
φn

]
, then G is a subspace of B. Therefore, every

element of G can be expressed uniquely as a Boehmian.

3. Results

In this section, we define a new convolutional operation for FHT that yields a gener-
alized result for Theorem 2. Moreover, to extend the FHT to the class of Boehmians, we
define two classes of Boehmians. Two convergences of FHT are proved on C∞. Lastly, an
extension of FHT on Boehmians is introduced.

3.1. Convolutional Structure for Fractional Hilbert Transform

The idea of convolutional operation makes it evident that, given any integral transform,
we can associate a convolutional operation to it [28]. So, we introduce a new fractional
convolutional operator that helps us in extending FHT to the space of Boehmians.

Definition 2. Let f , g ∈ L1(R). We define a fractional convolution ( f ∗α g) as

( f ∗α g)(x) =
∫ ∞

−∞
f (x− t)g(t)e−it(x−t) cot αdt. (3)

Lemma 1. Let f , g ∈ L1. Then, ( f ∗α g) is also in L1.
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Proof. To prove that f ∗α g ∈ L1, we consider its L1 norm.

‖ f ∗α g‖1 =
∫ ∞

−∞
| f ∗α g|dx

≤
∫ ∞

−∞

∫ ∞

−∞
| f (x− t)||g(t)|dtdx.

By using Fubini’s theorem, we have

‖ f ∗α g‖1 ≤
∫ ∞

−∞
| f (x− t)|dx

∫ ∞

−∞
|g(t)|dt.

Since the L1 norm is translation invariance, so
∫ ∞
−∞ | f (x − t)|dx = ‖ ft‖1 = ‖ f ‖1.

Therefore,
‖ f ∗α g‖1 ≤ ‖ f ‖1‖g‖1.

Since f , g ∈ L1,

‖ f ∗α g‖1 ≤ ‖ f ‖1‖g‖1 < ∞,

which proves that f ∗α g ∈ L1.

To extend the FHT to the case of Boehmians, the essential step is to prove the convo-
lutional theorem, and suitable Boehmian spaces can then be constructed by proving the
supplementary results. Now, we state and prove the convolutional theorem for FHT.

Theorem 3. (convolutional Theorem) Assume that f , g ∈ L1. Then,

Hα[ f ∗α g] = Hα[ f ] ∗α g = f ∗α Hα[g]. (4)

In addition, ( f ∗α g) = −(Hα[ f ] ∗α Hα[g]).

Proof.

Hα[( f ∗α g)(x)] =
1
π

∫ ∞

−∞

e−i x2−t2
2 cot α

x− t
( f ∗α g)(t) dt

=
1
π

∫ ∞

−∞

e−i x2−t2
2 cot α

x− t

∫ ∞

−∞
f (t− y)g(y)e−iy(t−y) cot αdydt.

By changing variables t− y = ν, the above equation can be simplified to

Hα[( f ∗α g)(x)] =
1
π

∫ ∞

−∞

∫ ∞

−∞

e−i x2−2xy+y2−ν2
2 cot α

(x− y)− ν
f (ν)g(y)e−i(yx−y2) cot αdνdy

=
∫ ∞

−∞
Hα[ f (x− y)]g(y)e−iy(x−y) cot αdy

= (Hα[ f ] ∗α g)(x).

Similarly,

Hα[( f ∗α g)(x)] = Hα[(g ∗α f )(x)] = (Hα[g] ∗α f )(x) = ( f ∗α Hα[g])(x). (5)

If we substitute g by Hα[g] in (4), we can write

Hα[( f ∗α Hα[g])(x)] = (Hα[ f ] ∗α Hα[g])(x),

( f ∗α Hα[Hα[g]])(x) = (Hα[ f ] ∗α Hα[g])(x), (by (5))

f ∗α g = −(Hα[ f ] ∗α Hα[g]),
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where H2
α = −I, and this proves the theorem.

3.2. Abstract Construction of Boehmians

Now, we construct the Boehmian space required for extending the theory of the
fractional Hilbert transform to some space of Boehmians. Here, we refer to only two
spaces of Boehmians needed to develop the theory of FHT. Now to define the space of
Boehmians, we introduce a class of identities as follows: Let space D constitute all infinitely
differentiable functions with compact support in R. Let

S = {φ ∈ D : φ ≥ 0 and
∫
R

φ = 1}.

Then, the space of Boehmians is given by

B1 = B1(L1(R), S, ∗α, ∆),

where ∆ is the collection of all sequences of real-valued functions {φn(x)} ⊂ S, such that

1.
∫
R eit(x−t) cot αφn(x)dx = 1, ∀ n ∈ N;

2. ‖φn‖1 ≤ M, ∀ n ∈ N for some M > 0;
3. limn→∞

∫
|t|>ε |φn(t)|dt = 0, ε > 0.

These sequences are delta sequences. We now state and prove the results that are needed
to build the desired space for Boehmians.

Lemma 2. The operation ∗α is both commutative and associative.

Proof. To prove that ∗α is commutative, consider

( f ∗α g)(x) =
∫ ∞

−∞
f (x− t)g(t)e−i(x−t) cot αdt.

By changing variable x− t = τ, we can simplify the above equation to

( f ∗α g)(x) =
∫ ∞

−∞
f (τ)g(x− τ)e−i(x−τ)τ cot αdτ = (g ∗α f )(x).

To prove the associativity, let us consider

(( f ∗α g) ∗α h)(x) =
∫ ∞

−∞
( f ∗α g)(x− t)h(t)e−i(x−t) cot αdt

=
∫ ∞

−∞

∫ ∞

−∞
f (x− t− u)g(u)h(t)e−iu(x−t−u) cot αe−it(x−t) cot αdtdu.

By changing variables t + u = y, we can write the above equation as

(( f ∗α g) ∗α h)(x) =
∫ ∞

−∞

∫ ∞

−∞
f (x− y)g(y− t)h(t)e−i(y−t)(x−y) cot αe−it(x−t) cot αdtdy.

As an application of Fubini’s theorem, we have

(( f ∗α g) ∗α h)(x) =
∫ ∞

−∞

∫ ∞

−∞
g(y− t)h(t)e−i(−tx+yt+tx−t2) cot α f (x− y)e−iy(x−y) cot αdtdy

=
∫ ∞

−∞
f (x− y)(g ∗α h)(y)e−iy(x−y) cot αdy

= ( f ∗α (g ∗α h))(x).

Thus, (( f ∗α g) ∗α h)(x) = ( f ∗α (g ∗α h))(x).

Lemma 3. Assume that {φn} and {ψn} are in ∆. Then, their convolution {φn ∗α ψn} is also in ∆.
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Proof. To prove that {φn ∗α ψn} ∈ ∆, we must show that the three conditions for delta
sequences are fulfilled.

1.
∫
R eit(x−t) cot α(φn ∗α ψn)(x)dx =

∫
R eit(x−t) cot α

∫ ∞
−∞

(
φn(x− t)ψn(t)e−it(x−t) cot α

)
dtdx.

By using Fubini’s theorem, we can write∫
R

eit(x−t) cot α(φn ∗α ψn)(x)dx =
∫
R

eit(x−t) cot αe−it(x−t) cot αφn(x− t)dx
∫ ∞

−∞
ψn(t)dt.

Since {φn}, {ψn} ∈ ∆, then∫
R

eit(x−t) cot α(φn ∗α ψn)(x)dx = 1.

2.

‖φn ∗α ψn‖1 =
∫ ∞

−∞
|(φn ∗α ψn)(x)|dx

=
∫ ∞

−∞

∣∣∣∣ ∫ ∞

−∞
φn(x− t)ψn(t)e−it(x−t) cot αdt

∣∣∣∣dx

≤
∫ ∞

−∞

∫ ∞

−∞

∣∣∣∣φn(x− t)ψn(t)e−it(x−t) cot αdt
∣∣∣∣dx

= ‖φn‖1‖ψn‖1

≤ M2, ∀n ∈ N.

Thus, ‖φn ∗α ψn‖1 ≤ M2.
3.

lim
n→∞

∫
|t|>ε
|(φn ∗α ψn)(x)|dx ≤ lim

n→∞

∫
|t|>ε

∫ ∞

−∞
|φn(x− t)ψn(t)|dtdx

= ‖φn‖1 lim
n→∞

∫
|t|>ε
|ψn(t)|dt.

Since {ψn} ∈ ∆, then

lim
n→∞

∫
|t|>ε
|ψn(t)|dt = 0, for ε > 0.

Hence, ∫
|t|>ε
|(φn ∗α ψn)(x)|dx → 0 as n→ ∞, for ε > 0.

This completes the proof.

Lemma 4. If f ∈ L1 and φn ∈ ∆ then the convolution f ∗α φn ∈ L1.

Proof. Let f ∈ L1 and φn ∈ ∆. To show that f ∗α φn ∈ L1, we consider the L1-norm.

‖ f ∗α φn‖1 =
∫
R
|( f ∗α φn)(x)|dx,

=
∫
R

∣∣∣∣ ∫ ∞

−∞
f (x− t)φn(t)e−it(x−t) cot αdt

∣∣∣∣dx,

≤
∫
R

∫ ∞

−∞

∣∣∣∣ f (x− t)φn(t)e−it(x−t) cot α

∣∣∣∣dtdx,

=
∫ ∞

−∞
| f (x− t)|dx

∫ ∞

−∞
|φn(t)|dt,

= ‖ f ‖1‖φn‖1.
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Since f ∈ L1 and {φn} ∈ ∆, ‖ f ∗α φn‖1 ≤ ‖ f ‖1‖φn‖1 < ∞, which proves that
f ∗α φn ∈ L1.

Lemma 5. If f , g ∈ L1, φ ∈ S, then ( f + g) ∗α φ = f ∗α φ + g ∗α φ.

The proof of this lemma is straightforward. Therefore, we omitted the details.

Lemma 6. Let fn → f in L1 as n→ ∞ and φ ∈ S. Then fn ∗α φ→ f ∗α φ in L1.

Proof. From Lemma 4, we can write

‖( fn ∗α φ)− ( f ∗α φ)‖1 = ‖( fn − f ) ∗α φ‖1

≤ ‖ fn − f ‖1‖φ‖1

≤ M‖ fn − f ‖1 → 0 as n→ ∞ for M > 0.

Hence, fn ∗α φ→ f ∗α φ in L1 whenever fn → f in L1.

Lemma 7. Let fn → f in L1 and {φn} ∈ ∆. Then fn ∗α φn → f in L1.

Proof. Let {φn} ∈ ∆ then
∫ ∞
−∞ φn(t)eit(x−t)dt = 1; therefore, we can write

( fn ∗α φn)(x)− f (x) =
∫ ∞

−∞
fn(x− t)φn(t)e−it(x−t) cot αdt− f (x)

∫ ∞

−∞
φn(t)eit(x−t) cot αdt

=
∫ ∞

−∞

(
fn(x− t)e−2it(x−t) cot α − f (x)

)
eit(x−t) cot αφn(t)dt.

Now, we consider the L1-norm of the above equation:

‖ fn ∗α φn − f ‖1 =
∫ ∞

−∞

∣∣∣∣ ∫ ∞

−∞

(
fn(x− t)e−2it(x−t) cot α − f (x)

)
eit(x−t) cot αφn(t)dt

∣∣∣∣dx

≤
∫ ∞

−∞

∫ ∞

−∞
| fn(x− t)e−2it(x−t) cot α − f (x)||φn(t)|dtdx.

As an application of Fubini’s theorem and via Property 2 of delta sequences, we have

‖ fn ∗α φn − f ‖1 ≤
∫ ∞

−∞
|φn(t)|dt

∫ ∞

−∞
| fn(x− t)e−2it(x−t) cot α − f (x)|dx

≤ M‖( fn)te−2it(x−t) cot α − f ‖1, (M > 0).

Using the triangular inequality of normed spaces,

‖ fn ∗α φn − f ‖1 ≤ M‖( fn)te−2it(x−t) cot α − fte−2it(x−t) cot α‖1 + ‖ fte−2it(x−t) cot α − f ‖1

≤ M‖( fn)te−2it(x−t) cot α − fte−2it(x−t) cot α‖1 + M‖ fte−2it(x−t) cot α − f ‖1.

By using the convergence of fn ∈ L1 and Theorem 1, we have

‖( fn)te−2it(x−t) cot α − fte−2it(x−t) cot α‖1 → 0 as n→ ∞,

and
‖ fte−2it(x−t) cot α − f ‖1 → 0 as t→ 0.

Therefore, ‖ fn ∗α φn − f ‖1 → 0 as n→ ∞, hence, fn ∗α φn → f in L1.

In order to extend the FHT to the class of Boehmians, we define another class of Boehmi-
ans (as the codomain of the extended fractional Hilbert transform) B2 = B2(C∞, S, ∗α, ∆) [7].
The notion of delta sequences, quotients, and their equivalence classes remains the same as
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that in the prior case. We also retain the definitions of addition and scalar multiplication.
Now, we define

Dm
[

fn

φn

]
=

[
Dm fn

φn

]
for any

[
fn

φn

]
∈ B2.

In addition, [
fn

φn

]
∗α

[
gn

ψn

]
=

[
fn ∗α gn

φn ∗α ψn

]
.

Since a concept of convergence is required to construct a Boehmian space, we prove
two convergences on C∞.

Lemma 8. Let fn → f as n→ ∞ in C∞ then fn ∗α φ→ f ∗α φ in C∞ for all φ ∈ D; further, for
each delta sequence {δn}, fn ∗α δn → f as n→ ∞ in C∞.

Proof. Let K ⊂ R be any compact set, such that x ∈ K. To prove the convergence of
a sequence of functions in C∞, we must show that the functions and their derivatives
converge uniformly on compact sets.

First, we prove that fn ∗α φ→ f ∗α φ in C∞. For this, consider

|( fn ∗α φ− f ∗α φ)(x)| = |(( fn − f ) ∗α φ)(x)| ≤
∫ ∞

−∞
|( fn − f )(x− t)|φ(t)dt.

Since t varies over the compact support of φ; therefore, x− t also varies over a compact
set in R. So, |(( fn − f ) ∗α φ)(x)| → 0 as n→ ∞ uniformly on compact sets. Then,

|( fn ∗α φ− f ∗α φ)(x)| → 0 as n→ ∞,

or we can write

fn ∗α φ→ f ∗α φ as n→ ∞, (6)

uniformly on compact sets.
In addition,

Dm(( fn ∗α φ)− ( f ∗α φ)) = (Dm fn ∗α φ)− (Dm f ∗α φ). (7)

Replacing Dm fn by fn and Dm f by f in (7), we have

Dm(( fn ∗α φ)− ( f ∗α φ)) = ( fn ∗α φ)− ( f ∗α φ), (8)

the right-hand side of (8) approaches zero by (6). Thus,

Dm( fn ∗α φ)→ Dm( f ∗α φ)

uniformly on compact sets. Hence, fn ∗α φ→ f ∗α φ as n→ ∞ in C∞.
Next, without any loss of generality, let us suppose that {δn} ∈ ∆ is such that it has a

compact support. Then,

|( fn ∗α δn − f )(x)| =
∣∣∣∣ ∫ ∞

−∞
fn(x− t)δn(t)e−it(x−t) cot αdt− f (x)

∫ ∞

−∞
eit(x−t) cot αδn(t)dt

∣∣∣∣
≤
∫ ∞

−∞
| fn(x− t)e−2it(x−t) cot α − f (x)|δn(t)dt,

≤
∫ ∞

−∞

(
| fn(x− t)e−2it(x−t) cot α − f (x− t)e−2it(x−t) cot α|+ | f (x− t)e−2it(x−t) cot α − f (x)|

)
δn(t)dt.

Now, both x and t vary over compact sets; therefore, x− t also varies over a compact
set. Thus,
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∫ ∞

−∞

(
| fn(x− t)e−2it(x−t) cot α − f (x− t)e−2it(x−t) cot α|+ | f (x− t)e−2it(x−t) cot α − f (x)|

)
δn(t)dt→ 0

as n→ ∞ and t→ 0.
We have fn ∗α δn → f uniformly on compact sets.
Similarly, Dm( fn ∗α δn)→ Dm( f ) uniformly on compact sets.
Hence, fn ∗α δn → f as n→ ∞ in C∞.

Lemma 9. If fn → f as n→ ∞ in L1, then fn ∗α δ→ f ∗α δ as n→ ∞ in C∞ for every δ ∈ S.

Proof. To show the convergence in C∞, we assume that x varies over a compact set K.

|( fn ∗α δ− f ∗α δ)(x)| = |(( fn ∗ − f ) ∗α δ)(x)|

=

∣∣∣∣ ∫ ∞

−∞
( fn − f )(x− t)δ(t)e−it(x−t) cot αdt

∣∣∣∣
≤
∫ ∞

−∞
|( fn − f )(x− t)||δ(t)|dt

≤ ‖ fn − f ‖1‖δ‖∞.

Since fn → f in L1 and δ ∈ S has a compact support, x− t varies over a compact set,
and |( fn ∗α δ− f ∗α δ)(x)| → 0 as n→ ∞ on compact sets. Similarly, we have

|Dm[( fn ∗α δ− f ∗α δ)](x)| ≤ ‖ fn − f ‖1‖Dmδ‖∞.

Thus, Dm( fn ∗α δ)→ Dm( f ∗α δ) on compact sets.
Hence, fn ∗α δ→ f ∗α δ as n→ ∞ in C∞.

3.3. Fractional Hilbert Transform on Boehmians

The following result is very important in the aftermath. The proof of the following
theorem is similar to the proof of convolution theorem for FHT as in Theorem 2; we omitted
the details.

Theorem 4. If f ∈ L1 and δ ∈ ∆, then Hα[ f ∗α δ] = Hα[ f ] ∗α δ.

Definition 3. The fractional Hilbert transformHα : B1 → B2 on Boehmians is defined by

Hα

[
fn

φn

]
=

[
Hα fn

φn

]
,

where fn
φn

is an arbitrary representative of any given Boehmian B ∈ B1. Since

fn ∗α φm = fm ∗α φn ∀m, n ∈ N.

By Theorem 4, we can writeHα[ fn] ∗α φm = Hα[ fm] ∗α φn ∀m, n ∈ N.
Therefore, Hα [ fn ]

φn
represents a Boehmian in B2. In a similar manner, let gn

ψn
be another

representative of B; then, again, with an application of Theorem 4,

Hα[ fn]

φn
∼ Hα[gn]

ψn
,

thus the extended FHT on BoehmiansHα : B1 → B2 is well-defined.

Theorem 5. LetHα : B1 → B2 be the extended FHT; then,

1. If fn
φn
∈ B1 then Hα fn

φn
∈ B2.
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2. Hα is well-defined.
3. Hα is a continuous linear map.
4. Hα is an injective map.

Proof. The proof of the above theorem is similar to those of Hilbert transform on Boehmi-
ans; we omitted the details. For details, the reader is referred to [7].

4. Conclusions

This paper gave an extension of the fractional Hilbert transform to a class of general-
ized functions known as Boehmians. It introduces a new convolutional operator, and the
consequent convolutional theorem was also presented. In addition, the extended fractional
Hilbert transform is a well-defined map between the spaces of Boehmians having properties,
such as continuity and linearity, identical to the classical properties of their corresponding
classical versions. Lastly, convergence concerning δ and ∆ was also examined.

The methods of this paper can also be utilized to extend FHT to the space of ultradistri-
butions. We suggest that readers consider the expansion of the fractional Hilbert transform
to q-calculus and develop the theory of the quaternion fractional Hilbert transform.
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