
Citation: Charkin, D.O.; Dolgikh,

V.A.; Omelchenko, T.A.; Vaitieva,

Y.A.; Volkov, S.N.; Deyneko, D.V.;

Aksenov, S.M. Symmetry Analysis of

the Complex Polytypism of Layered

Rare-Earth Tellurites and Related

Selenites: The Case of Introducing

Transition Metals. Symmetry 2022, 14,

2087. https://doi.org/10.3390/

sym14102087

Academic Editor: György Keglevich

Received: 4 September 2022

Accepted: 27 September 2022

Published: 7 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Symmetry Analysis of the Complex Polytypism of Layered
Rare-Earth Tellurites and Related Selenites: The Case of
Introducing Transition Metals
Dmitri O. Charkin 1,2, Valeri A. Dolgikh 1, Timofey A. Omelchenko 1, Yulia A. Vaitieva 2, Sergey N. Volkov 2,3,
Dina V. Deyneko 1,2 and Sergey M. Aksenov 2,4,*

1 Department of Chemistry, Lomonosov Moscow State University, GSP-1, 1-3 Leninskiye Gory,
119991 Moscow, Russia

2 Laboratory of Arctic Mineralogy and Material Sciences, Kola Science Centre, Russian Academy of Sciences,
Fersmana Str. 14, 184209 Apatity, Russia

3 Grebenshchikov Institute of Silicate Chemistry, Makarov Emb, 199053 St. Petersburg, Russia
4 Geological Institute, Kola Science Centre, Russian Academy of Sciences, 14 Fersman Street,

184209 Apatity, Russia
* Correspondence: aks.crys@gmail.com

Abstract: Our systematic explorations of the complex rare earth tellurite halide family have added
several new [Ln12(TeO3)12][M6X24] (M = Cd, Mn, Co) representatives containing strongly defi-
cient and disordered metal-halide layers based on transition metal cations. The degree of disorder
increases sharply with decrease of M2+ radius and the size disagreements between the cationic
[Ln12(TeO3)12]+12 and anionic [M6Cl24]−12 layers. From the crystal chemical viewpoint, this indicates
that the families of both rare-earth selenites and tellurites can be further extended; one can expect
formation of some more complex structure types, particularly among selenites. Analysis of the
polytypism of compounds have been performed using the approach of OD (“order–disorder”) theory.

Keywords: polytypism; OD structures; rare-earth tellurium oxyhalides; stacking disorder; crystal
chemistry; selenites

1. Introduction

The use of species with “one-sided” coordination which terminate propagation of
the net of chemical bonds and contribute to interfaces with non-covalent interactions is
a common and a powerful instrument in the construction of low-dimensional, porous,
and open-framework inorganic structures for various purposes [1–6]. This approach
employs either organic species with hydrophilic parts contributing to the frameworks and
hydrophobic parts forming the interfaces, or cations with the stereoactive lone pair of
electrons such as Tl+, Sn2+, Pb2+, As3+, Sb3+, Bi3+, Se4+, Te4+, or I5+ [2,5–9]. The interiors of
the covalent frameworks may be filled by small anions, most commonly halides, or much
larger ensembles, e.g., salt-inclusion solids [10]. Combinations of “lone-pair” and “regular-
coordination” cations, particularly rare-earth and halide anions, often result in layered
arrangements comprised of alternating covalent (metal-oxide) and ionic (metal-halide) 2D
infinite building blocks bearing opposite charges [1]. They are more frequently observed
among compounds containing rare-earth cations with isotropic coordination and SeIV or
TeIV which form the interfaces of the cationic metal-oxide parts.

By now, the majority of their structures contain tetragonal or pseudo-tetragonal
[Ln11Mn(ChO3)12] layers (Ch = Se or Te, M = Ln or some other uni- or divalent cations)
sandwiched between either single halide sheets or more complex metal-halide slabs derived
from tetragonal FeS (based on tetrahedrally coordinated Cu+ or Zn2+ and Cl- [11]), CsCl
(based on MX8 cubes M = K, Rb and Cs; X = Cl or Br [10,12–15]) or NaCl (based on CdCl6
or CdBr6 octahedra [16,17]) as shown schematically in Figure 1. Octahedral coordination in
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halides is common also for some other transition metal dications including Mn2+, Co2+, and
Ni2+. Layered rare-earth-chalcogen (IV) oxyhalides containing magnetically active cations
have been reported only for the [Ln10M(SeO3)12][Cl8] composition with low amounts of
M2+ at very large separations [11]. The possibility of constructing transition metal-rich
building blocks within this family has not been explored to date; the only hint to their
possible existence is given in [11] where a [La11(SeO3)12][Co7.5Cl24] composition is once
mentioned without comments. This formula corresponds to that of the Cd compounds,
[Ln12(TeO3)12][Cd6X24], X = Cl, Br [16,17] (Figure 1d); the ordered arrangement of the
transition metal (Co2+ in this case) cations only within the metal-halide slabs is expected to
result in formation of relatively dense planar or quasi-planar magnetic sublattices situated
at relatively large (~13Å) separations.
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For the modular compounds with the layered structures (with the weak interactions
between the adjacent layers), the presence of the stacking disorder is very common [18].
The slight shifts can form different polytypes and OD (“order–disorder”) structures [19–21].
The symmetry analysis of such disordered compounds is based on the concepts of OD
theory [22,23] and the symmetry of the OD structures is described by groupoids (instead
of crystallographic space groups), which can contain the non-crystallographic symme-
try operations [24–26]. This approach allows to determine the symmetry relations for
the whole family of known polytypes and predict the hypothetical ones [27], which is
important for the searching of new materials [28–34]. The OD structures with the dif-
ferent polytypes have been also described for the tellurium compounds, in particular,
for the hydrous magnesium orthotellurate (VI) Mg(H2O)2[TeO2(OH)4] [35], copper-zinc
oxotellurite (IV) [Cu2ZnTeO4][SO4 H2O] [36], and alkali metal zinc oxidotellurites (IV),
Rb2Zn(TeO3)(CO3)·H2O and Na2Zn2Te4O11 [37].

The presence of stacking disorders for the family of compounds containing tetragonal
or pseudo-tetragonal [Ln11Mn(ChO3)12] layers have been recently reported based on the
TEM images [38]. It was also mentioned that for the accurate description of the polytypes,
the corresponding OD analysis is required [38]. Hereby, we report the results of our
attempts to prepare such compounds; contrary to the Cd2+ based prototypes, they exhibit
gross disorder in the targeted M2+ sublattices, which could be plausibly modeled in just a
few cases. A new representative was also obtained for the family of Ln-Cd tellurite halides;
its structure was refined to quite reasonable values and will be described here as a “best
ordered” reference structure. The accurate symmetry analysis for these compounds using
the approach of OD theory is given and polytypic relations have been determined.

2. Materials and Methods
2.1. Synthesis

As in the previous reports [10,15–17], the starting compounds were LnOX, TeO2, and
MX2 (M = Mn, Co, Ni). Anhydrous Co and Mn compounds obtained from MnX24H2O and
CoX26H2O via dehydration by gentle heating (up to ~100 ◦C) and subsequent cooling in
vacuo (down to ca. 50–70 Pa). Anhydrous nickel halides were prepared in the same way
starting from NiX26NH3. The anhydrous halides were pink (MnX2), deep blue (CoCl2),
deep green (CoBr2), yellow (NiCl2) and brown (NiBr2). Due to high hygroscopicity of
CoX2, all operations with these compounds were conducted in an argon-filled glovebox.
The halides of Mn and Ni permit handling in air for a short time. Mixtures of LnOX, MX2,
and TeO2 in 1:7:1 ratio were ground, placed in silica capsules, gently heated in a dynamic
vacuum until the pressure dropped to ca. 50 Pa, sealed, and annealed according to the
following scheme: heating to 600 ◦C within 12 h, plateau 12 h; heating to 850 ◦C within
12 h, plateau 120 h; cooling to 650 ◦C within 120 h. The salt fluxes were dissolved in water
(Ni and Mn halides) or 96% ethanol (Co halides). The insoluble residues consisted of small
colorless, pinkish (Mn) or deep blue (Co) crystals. Suitable crystals were not produced using
NiX2. The novel Ce-Cd-Te oxychloride was obtained as a somewhat unexpected product
from a mixture of SrTeO3, CeOCl, TeO2, SrCl2, and CdCl2 (1:1:1:3:4) targeted at a different
proposed composition. It is reported here as it belongs to the same structural family.

2.2. Diagnostics

Single crystals of the Co compounds were characterized by energy-dispersive X-ray
spectroscopy using a Leo Supra 50 VP electron microscope utilizing 15 kV accelerating
voltage and an INCA analyzer. The results indicate that two kinds of crystals were observed
in the Eu and Gd-containing samples: those containing only Ln, Te, and Cl, as well as those
also containing Co. In the bromide sample, only blue crystals have been studied which
were shown to contain La, Co, Te, and Br.
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2.3. Single Crystal X-ray Analysis

Though formation of relatively large platelets or respective colors was observed in a
variety of samples, even examination in an optical microscope showed most of them then
to be piles of very thin foil-like sheets, sometimes with uneven coloring. Acceptable quality
crystals were observed for M2+ = Cd, X = Cl, Ln = Ce (1), M2+ = Mn, X = Cl, Ln = Nd (2),
M2+ = Mn, X = Br, Ln = La (3), M2+ = Co, X = Cl, Ln = Eu (4), and M2+ = Co, X = Cl,
Ln = Gd (5). Single crystals found in the La-Co-Te-O-Br sample were of too low quality and
were not studied. The others were selected under a polarizing microscope for single-crystal
X-ray diffraction. The single-crystal X-ray data were collected on a Rigaku XtaLAB Synergy
diffractometer (HyPix detector, MoKα radiation, λ = 0.71073 Å;ω−θ-scanning mode) (1),
Bruker SMART APEX II diffractometer (CCD detector; MoKα radiation, λ = 0.71073 Å;
ω−θ-scanning mode) (2,3), and Xcalibur S Oxford Diffraction diffractometer (CCD detector;
MoKα radiation, λ = 0.71073 Å;ω−θ-scanning mode) (4,5). Raw data were integrated and
then scaled, merged, and corrected for Lorentz-polarization effects using the CrysAlis [39]
and Apex2 [40] programs. A semiempirical absorption correction based upon the intensities
of equivalent reflections was applied using SADABS [41].

The observed single-crystal diffraction patterns indicated the bad quality of studied
crystals which was typically manifested by essential streaking (indicating stacking disorder)
and poorly resolved reflections. In accordance with the analysis of systematic absence
of reflections, the space group P4/nbm (No. 125) for all compounds was chosen. The
experimental details of the data collection and refinement results are also listed in Table 1.

Table 1. Crystal data, data collection, and refinement of grown crystals.

Sample Number [Ce12(TeO3)12]
[Gd6Cl24] (1)

[Nd12(TeO3)12]
[Mn6Cl24] (2)

[La12(TeO3)12]
[Mn6Br24] (3)

[Eu12(TeO3)12]
[Co6Cl24] (4)

[Gd12(TeO3)12]
[Co6Cl24] (5)

Molecular weight (g) 5321.5 5014.3 5978.4 5135.4 5198.4

Temperature (K) 293

Cell setting Tetragonal

Space group P4/nbm (125)

a (Å) 16.3262 (1) 16.0692 (11) 16.4400 (49) 15.8928 (6) 15.8323 (7)

c (Å) 13.0257 (1) 12.6796 (9) 13.5077 (40) 12.4614 (13) 12.4729 (1)

V (Å3) 3471.93 (4) 3274.12 (4) 3650.77 (3) 3147.5 (4) 3126.46 (3)

Z 2

Calculated density,
Dx (g cm−3) 5.0902 5.086 5.438 5.418 5.522

Crystal size
(mm) 0.02 × 0.06 × 0.08 0.01 × 0.03 × 0.06 0.03 × 0.04 × 0.07 0.03 × 0.05 × 0.08 0.08 × 0.10 × 0.12

Crystal form Anhedral grain Anhedral grain Anhedral grain Anhedral grain Anhedral grain

Crystal color yellowish lilac pink deep blue deep blue

Data collection

Diffractometer Rigaku XtaLAB Synergy
(HyPix detector)

Bruker Apex II
(CCD detector)

Xcalibur S Oxford Diffraction
(CCD detector)

Radiation; λ MoKα; 0.71073

Absorption
coefficient, µ (mm−1) 15.368 16.696 25.496 19.839 20.664

F (000) 4615 4377 5134 4476 4500

Data range θ(◦);
h, k, l

3.2–33.39;
−18 < h < 24,
−25 < k < 24,
−19 < l < 20

2.41–30.25;
−22 < h < 22,
−22 < k < 13,
−16 < l < 17

2.31–30.32;
−23 < h < 22,
−23< k < 23,
−18 < l < 19

3.30–35.37;
−17 < h < 25,
−25 < k < 24,
−19 < l < 19

3.31–35.39;
−24 < h < 24,
−24 < k < 15,
−19 < l < 14

No. of measured
reflections 46,388 16,881 34,403 32,931 32,476
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Table 1. Cont.

Sample Number [Ce12(TeO3)12]
[Gd6Cl24] (1)

[Nd12(TeO3)12]
[Mn6Cl24] (2)

[La12(TeO3)12]
[Mn6Br24] (3)

[Eu12(TeO3)12]
[Co6Cl24] (4)

[Gd12(TeO3)12]
[Co6Cl24] (5)

Total reflections (N2)
/observed (N1) 3194/2957 2314/1937 2625/1204 3432/1093 3411/1052

Criterion for
observed reflections I > 3σ (I)

Rσ/Rint (%) 0.96/3.4 2.95/4.68 9.77/ 2.98 12.24/22.13 11.50/21.46

Refinement

Refinement on Full-matrix
least squares on F

Full-matrix
least squares on F

Full-matrix
least squares on F

Full-matrix
least squares on F2

Full-matrix
least squares on F2

Weight scheme 1/(σ2|F| + 0.0004F2) 1/(σ2|F| + 0.0004F2) 1/(σ2|F| + 0.0004F2) 1/(σ2|I| + 0.0036I2) 1/(σ2|I| + 0.0064I2)

R1, wR2
(all reflection)

(%)
3.65/6.01 4.03/5.64 6.29/8.27 5.74/20.58 6.26/24.03

GOF (Goodness of fit)
(%) 2.47 1.75 1.14 1.02 1.04

Max./min. residual e
density, (eÅ−3) 9.58/−5.00 3.99/−5.22 10.27/−5.51 6.97/−6.44 9.15/−5.15

CCDC Number 2202776 1974365 2202775 1939966 1939965

Structure models were determined by the “charge flipping” method using the SUPERFLIP
computer program [42] and were refined using the JANA2006 computer program [43]. Il-
lustrations were produced with the JANA2006 program package in combination with the
DIAMOND program [44]. Atomic scattering factors for neutral atoms together with anomalous
dispersion corrections were taken from International Tables for Crystallography [45]. These
essential values of ∆ρmin and ∆ρmax are most likely the result of stacking faults common for
the layered structures and indicating their possible OD character that was also manifested by
streaks in the diffraction patterns. Similar problems, though slightly less pronounced, were
encountered in some previous studies [15–17]. Attempts to split the corresponding sites were
not successful, leading mostly to non-positive definite sites, and were finally abandoned. Table
S1 list fractional site coordinates and equivalent displacement parameters for 1 to 5. Selected
bond distances are given in Table S2. CCDC 1939965, 1939966, 1974365, 2202775, 2202776 contain
the supplementary crystallographic data for these compounds. The data can be obtained free of
charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures,
accessed on 17 June 2022.

3. Results
3.1. Crystal Structure Description

The crystal structures of the studied compounds 1–5 are similar to the previously
studied ones with the space group P4/nbm (Figure 1d) Their crystal structures contain
two blocks which alternate along c parameter. The first block is represented by a com-
plex slab formed by edge-shared Lnϕn-polyhedra (n = 8–12) with the general formula
[Ln12(TeO3)12] (type B slab [17]) (Figure 2), where Ln = La, Ce, Nd, Eu, and Gd. The second
slab is represented by three-layered close-packing formed by the halide X− anions (X = Cl
or Br) with octahedral sites occupied by the M2+ cations (M = Mn, Co, Cd).

In the crystal structures of compounds 1–5, the [Ln12–x(TeO3)12] type B slabs are nearly
identical, with differences in bond lengths due to the varied size of Ln3+ cations. In the
[MII

6+yX24] blocks, the M2+ cations fill the octahedral voids; however, refinement of the
corresponding site occupancies and analysis of the electron density maps for 1–3 indicate
presence of maxima which we interpret as the additional weakly occupied M sites (close to
the main ones) (Figure 3a). The statistical distributions of M2+ cations within the octahedral
cavities lead to the formation of two types of the layers characterized by the different
orientations of octahedra (Figure 3b,c).

www.ccdc.cam.ac.uk/structures
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The final refinement cycles converged to reasonable values for 1 and 2; however, an
ordered model could be refined only for 1. In the structure of 2 and particularly of 3–5,
occupancies of octahedrally coordinated M2+ positions (M2+ = Mn, Co) were evidently
below unity; in addition, relatively high electron density peaks were found in different
Fourier maps. Some of these could be tentatively assigned to additional weakly occupied
M2+ sites. This is another clear manifestation of the OD character of the structures.

3.2. Polytypism of Tetragonal Halides Containing the [Ln12(TO3)12] Slabs

The diffraction patterns of tetragonal layered rare-earth tellurite halogenides [16,17] are
typically characterized by a remarkably low quality of the single crystal X-ray diffraction
data which indicates the presence of various stacking faults and possibly some other 2D
defects such as single halide sheets. Within the family of related compounds (Figure 1),
there are two types of the structures with the following unit cell parameters: a~15.77–16.44 Å,
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c~12.92–13.77 Å (sp. gr. P4/nbm, Z = 2) and a~15.80–16.12 Å, c~24.82–26.41 Å (sp. gr. I4/mcm,
Z = 4). The doubling of the c parameter of the unit cell is observed predominantly for
compounds with MI = alkali cation (K, Rb, Cs) with the [MI

6X16] composition of the layer (the
only exception is compound [Gd12(TeO3)12][Cd6Cl24] [16]).

Taking into account the layered type of the structures as well as different possible ways
of their linkage, the observed structural variants can be considered as polytypes [18,46].
The presence of the twinning indicates the possible stacking disorder and OD (“order–
disorder”) [47,48] character of the structures. The crystal structures of compounds with the
general formulas [Ln12(TeO3)12][MII

6X24] and [(Ln,MI)1-xLn11(TeO3)12][MI
6X16+y] [15] can

be described using the same OD groupoid family, more precisely, a family of OD structures
built up by two kinds of non-polar layers (category IV) [49]. The layers are the following
(Figure 4a,b):

(i) L2n type with layer symmetry p4/nmm [or P(4/n)mm in the terms of OD notation] is
formed by [M6X24], [M6X16] or [X8] layer (Figure 4b).

(ii) L2n+1 type with layer symmetry p4/nbm11[or P(4/n)bm in terms of the OD notation,
where braces in the third position indicate the direction of missing periodicity [50]] is
formed by a [Ln12(TeO3)12] type B slab (Figure 4a).
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Figure 4. The general views and the symmetry of the L2n+1 (a) and L2n (b) OD-
layers crystal structure of compounds with the general formula [Ln12(TeO3)12][M6X24] and
[(Ln,MI)1-xLn11(TeO3)12][MI

6X16+y]. The different types of the arrangements of Ln4-polyhedra of
L2n+1 layers across the L2n layer and the symmetry of the triplets L2n–1,L2n,L2n+1 observed in the
crystal structures of MDO1-polytype (with the space group P4/nbm) (c) and MDO2-(d) polytype
(with the space group I4/mcm) are shown.

The layers of both types (L2n and L2n+1) alternate along the c direction and have com-
mon translation vectors a and b, with c0, the distance between the two nearest equivalent
layers, corresponding to (c/2)~6.6 Å. The ordered or disordered alternation of the two kinds
of layers gives rise to a whole family of ordered polytypes or disordered sequences, which
can be obtained through the action of the following symmetry operators that may be active
in the L2n-type of layer: the 2 and 21 axes parallel to a ([2 1 1] or [21 1 1]) and/or b ([1 2 1]
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or [1 21 1]). The symmetry relation common to all polytypes of this family are described by
the OD groupoid family symbol:

P
(

4
m

)
mm P

(
4
n

)
bm

[r, s]
(1)

where the first line contains the layer-group symbols of the two constituting layers, while
the second line indicates the positional relations between the adjacent layers [51].

In all the polytypes, as well as in the disordered sequences, pairs of adjacent layers are
geometrically equivalent (according to the general principle of OD structures). Polytypes
presenting the smallest possible number of different triples of layers are called MDO
(Maximum Degree of Order) polytypes (the principle of MDO structures). The first MDO
structure (MDO1-polytype) can be obtained when the 2x and 2y axes are active in the
L2n-type layers (Figure 4c), giving the tetragonal structure with a~16.0 Å, c~13.2 Å and
the space group P4/nbm. The second MDO structure (MDO2-polytype) can be obtained
when the 21x and 21y axes are active in the L2n-type layers: a~16.0 Å, c~25.5 Å and the space
group I4/mcm.

The similar stacking disorder with the formation of different types of polytypes have been
also previously observed for the related rare-earth selenites [12,13,38,52–55]. The crystal struc-
tures of [LiPr11(SeO3)12][Rb6Cl16] [13] and [LiNd11(SeO3)12][Rb6Cl16] [12] are crystal chemical
isotypical [56] to tellurites with the general formula [(Ln,MI)1-xLn11(TeO3)12][MI

6X16+y] [15]
and are represented by the MDO1-polytype with the space group I4/mcm.

In the crystal structures of [MIINd10(SeO3)12][Cl8] (MII = Ca, Sr; Figure 1a) [52] and
[Cs0.5Sm10.5(SeO3)12][Br8] [55] the type B slabs are linked directly via a single-layered
[X8] block (X = Cl, Br), forming the heteropolyhedral framework. Despite the reduced
interstitial [X8] block represented only by a single layer with the one atom width the
polytypic character remains common for the whole family of compounds. Compounds
[MNd10(SeO3)12][Cl8] (M = Ca, Sr) [52] and [Cs0.5Sm10.5(SeO3)12][Br8] [55] are crystal
chemical isotypical and represent the third type of MDO structure (MDO3-polytype).
This polytype can be obtained when the 21x and 2y axes are active in the L2n-type layers
(Figure 5a) giving the orthorhombic (pseudo-tetragonal) structure with a~15.7 Å, a~15.7 Å
c~17.9 Å and the space group Bbab (non-standard setting of the space group Ccca).
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Figure 5. The different types of the arrangements of Ln4-polyhedra of L2n+1 layers across the L2n layer
and the symmetry of the triplets L2n–1,L2n,L2n+1 observed in the crystal structures of MDO3-polytype
(with the space group Bbab) (a) and MDO4-polytype (with the space group Pnan) (b).

Compounds [Sm11(SeO3)12][K7Cl16] [54] and [Nd11(SeO3)12][Cs7Cl16] [38] are char-
acterized by another MDO structure (MDO4-polytype) which can be obtained when the
2y axes are active in the L2n-type layers (Figure 5b) giving the orthorhombic (pseudo-
tetragonal) structure with a~15.7 Å, a~15.7 Å c~17.9 Å and the space group Pnan. For the
compound [Nd11(SeO3)12][Cs7Cl16] [38], symmetry lowering was confirmed by a second
harmonic generation test, and the space group Pna21 (which is a subgroup of the space
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group Pnan) was established. It needs be noted that among selenites, one site in the type B
layer is mostly empty while on the CsCl layer, one additional cubic void is occupied instead
by a voluminous alkali cation.

When different sequences of operators are active in the L2n-type layers, multilay-
ered non-MDO polytypic structures with increased c occur. The simplest ones are those
in which the two types of operators in L2n layers regularly alternate. The crystal struc-
tures of [Pr11(SeO3)12][Cs7Cl16] [54] and [Nd11(SeO3)12][Cs7Cl16] [38] with the orthorhom-
bic (pseudo-tetragonal) unit cell parameters a = 15.9, b = 15.9, c = 51.6 Å and the space
groups Cmce or Pban are unknown, but the TEM images of [Nd11(SeO3)12][Cs7Cl16] [38]
show the regular stacking disorder and different kinds of symmetrical operation active in
L2n-type layers.

Except for different MDO and non-MDO structures, the modular structures can also be
formed when the different types of the interstitial block between adjacent [Ln12 (TeO3)12] type
B slab are present. As a result, the different types of alternation can form a merotypic modular
series [18,33,46,57–59]. In the crystal structure of [La11(SeO3)12]2[Cs6Cl16][Cl8] [53], there are
four type B slabs, two [MI

6X16] blocks and two [X8] blocks, and the crystal chemical formula
can be written as {[La11(SeO3)12]+9[Cs6Cl16]−10}−1{[La11(SeO3)12]+9[Cl8]−8}+1. Such complex
structure is relatively strictly ordered as only the whole layer sequence is electroneutral. The
same applies to the compounds {[La11(SeO3)12]+9[Cu6Cl16]−10}−1{[La11(SeO3)12]+9[Cl8]−8}+1

and {[Nd11(SeO3)12]+9[Zn3Cl16]−10}−1{[Nd11(SeO3)12]+9[Cl8]−8}+1 [11]. Such mixed-layer
structures are as yet observed only for selenites; note the compositional shift of the CsCl
slabs from [MI

7Cl16]−9 in “bilayer” structures (Figure 1b) to [MI
6X16]−10 in their mixed-

layer derivatives [11,53]. In the structures of tellurites, simple “bi-layer” sequences are
charge balanced (e.g., [MILn11(TeO3)12]+10[MI

6X16]−10 [10]) and formation of mixed-layer
structures is not favored. A very similar pattern was observed in our earlier works on complex
layered perovskites [60]. Therefore, if the [Ln11(SeO3)12]+9[MII

7.5X24]−9 selenite analogs of the
compounds 1–5 discussed here do actually exist, one can foresee also existence of their more
complex derivatives such as {[Ln11(SeO3)12]+9[MII

7X24]−10}−1{[Ln11(SeO3)12]+9[X8]−8}+1, etc.
The comparative data on unit cell parameters, space groups, and symmetry relation

between different layers in compounds with the general formulas [Ln12(TeO3)12][MII
6X24],

[(Ln,MI)1-xLn11(ChO3)12][MI
6+zX16+y] (Ch = Se or Te), and [MIILn10(SeO3)12][X8] are sum-

marized in Table 2. Other polytypes can be easily obtained using the different combinations
of the symmetry operations active in L2n layer.

Table 2. The comparative crystal chemical data on compounds with the general for-
mulas [Ln12(TeO3)12][MII

6X24], [(Ln,MI)1-xLn11(ChO3)12][MI
6+zX16+y] (Ch = Se or Te), and

[MIILn10(SeO3)12][X8] and the character of polytypic relations.

Compound Sp. Gr.
Symmetry of

the Triplet
L2n–1,L2n,L2n + 1

Symmetry Opera-
tion Active in

L2n Layer

Unit Cell Parameters
V, Å3 Ref.

a, Å b, Å c, Å

MDO1-polytype

[La12(TeO3)12][Cd6Cl24] P4/nbm P(4/n)bm 2x, 2y 16.401 16.401 12.918 3474.77 [17]

[Sm12(TeO3)12][Cd6Cl24] P4/nbm P(4/n)bm 2x, 2y 15.842 15.842 13.079 3282.36 [16]

[Eu12(TeO3)12][Cd6Cl24] P4/nbm P(4/n)bm 2x, 2y 15.774 15.774 13.113 3262.94 [16]

[La12(TeO3)12][Cd6Br24] P4/nbm P(4/n)bm 2x, 2y 16.439 16.439 13.713 3705.66 [17]

[Pr12(TeO3)12][Cd6Br24] P4/nbm P(4/n)bm 2x, 2y 16.231 16.231 13.771 3627.91 [17]

MDO2-polytype

[CsSm11(TeO3)12][Cs6Cl16] I4/mcm P(4/m)bm 21x, 21y 15.888 15.888 25.737 6496.45 [10]

[RbNd11(TeO3)12][Rb6Br16] I4/mcm P(4/m)bm 21x, 21y 16.118 16.118 25.935 6737.51 [10]

[Sm11.397(TeO3)12][K5.809Cl16] I4/mcm P(4/m)bm 21x, 21y 15.894 15.894 24.885 6287 [15]

[Gd11.86(TeO3)12][K4.42Cl16] I4/mcm P(4/m)bm 21x, 21y 15.804 15.804 24.961 6234 [15]
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Table 2. Cont.

Compound Sp. Gr.
Symmetry of

the Triplet
L2n–1,L2n,L2n + 1

Symmetry Opera-
tion Active in

L2n Layer

Unit Cell Parameters
V, Å3 Ref.

a, Å b, Å c, Å

[Ho11.697(TeO3)12][K4.908Cl16] I4/mcm P(4/m)bm 21x, 21y 15.826 15.826 24.817 6216 [15]

[Pr11.781(TeO3)12][K5.657Cl17] I4/mcm P(4/m)bm 21x, 21y 16.071 16.071 24.862 6421 [15]

[Gd12(TeO3)12][Cd6Cl24] I4/mcm P(4/m)bm 21x, 21y 15.763 15.763 26.410 6561.82 [15]

[LiPr11(SeO3)12][Rb6Cl16] I4/mcm P(4/m)bm 21x, 21y 15.906 15.906 24.790 6271.89 [13]

[LiNd11(SeO3)12][Rb6Cl16] I4/mcm P(4/m)bm 21x, 21y 15.817 15.817 24.770 6196.90 [12]

MDO3-polytype

[CaNd10(SeO3)12][Cl8] * Bbab Pba(b) 21x, 2y 15.681 15.588 17.419 4257.82 [52]

[SrNd10(SeO3)12][Cl8] * Bbab Pba(b) 21x, 2y 15.773 15.836 17.622 4401.64 [52]

[Cs0.5Nd10.5(SeO3)12][Br8] Bbab Pba(b) 21x, 2y 15.797 15.797 17.693 4482.58 [55]

MDO4-polytype

[Nd11(SeO3)12][Cs7Cl16] Pna21 P12/a(1) 2y 15.911 15.951 25.860 6563.17 [38]

[Sm11(SeO3)12][K7Cl16] Pnan P12/a(1) 2y 15.633 15.664 25.075 6140.25 [54]

Non-MDO polytypes and
modular structures

[CsPr11(SeO3)12][Cs7Cl16] * Aeam n.d. n.d. 15.999 15.986 51.698 13222.28 [54]

[Nd11(SeO3)12][Cs7Cl16] Pban n.d. n.d. 15.941 15.954 51.656 13137.29 [38]

{[La11(SeO3)12][Cs6Cl16]}
{[La11(SeO3)12][Cl8]} *

Aeam
P(4/m)bm 21x, 21y

16.073 16.037 43.176 11129.16 [53]
Pba(b) 21x, 2y

* The initial unit cell parameters and the space groups have been transformed to preserve the orientation and
stacking direction of the OD layers and modules; n.d., no data.

4. Discussion
4.1. Synthesis

In line with our expectations, the family of layered rare-earth chalcogenite halides
could be more or less successfully extended into the realm of transition-metal compounds.
As yet, the generally employed self-flux synthetic pathway (the use of metal halides
as both reactants and fluxing agents) is quite effective in producing single crystals of
selenites but essentially less so in the case of tellurites; we estimate the probability of
preparing suitable single crystals from a single synthetic run to be as low as 20–30%. The
possible explanation is that the targeted tellurites are less soluble in the molten fluxes
compared to the selenites. The quality of the produced tellurite crystals is also essentially
lower in contrast to selenites. This is the reason why most isostructural series are only
sparsely characterized, i.e., structures have been determined for certain members only.
This approach also does not provide phase-pure samples. The most common byproduct
is microcrystalline TeO2 which, in the case of alkali fluxes, is generated due to a side
reaction yielding hexahalotellurites and their subsequent hydrolysis upon flux leaching.
An alternative chemical vapor approach, which works well for structurally related bismuth
selenite halides [61], does not work for rare earths due to much lower volatility of their
compounds. Yet, the use of reactive MnX2 and CoX2 fluxes permitted to prepare the first
representatives of two new series of rare-earth-manganese and cobalt tellurite halides.

4.2. Structural Trends

All the compounds reported here adopt the arrangement reported previously by
us for the [Ln12(TeO3)12][Cd6X24] compounds (X = Cl, Br) [16,17]. This is not surpris-
ing, as the MnX2 and CoX2 halides adopt related layered structure type with octahe-
dral coordination of the dication [62–66]. No analogs of the [MLn10(SeO3)12][X8] [52]
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or [Nd11(SeO3)12]2[Cl8][Zn3Cl16] [11] are as yet known among tellurite halides. In the
meantime, selenite analogs of the compounds reported here are also unknown. No mixed-
layer structures, known among selenites [11], have been reported among tellurites, as
these mixed-layer structures contain the [(M,Ln)11+x(ChO3)12][X8] (Ch = chalcogen) layer
sequence. By now, the only “intersection point” between the tetragonal (or pseudotetrag-
onal) tellurite and selenite halides is the structure depicted in Figure 1b, which contains
CsCl-derived metal-halide slabs.

The structure of the metal-tellurite [Ln12(TeO3)12]12+ slabs remains nearly the same
in all structures reported herein and in [10–17] and are composed by three types of the
sheets: the LnO8 and LnO10 polyhedra share edges and vertices to form an “inner” metal-
oxide sheet decorated by the TeO3 squashed tetrahedra and LnO4X4 tetragonal antiprisms
(“outer” sheet; Figure 2). Refinement of these parts of the structures proceeds relatively
smoothly; they exhibit the best ordering and can be considered structure-directing. The
structure of 1 is analogous to those of the other early rare-earth-cadmium compounds and
adopts the same P4/nbm space group with c~13 Å and one cationic and one anionic slab
per unit cell (Figure 1d). As we noted earlier in [16], there exists a considerable mismatch
between the size of the layer comprised from regular CdCl6 octahedra (estimated subcell
parameter of ~3.75 Å) and the cerium-tellurite slab (a/4 = 4.08Å), which can somewhat
be compensated by deformations of the octahedral layer; yet some disorder is already
invoked. This discrepancy increases sharply when passing from Cd2+ ([6]r = 0.95 Å) to Mn2+

([6]r = 0.83 Å) and further to Co2+ ([6]r = 0.75 Å) [67]. In these cases, the distortions are
already unable to compensate the adjustment of the metal-halide to the metal-oxide slab.
Local deviations from the ideal structure which permit either to preserve the acceptable
M–X distances or to adapt some M2+ cations in tetrahedral coordination are very likely to
be present. Unfortunately, only an averaged and statistical picture can be extracted from the
single-crystal X-ray data; the observed disorder can otherwise reflect just the overlapping
contributions from various “islands” with different M–X arrangements. One may suggest
that these discrepancies might decrease when passing from MCl6 to larger MBr6 octahedra;
however, it is likely to be overruled by the swelling of the unit cell in the ab plane. It is
also worth noting that while a polytypic-like transition from P4/nbm to I4/mcm occurs in
the [Ln12(TeO3)12][Cd6Cl24] series with the borderline between Eu and Gd compounds, no
such transition occurs between 4 and 5. It is, therefore, possible that among compounds
of Mn and Co, this transition occurs smoothly and the OD character of the structure is
represented by more or less thick lamellae of both P4/nbm and I4/mcm layer sequences.
It is also rather likely that the compound mentioned in [11] as [La11(SeO3)12][Co7.5Cl24]
also exhibited strong disorder in the metal-halide part of the structure, which could not
be plausibly modeled and was thus abandoned. Overall, it should be noted that while
metal-halide layers containing magnetically active transition metal cations can indeed
be incorporated into the structures of layered rare-earth chalcogenite halides, they form
strongly disordered sublattices which are unlikely to result in magnetic ordering.

We also note that by now, the [Ln12(TeO3)12][M6X24] compounds have been obtained
for the M2+ cations characterized by zero (Mn2+, Cd2+) or relatively low (Co2+) values
of crystal field stabilization energy (CFSE) which permit essential distortions of their
octahedral environment. One can suggest that it is also possible to introduce non-magnetic
Mg2+, of the size similar to Co2+ ([6]r = 0.72 Å [67]) also characterized by CFSE = 0 (as there
are no d orbitals), into the structures reported here.

5. Conclusions

To summarize, we succeeded in further developing the layered rare-earth tellurite-
halide family by introducing, for the first time, magnetically active transition metal cations
into the halide blocks. Despite essential variation of their size, these cations tend to keep the
octahedral environment of halide anions; the geometrical mismatch between the cationic
and anionic layer can be, more or less effectively, compensated by the increasing degree of
disorder in the transition metal sublattice. This disorder increases essentially also when
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passing from chlorides to bromides, which is in line with the fact that no tellurite iodide
featuring the [(M,Ln)11(TeO3)12] layers has been reported so far. It is more or less evident
from this study that further directions of developing this family are possible; however,
there is yet little hope in the pursuit of magnetic properties. Other properties related to
the type of polytypic structures, including ionic exchange and trapping or soft-chemistry
transformations (under mild conditions), might, however, be of interest.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/sym14102087/s1, Table S1: Fractional site coordinates (xyz),
site multiplicities (Q), equivalent displacement parameters (Ueq, Å2), and site occupancy factor for
four compounds [Cd6Cl24][Ce12(TeO)12] (1), [Mn6Cl24][Nd12(TeO)12] (2), [Mn6Br24][La12(TeO)12] (3),
[Co6Cl24][Eu12(TeO)12] (4) and [Co6Cl24][Gd12(TeO)12] (5); Table S2: Selected interatomic distances
(Å) for compounds 1–5.
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