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Abstract: The implications of the principles of general and manifest covariance, together with those
of the objectivity principle, are considered for the purpose of establishing a DeDonder–Weyl-type
Hamiltonian variational formulation for classical general relativity. Based on the analysis of the
Einstein–Hilbert variational principle, it is shown that only synchronous variational principles permit
the construction of fully 4−tensor Lagrangian and Hamiltonian theories of this type. In addition, the
possible validity of an extended Hamiltonian formulation in which Lagrangian variables include also
the Ricci tensor is investigated and shown to occur provided the classical cosmological constant is
non-vanishing.
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1. Introduction

Variational formulations for continuum fields represent a fertile subject of research
which pertains to both their classical description as well as the formulation of related
quantum theories. The issue becomes particularly intriguing in the case of the gravitational
field because of some crucially-important open questions arising both in the framework
of the so-called standard formulation of general relativity (SF-GR), i.e., the formulation of
GR associated with the Einstein field equations (EFE), customarily named as the metric
formulation of GR [1–3], and corresponding theories of quantum gravity (QG). In this
regard, it is generally agreed that any physical theory of gravity worthy of this name,
either classical (in particular variational formulations of GR) or quantum, should satisfy
the following three basic requirements:

• It should fulfill the principle of general covariance (PGC) in arbitrary GR-frames that
are related by means of local point transformations (see discussion below in Section 2).

• It should have the goal of determining the structure of space-time, based on the
identification of a Riemannian differential manifold associated with it. In particular,
this refers to the prescription of its local metric tensor, namely the so-called background
metric field tensor, to be represented with respect to an arbitrary GR-frame.

• It should determine the Hamiltonian structures, both classical and quantum ones,
respectively, realized in the frameworks of SF-GR and QG, both associated with the
Einstein field equations (EFE).

The crucial issue is how precisely these requirements can be satisfied and implemented.
In this regard, however, further important features must be taken into account that pertain
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to the physically admissible tensor representations for Lagrangian and equivalent Hamilto-
nian theories of GR. These include the properties of objectivity, background independenceand
gauge symmetries.

This paper is the first part of a two-paper investigation, the present one being devoted
to variational theories of classical gravity, while leaving to the second part the treatment
of QG. The motivations for splitting the treatment of the two subject areas are several,
including that:

• To achieve an admissible candidate for a QG theory worth of this name, the construc-
tions of a, possibly non-unique, Hamiltonian representation for GR, namely of EFE,
is required. The crucial characteristics of the same representation that are consistent
with the basic principles of GR will be investigated.

• Besides PGC, the consequences of the principle of manifest covariance (PMC) [4] and
its relationship with the principle of objectivity must be addressed. The latter principle
concerns the determination of the classical background space-time and the prescription
of the appropriate variational treatments to be adopted for the gravitational field.

• Furthermore, comparisons with literature are necessary both in GR and QG and
must be discussed separately, given the different and peculiar properties of currently
available theories.

Regarding specifically GR, a basic conceptual remark in GR refers to the issue of
whether and under what conditions (i.e., if any) the validity of PGC in the same context
implies or is equivalent to the validity of PMC. Here we wish to point out that if such a
conjecture indeed applies, it means that it should always be possible to cast all physical
laws, including all the corresponding relevant dynamical variables, in manifestly covariant
form, i.e., in an equivalent 4−tensor form. A related issue then concerns the prescription
of the background metric tensor. In fact, two possible choices emerge from the literature.
Accordingly, the background metric tensor can be either identified with a classical physical
observable (i.e., a uniquely prescribed tensor field) or a dynamical variable. Nevertheless,
the construction of the theory should not depend on its particular choice (background
independence).

Some of the subjects indicated above, which also have much to do with possible
alternative representations of the theory of classical and quantum gravity, have already
been discussed elsewhere (see, in particular, Refs. [5,6]). For this reason, some of the
main outcomes displayed in the same references are adopted as reference background
material, particularly those regarding aspects of the Einstein–Hilbert (EH) variational
theory of SF-GR, conditions of validity of the ADM Hamiltonian theory (Arnowitt, Deser
and Misner [7,8]) and the 4−tensor manifestly-covariant Hamiltonian theory of classical
gravity referred to as CCG-theory [6,9,10].

In order to proceed consistently, the principles of covariance and manifest covariance
in GR are first recalled in connection with the tensorial representations of physical laws, the
establishment of their objective character and the definition of classical physical observables.
The following related questions arise in this connection.

First question: is there a manifestly covariant Hamiltonian theory of GR which can be
based on the EH-action principle? The issue concerns the construction of a Hamiltonian
theory of GR, for which, historically, a famous starting point is provided by the EH theory
for SF-GR, i.e., the EH-action principle for EFE. In particular, the first inquiry that is posed is
whether such a theory can be set in manifestly covariant form, i.e., it is expressible in some
suitable 4−tensor form, so that it may identically satisfy the requirement of invariance in
form with respect to arbitrary local coordinate (point) transformations. By analyzing in
detail the precise nature of the functional setting required for the validity of the EH action
principle, we intend to show that the answer to such a question is negative. In other words,
in the functional setting required by the EH-action principle, there is no 4−tensor nor
4−tensor-density Hamiltonian approach for EFE to be based on the EH-action principle.

Second question: is there a non-trivial manifestly-covariant and 4−tensor Hamiltonian
theory of GR? The issue is whether an alternative variational approach exists which, con-



Symmetry 2022, 14, 2083 3 of 28

trary to the EH case, is capable of leading to a unique 4−tensor Hamiltonian representation
of GR and which is also manifestly covariant. The task must be reached consistent with
the DeDonder–Weyl formalism of the continuum field dynamics variational formulation,
in which Lagrangian coordinates and a corresponding phase-space Hamiltonian state are
realized only in terms of 4−tensors [11–17]. Such an approach is shown to exist and to
coincide with CCG theory, which satisfies the physical requirements set by the principle of
objectivity. The latter demands that it should be possible to identify physical observables
with objective observables, namely that such a character must be unique and independent
of a particular realization of the GR reference frame where the same observables are evalu-
ated or measured. Necessarily, this notion can only be mathematically formulated after the
identification of the metric tensor of the background space-time solution of the Einstein
field equations and with respect to which the tensorial properties of a theory and physical
observables are established. As shown below, the objectivity principle is therefore strictly
related to the principles of general and manifest covariance, both satisfied by CCG theory.
It is shown, in fact, that such a theory can be achieved thanks to the adoption of a suitably
defined functional setting and the notion of the synchronous variational principle, while
within the same approach, a non-trivial Hamiltonian representation of this type can be
obtained for GR.

Third question: is there an extended-variable and manifestly covariant 4−tensor Hamil-
tonian theory of GR? This question, which is closely related to the previous one, concerns
the (still unsolved) issue of whether there may also exist independent extended-type varia-
tional approaches for EFE, namely based on an extended set of Lagrangian independent
variables, to be suitably identified, and in terms of which a corresponding extended-variable
manifestly covariant Hamiltonian approach can be achieved.

The first question indicated above may apply, in principle, to the majority of the
literature’s variational approaches known so far. These include, in particular, the Dirac
and ADM approaches, as well as the so-called covariant canonical gauge approach [18].
In this regard, with the exception of CCG theory, almost all previous approaches share a
unique feature of the EH-action principle, namely—as clarified below—that of being all
based on the adoption of an asynchronous action principle. This means, in other words,
that they adopt variational principles in which the relevant space-time volume element is
considered a function of the variational space-time metric field tensor (see discussion below
in Section 2). The main differences characterizing CCG theory arise, however, because of:
(a) the prescription of the functional setting for the variational tensor functions which
are adopted, denoted here as g(r) ≡

{
gµν(r)

}
≡ {gµν(r)} and not to be identified with

metric tensors; (b) the synchronous type of action variational principle adopted; (c) the
further requirement concerning the precise prescription of the gauge invariance property
to be adopted in this context. In fact, a natural choice should follow by analogy with
the corresponding well-known flat space-time gauge theories available for continuum
fields. Nevertheless, it is well-known that such a property is not met by the majority
of variational GR approaches to be found in the literature. As a consequence, for the
appropriate treatment of the subject posed in this paper, the investigation must necessarily
rely on the 4−tensor manifestly covariant Hamiltonian formulation of classical gravity
(CCG-theory) established in Refs. [5,9,10], which in turn is at the basis of the corresponding
covariant quantum gravity theory (CQG-theory) [19,20].

In detail, the contents of the paper deal with a number of conceptual issues and related
goals, which are discussed below according to the following scheme. In Section 2, the
possible non-unique realizations of the property of manifest covariance, i.e., invariance
in form, implied by the general covariance principle (GCP) is addressed. It is shown that
possible realizations of the notion of invariance in form can be in principle obtained either by
4−tensor or 4−tensor-density transformation laws. In particular, the principle of objectivity
(PO) is formulated, and the existence of the space-time of the universe (background space-
time) is pointed out. Such a space-time is shown to be characterized by prescribed geometric
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properties, i.e., a background metric tensor ĝ(r) ≡
{

ĝµν(r)
}
≡ {ĝµν(r)} and corresponding

background Ricci tensor R̂µν ≡ Rµν(ĝ(r)).
In Section 3, an objective prescription of the variational action principle for GR is

achieved. It is shown that validity of PO necessarily requires the introduction of a suitable
functional setting and the adoption of an appropriate synchronous variational principle
for the fundamental action principle of GR. In such a setting, the variational tensor field
g(r) is not treated as a metric tensor by itself, being instead regarded as a tensor function
prescribed with respect to the metric field tensor of the background space-time ĝ(r). This
property corresponds effectively to a realization of a variational principle of GR in terms
of superabundant variables. In particular, it is shown that a unique prescription can
be obtained for the invariance properties of the fundamental action functional, while
validity of PO warrants that manifest covariance can only be realized in terms of a 4−scalar
variational Lagrangian and 4−tensor canonical fields.

For this purpose, various different synchronous Lagrangian variational principles are
presented. In particular, in this context, the topic will be recalled that concerns the construc-
tion of a manifestly covariant Lagrangian dynamical equation for the variational tensor
field g(r) ≡

{
gµν(r)

}
≡ {gµν(r)}, which recovers exactly EFE under suitable prescription

of the extremal functions. The resulting Lagrangian action principle, in particular, appears
significant because it permits the construction of a corresponding manifestly covariant
Hamiltonian treatment of SF-GR.

Furthermore, in Section 4, the possible existence of an extended set of independent
Lagrangian variables is investigated, which can generalize the customary identification
in terms of the tensor g(r) alone, but remain nevertheless associated only with the same
EFE. It is proved that this task can be successfully met when the same Lagrangian vari-
ables are identified with the set of independent variational coordinates {g(r), R(r)}, with
g(r) ≡

{
gµν(r)

}
≡ {gµν(r)} and R(r) ≡

{
Rµν(r)

}
≡ {Rµν(r)} denoting, respectively, the

variational tensor field and the variational Ricci tensor field. The corresponding Lagrangian
formulation of EFE is referred to as the “metric-Ricci" Lagrangian variational theory. This
result permits us to prove in turn in Section 5 that a manifestly covariant formulation of the
“metric-Ricci” Hamiltonian theory of GR can be equally achieved. In such a case, the canon-
ical variables are identified with the independent Lagrangian coordinates, represented
by the set of variational tensor fields {g(r), R(r)} together with corresponding extended
conjugate canonical momenta, namely realized in agreement with the DeDonder–Weyl
formalism. As a final issue, a fundamental gauge property that must apply for consistency
to any variational theory of continuum fields is proved to also hold for the variational treat-
ment of GR only, provided one adopts synchronous variational principles, i.e., consistent
with the principle of manifest covariance.

2. The General Covariance Principle

The General Covariance Principle (GCP), which is set at the basis of GR, represents a
theoretical cornerstone common to all variational approaches to EFE. In theoretical physics
(following Weinberg, 1972 [21]), the notion of general covariance, also known as diffeo-
morphism covariance, is well-known. It consists of the realization of a suitable condition
of invariance in form for the relevant physical laws, or more generally, the condition of
(simple) covariance, with respect to suitable coordinate transformations. However, such
coordinate transformations are not completely arbitrary since they must be intended as
diffeomorphisms of the space-time in itself, i.e., local transformations which preserve the
space-time structure. This requires, therefore, prescribing both the said space-time structure
and stating explicitly the local nature of the same transformations for such a purpose.
Thus, let us assume for definiteness that the space-time is represented by a Riemannian
differential manifold of the type

{
Q4, ĝ(r)

}
, with Q4 being the 4−dimensional real vector

space R4 representing the space-time and ĝ(r) ≡
{

ĝµν(r)
}
≡ {ĝµν(r)} being a real and

symmetric metric tensor which is parametrized with respect to a coordinate system (or
GR-frame) r ≡ {rµ} ∈ Q4. Then, the same coordinate transformations, denoted as local
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point transformations (or briefly LPT), must preserve the structure of space-time, i.e., they
must be realized by local and differentiable bijections of the form

r → r′ = r′(r), (1)

with inverse
r′ → r = r(r′), (2)

characterized by a non-singular Jacobian matrix M ≡
{

Mk
µ(r)

}
≡
{

∂rk(r)
∂r′µ

}
. Thus, r ≡ {rµ}

and r′ ≡ {r′µ} are arbitrary points belonging to the initial and transformed space-time
structures

{
Q4, ĝ(r)

}
and

{
Q′4, ĝ′(r′)

}
, respectively. By construction, the same space-time

structure is preserved under the LPT-group (the group of local point transformations of
the type (1)), so that actually

{
Q4, ĝ(r)

}
≡
{

Q′4, ĝ′(r′)
}

, while the metric tensors ĝ(r) and
ĝ′(r′) transform in each other in accordance with the appropriate tensor (i.e., 4−tensor)
transformation laws. For definiteness, denoting ĝ′(r′) ≡

{
ĝ′µν(r′)

}
≡ {ĝ′µν(r′)} as the

same symmetric metric 4−tensor expressed in the transformed coordinates r′, by construc-
tion, it follows that:

(a) The Riemann distance in the two space-times
{

Q4, ĝ(r)
}

and
{

Q′4, ĝ′(r′)
}

is the
same; namely, it is realized by means of a 4−scalar, so that ds2 = ĝµν(r)drµdrν =
ĝ′µν(r′)dr′µdr′ν.

(b) The fields ĝ(r) and ĝ′(r′) are 4−tensors. Hence, their covariant components ĝµν(r) and
ĝ′µν(r′) are related via the corresponding covariant 4−tensor transformation laws. In
tensor and symbolic form, the direct and inverse transformations ĝ(r) ≡

{
ĝµν(r)

}
→

ĝ′(r′) ≡
{

ĝ′µν(r′)
}

and ĝ′(r′) ≡
{

ĝ′µν(r′)
}
→ ĝ(r) ≡

{
ĝµν(r)

}
read, respectively,

{
ĝ′αβ(r

′) = ĝµν(r(r′)) ∂rµ

∂r′α
∂rν

∂r′β

ĝµν(r) = ĝ′αβ(r
′(r)) ∂r′α

∂rµ
∂r′β
∂rν

, (3)

{
ĝ′(r′) = M(r(r′)) • ĝ(r(r′)) •M(r(r′))

ĝ(r) = M−1(r′(r)) • ĝ(r′(r)) •M−1(r′(r))
, (4)

where M(r(r′)) =
{

∂rµ

∂r′α

}
and M−1(r′(r)) =

{
∂r′α
∂rµ

}
are the direct and inverse Jacobian

matrices and, for brevity, “•” denotes here a symbolic matrix product.
(c) The tensor fields ĝ(r) and ĝ′(r′) are metric tensors so that they are required to satisfy

the orthogonality conditions

ĝµν(r)ĝµη(r) = δ
η
ν , (5)

ĝ′µν(r
′)ĝ′µη(r′) = δ

η
ν . (6)

(d) Finally, the Ricci and Riemann tensors Rµν(ĝ(r)), Rµpνq(ĝ(r)) and
R′µν(ĝ′(r′)), R′µpνq(ĝ′(r′)), which are associated, respectively, with the two structures{

Q4, g(r)
}

and
{

Q′4, g′(r′)
}

, are transformed in each other in accordance with the
covariance 4−tensor transformation laws indicated above by Equations (4) and (8).

Coming now to the specific realization of GCP, all covariant physical laws should hold
in arbitrary GR-frames. Of course this does not mean that they should necessarily take the
same functional form in all GR-frames (as corresponds to the notion of simple covariance).
This means that an arbitrary non-4−tensor smooth real function F(ĝ(r), r) represented with
respect to

{
Q4, ĝ(r)

}
will generally transform with respect to the LPT-group (1)–(2) in such

a way that its corresponding transformed function F′(ĝ′(r′), r′) represented with respect
to
{

Q′4, ĝ′(r′)
}

takes the form F′(ĝ′(r′), r′) = F′(M(r(r′)) • ĝ(r(r′)) •M(r(r′)), r(r′)), with
F′(ĝ′(r′), r′) denoting a real and smooth function of ĝ′(r′) and r′ generally different from
F(ĝ′(r′), r′).
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2.1. The Principle of Manifest Covariance and Its Extension

In this section we define the precise meaning of manifest covariance and its possible
extension. As we intend to show here, the two notions depend actually on the precise
representation chosen for the field variables and physical observables in GR, to be all
considered here as purely classical ones.

One possible realization of the notion of invariance in form/manifest covariance is
provided by the so-called principle of manifest covariance (PMC) first introduced in Ref. [4].
According to such a principle, it should always be possible to cast all physical laws in
4−tensor form, i.e., in manifestly covariant form. It is obvious that PMC implies the
validity of GCP. The proof is elementary. In fact, let us assume that the space-time is
of the form

{
Q4, ĝ(r)

}
. Then, according to PMC, it should always be possible to cast all

physical laws in 4−tensor form, i.e., to be expressed equivalently, just as the metric 4−tensor
(see Equation (3)), in covariant or counter-variant forms. Indeed, all tensor indexes are
necessarily raised and lowered by its countervariant and covariant components ĝµν(r) and
ĝµν(r), respectively. Thus, for example, let us consider the case in which a given (arbitrary)
set of physical laws is expressed by the covariant 4−tensor equations

φ(r) = 0,
Vµ(r) = 0,

Aµν...(r) = 0.
(7)

Then, in terms of the local point transformation (1)–(2), it follows that, by assumption,
the same observables

{
φ(r), Vµ(r), Aµν...(r)

}
must transform according to the covariant

4−tensor transformation laws
φ′(r′) = φ(r),

V′µ′(r
′) = Vµ(r) ∂rµ

∂r′µ′
,

A′µ′ν′ ...(r
′) = Aµν...(r) ∂rµ

∂r′µ′
∂rν

∂r′ν′
. . . .

(8)

As a consequence, the transformed 4−tensor equations become
φ′(r′) = 0,
V′µ(r′) = 0,

A′µν...(r′) = 0,
(9)

and are therefore invariant in form, since they take exactly the same form as Equation (7).
We stress, however, that in principle, the covariant 4−tensor transformation laws (8)

may not be the only possible realization consistent with the notion of invariance in form,
i.e., equation of the type (9). Thus, for example, introducing the determinant of the Jacobi

matrix
∣∣∣ ∂r′

∂r

∣∣∣ = ∣∣∣ ∂r
∂r′

∣∣∣−1
, another possible realization can be achieved assuming that at least

some of the observables
{

φ(r), Vµ(r), Aµν...(r)
}

, identify 4−tensor-densities of order 0 to
n. This requires assuming for them a covariant 4−tensor-density transformation law, i.e., of
the form 

φ′(r′) = φ(r)
∣∣∣ ∂r

∂r′

∣∣∣−1
,

V′µ′(r
′) = Vµ(r)

∣∣∣ ∂r
∂r′

∣∣∣−1
∂rµ

∂r′µ′
,

A′µ′ν′ ...(r
′) = Aµν...(r)

∣∣∣ ∂r
∂r′

∣∣∣−1
∂rµ

∂r′µ′
∂rν

∂r′ν′
. . . .

(10)

We also stress that in this case, the transformed equations recover again the form (9)
and can therefore also be considered as invariant in form. The conclusion drawn here is,
therefore, that the notion of manifest covariance can be conveniently extended to include,
besides 4−tensors, 4−tensor-densities as well. This notion will be referred to as extended
manifest covariance. Conversely, we shall refer to the extended principle of manifest
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covariance (EPMC) as the one in which all physical laws are cast either in 4−tensor or in
4−tensor-density forms.

2.2. The Principle of Objectivity

From the discussion above, it might appear that, in the case of arbitrary classical phys-
ical dynamical variables and/or observables, there is no mandatory physical requirement
for the occurrence of either 4−tensor or 4−tensor-density transformation properties (i.e.,
either Equations (8) or (10)). In fact, even if some of them are certainly 4−tensors, such as
the variational metric tensor, it is not obvious nor necessary why all observables should
be such.

One such example, in the context of GR, is represented by the structure of space-time
(universe)

{
Q4, ĝ(r)

}
, which also lays at the basis of PGC and PMC and is associated with

the background metric tensor ĝ(r) ≡
{

ĝµν(r)
}
≡ {ĝµν(r)}. In this regard, there are two

possible viewpoints.
The first one is based on the principle of objectivity and is called an objective viewpoint.

For definiteness, the principle can be stated here as follows: in GR, the classical background
metric tensor ĝ(r), which determines the structure of the space-time

{
Q4, ĝ(r)

}
, should

be “objective in character”. In other words, it should be realized by a classical observable,
namely a 4−tensor field that can actually be measured locally in terms of a classical
measurement. Hence, it should always be possible to measure it by setting an arbitrary
GR-frame and by means of a classical (ideal) measurement experiment. In particular, within
the standard formulation of GR (SF-GR) [6], the same background metric tensor should
coincide with a particular solution of EFE (i.e., subject to appropriate boundary conditions).
The same 4−tensor field, which can be locally measured by means of a classical (ideal)
measurement experiment, determines the structure of the space-time of the universe (or
background space-time).

We notice, however, that an alternate viewpoint is also still possible, i.e., in which the
background metric tensor ĝ(r) is considered variational, namely treated as a non-observable
tensor field. Thus, in contrast, this will be referred to as a non-objective viewpoint. The two
viewpoints actually lead to two different possible variational formulations of GR to be
reviewed in the next Section. However, what we intend to point out in this paper is that
only the first one (i.e., the objective viewpoint) actually permits us to achieve a manifestly
covariant Hamiltonian representation for GR.

Before closing, it is worth summarizing the key consequences of the objective view-
point:

• Consequence #1—the validity of the Objectivity Principle implies, therefore, the exis-
tence of a classical background space-time, characterized by a prescribed background
metric tensor ĝ(r) ≡

{
ĝµν(r)

}
≡ {ĝµν(r)}.

• Consequence #2— all observables depending on ĝ(r) must be regarded as objective ob-
servables as well. Equivalently, the geometry of the background space-time

{
Q4, ĝ(r)

}
depends uniquely on ĝ(r). This implies, in particular, that the Riemann distance and
the invariant 4−volume element of the background space-time should be unique
functions of ĝ(r), namely of the form

ds2 = ĝµν(r)drµdrν, (11)

dΩ̂ = d4r
√
−|ĝ(r)|. (12)

Similarly, the space-time Riemann and Ricci 4−tensors associated with the same
background space-time, i.e.,

R̂µpνq = Rµpνq(ĝ(r)), (13)

R̂µν = Rµν(ĝ(r)) = ĝpq(r)Rµpνq(ĝ(r)), (14)
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should be regarded as objective observables. As a consequence, the covariant deriva-
tive of ĝ(r) must vanish, since identically the metric compatibility conditions must
hold, namely

∇̂η ĝµν(r) = ∂η ĝµν − Γ̂p
ηµ ĝpν − Γ̂p

ην ĝµp = 0, (15)

∇̂η ĝµν(r) = ∂η ĝµν + Γ̂µ
ηp ĝpν + Γ̂ν

ηp ĝµp = 0, (16)

where Γ̂ ≡ Γ(ĝ(r)) =
{

Γ̂η
µν(ĝ(r))

}
, with Γ̂η

µν ≡ Γη
µν(ĝ(r)), and R̂µν as the standard con-

nections (Christoffel symbols) and Ricci tensor expressed in terms of the background
metric tensor ĝ(r). All such observables determined in terms of the background metric
tensor ĝ(r) therefore coincide with background or extremal tensor fields. In particular,
this means that the Riemann and Ricci tensors are necessarily 4−tensors with respect
to the background space-time

{
Q4, ĝ(r)

}
. Hence, the objectivity principle implies the

existence of a background space-time, characterized by prescribed geometric proper-
ties, i.e., a background metric tensor ĝ(r) ≡

{
ĝµν(r)

}
≡ {ĝµν(r)} and corresponding

background Ricci tensor R̂µν ≡ Rµν(ĝ(r)).
• Consequence #3— In the following, we intend to prove that, once the objective view-

point is taken, then necessarily all relevant dynamical variables and physical observ-
ables can always be identified with 4−tensors. This will be referred to here as the
universal 4−tensor property of classical field variables.

3. Asynchronous and Synchronous Lagrangian Variational Approaches

The comparison between asynchronous and synchronous Lagrangian variational
approaches for the Einstein equations has already been discussed at length elsewhere [6].
However, in reference to the issue treated in this paper, i.e., the possible existence of the
universal 4−tensor property, which has been conjectured above, it is important to discuss in
detail a closely related issue. As we intend to clarify below, this is represented by the choice
of the appropriate functional settings to be adopted in asynchronous and synchronous
treatments. In fact, the crucial difference between them lies precisely in the choice of the
said functional settings, which can be based either on objective or non-objective viewpoints.

3.1. The Asynchronous and Synchronous Functional Settings

Here, we consider two possible functional settings, to be denoted, respectively, as
asynchronous and synchronous ones. Thus, in particular, the asynchronous functional
setting is represented by the ensemble {g}C of constrained varied functions g(r, θ) ≡
gextr(r) + θδg(r) (with g(r, θ) ≡

{
gµν(r, θ)

}
≡ {gµν(r, θ)}) defined by Equation (A1) in

Appendix A, where gextr(r) is a suitable extremal tensor function to be later selected, and
such that the variation δg(r) ≡ d

dθ g(r, θ)
∣∣∣
θ=0

on the improper boundary Q4 ≡ R4 is subject
to the boundary constraint

δg(r)|∂Q4 = 0, (17)

while each variational (or varied) function g(r, θ) identifies an independent metric tensor
for a corresponding (independent) space-time

{
Q4, g(r)

}
, so that its counter and covari-

ant components {gµν} and
{

gµν

}
necessarily raise and lower all tensor indices. Further-

more, in {g}C, by assumption, the connections Γ(g(r)) ≡
{

Γη
µν

}
and the Ricci tensor

R(g(r)) ≡
{

Rµν

}
≡ {Rµν} are considered functions of the variational tensor field g(r). As

a consequence, denoting the variation of any smooth function f (g(r)) as

f (g(r)) =
d
dθ

f (g(r, θ))

∣∣∣∣
θ=0

, (18)
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it follows that δΓ(g(r)) and δR(g(r)) are generally non-zero. In addition, the same variation
operator δ acts in such a way that it does not preserve the 4−scalar volume element dΩ,
since generally

δdΩ ≡ d4rδ
√
−|g| 6= 0. (19)

For this reason, the operator δ is referred to here as an asynchronous variational operator,
and the volume element

dΩ = d4r
√
−|g(r)| (20)

is denoted as an asynchronous 4−scalar volume element. Because of the consequent explicit
variational contribution arising due to the non-constant volume element, in analogy with
the terminology adopted in classical mechanics, the set {g}C is thus denoted as an asyn-
chronous functional setting.

Instead, an alternative functional setting is represented by the ensemble {g}U of
unconstrained varied functions g(r, θ) ≡ gextr(r) + θδg(r) (with g(r, θ) ≡

{
gµν(r)

}
≡

{gµν(r)}) defined by Equation (A2) in Appendix A. We notice that in this case, g(r, θ)
are now tensor fields with respect to the background space-time

{
Q4, ĝ(r)

}
, with ĝ(r)

denoting the metric background, i.e., extremal, tensor field defined above (see Section 2).
Furthermore, gextr(r) is an extremal tensor field to be prescribed and no constraint condition
on δg(r)|∂Q4 is set any more. In addition, now the Ricci tensor, the standard connections
and the 4−scalar volume element dΩ̂ are all considered functions of the background tensor
field ĝ(r) only, and their tensor indices, when appropriate, are raised and lowered by the
same metric field tensor ĝ(r). Thus, since

δĝ(r) ≡ d
dθ

ĝ(r)
∣∣∣∣
θ=0

= 0, (21)

it follows that δΓ(ĝ(r)), δR(ĝ(r)) and δdΩ̂ all vanish identically. The last property justifies
the name given to the operator δ in this case, being referred to as a synchronous variational
operator, with dΩ̂ being defined by Equation (12) and referred to as a synchronous 4−scalar
volume element. This also justifies the label of synchronous functional setting given to the set
{g}U .

Given these premises, we analyze in detail the two cases.

3.2. Asynchronous Lagrangian Action Principle (Non-Objective Viewpoint)

The set {g}C denotes the functional class of “normalized” asynchronous varied tensor
functions g(r) represented by the 10 covariant (or counter-variant) independent compo-
nents of the symmetric tensor field g(r). In this set, the variational tensor field g(r) ≡

{
gµν

}
is also a metric tensor associated with the space-time

{
Q4, g

}
(Q4 ≡ R4). As a consequence,

this means that g(r) ≡
{

gµν(r)
}
≡ {gµν(r)} raises and lowers tensor indices, and it satisfies

the orthogonality conditions
gµνgµk = δk

ν, (22)

which imply in turn the “normalization” condition gµν(r)gµν(r) = 4. In addition, by as-
sumption in the same functional setting, the tensor g(r) determines both the Christoffel
symbols Γ(g(r)) and the Ricci tensor Rµν(g), so that g(r) ≡

{
gµν(r)

}
≡ {gµν(r)} satis-

fies the metric compatibility condition, i.e., its covariant derivatives necessarily vanish
identically, since:

∇η gµν(r) ≡ gµν;η(r) = 0, (23)

∇η gµν(r) ≡ gµν
;η (r) = 0, (24)

where∇η is the covariant derivative defined with respect to the Christoffel symbols Γ(g(r)).
For the proof we refer to Equations (15) and (16) (see also THM. 3.1.1 of Ref. [22]).
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Let us now briefly examine the consequences for the corresponding action variational
principles. Consider first the asynchronous-variation action functional which is characteris-
tic of EH theory, namely the Einstein–Hilbert Lagrangian variational approach expressed in
terms of asynchronous variations. This is represented by the Einstein-Hilbert (EH) action
functional [23]

SEH(g(r)) ≡
∫

Q4
dΩLg(g) =

∫
Q4

d4rL(g), (25)

where dΩ ≡ d4rδ
√
−|g| is the invariant 4−volume element of the Riemann space-time{

Q4, g(r)
}

, d4r ≡ ∏
i=0,3

dri its canonical measure, while L(g) and

L(g) ≡
√
−|g|L(g), (26)

denote, respectively, the variational Lagrangian and the Lagrangian functions (the latter
being defined by Equation (28) below). The following basic features of the asynchronous
variational approach based on Definition (25) must be pointed out:

• The first one is that, consistent with the non-objective viewpoint discussed above, the
varied functions, i.e., the Lagrangian variables g(r) ≡

{
gµν(r)

}
≡ {gµν(r)} appearing

in Equation (25) belong by assumption to {g}C.
• The second aspect is that, since the space-time 4−volume element dΩ by definition

depends on the determinant of the variational metric tensor, necessarily its variation
δdΩ is non-vanishing, since

δdΩ = d4rδ
√
−|g| 6= 0, (27)

with δ
√
−|g| = 1

2

√
−|g|gµνδgµν. As a consequence, the variation of the functional

SEH(g(r)) does not preserve the space-time volume element (and for this reason is
referred to as asynchronous).

• The third feature is that the variational Lagrangian L(g), defined by Equation (26), is
not a 4−scalar, but rather a 4−scalar-density. This confirms, therefore, that the same
4−tensor-density appears as a consequence of the chosen non-objective viewpoint,
implicit in the choice of the functional setting {g}C. Indeed, in Equations (25) and (26)

L(g, r) = VEH(g) + VFg(g, r) (28)

identifies a 4−scalar Lagrangian. In particular,

VEH = αL
[
gµνRµν(g)− 2Λ

]
(29)

denotes the vacuum gravitational contribution, while VFg(g, r) is a suitably defined
non-vacuum contribution (due to possible external fields [5]), and Λ is the cosmo-
logical constant. We stress that both VEH(g) and VFg(g, r) actually contain a common
factor of indeterminacy. Thus, they can be defined up to a common factor αL, to be
treated as a suitably defined universal constant [5]. A crucial aspect, which inciden-
tally explains the prescription (26) in terms of a 4−scalar-density, is represented by
the functional dependences, which are contained both through |g|, the determinant of
g(r), and implicitly through the Ricci tensor Rµν(g). The latter, in fact, in VEH(g) is
also considered a function of the same variational tensor g(r) through the Christoffel
symbols (which are, by assumption, functions of g(r)).

• The fourth notable feature lies in the EH variational principle (or EH action principle).
This is obtained by requiring that for arbitrary variations δg(r) belonging to {g}C, it
must be

δSEH(g(r))|g=ĝ(r) =
d
dθ

SEH(gextr(r) + θδg(r))
∣∣∣∣
θ=0

= 0, (30)
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with the symbol δ denoting the Frechet derivative [24]. As discussed in Ref. [6],
straightforward algebra then delivers

δSEH(g(r))|g=ĝ(r) = (δSEH(g))expl + (δSEH(g))impl, (31)

where
(δSEH(g))impl = αL

∫
Q4

d4r
√
−|g|ĝµνδRµν, (32)

while the explicit contributions yield upon identifying gextr(r) = ĝ(r) and upon
restoring the correct dimensional units

(δSEH(g))expl = αL

∫
Q4

d4r
√
−|g|

[
R̂µν −

(
1
2

R̂−Λ
)

ĝµν(r)− κT̂µν

]
δgµν. (33)

Here, as usual, R̂µν = Rµν(ĝ(r)) and R̂ = ĝµν(r)Rµν(ĝ(r)) ≡ R((ĝ(r)) denote, respec-
tively, the background Ricci 4−tensor and Ricci 4−scalar, while T̂µν = Tµν(ĝ(r)) is the
background stress-energy tensor associated with the external source fields described
by the external-field Lagrangian density LF(g). Here, as anticipated, the universal
constant αL which multiplies the rhs (right hand side) of Equation (33), does not affect
the EH-action principles, while κ denotes the universal constant

κ =
8πG

c4 , (34)

where G is the Newtonian constant of gravitation and c is the speed of light in a
vacuum.

• Finally, as a fifth notable feature, in order to exactly recover the Einstein field equations,
namely

R̂µν −
(

1
2

R̂−Λ
)

ĝµν = κT̂µν, (35)

with κ being defined by Equation (34), it is necessary that the constraint condition

(δSEH(g))impl = 0 (36)

must be set. As a consequence, as shown in Ref. [6], the EH variational principle in
Equation (30) must be considered as a constrained one, the constraint (36) realizing
effectively a boundary-constrained EH variational principle. One can show, based
on the treatment reported in Ref. [6], that such a constraint is fulfilled identically
provided the variations δg(r) are subject to the constraint (17). The same constraint
condition also implies that its partial derivatives must vanish.

3.3. Synchronous Metric-Lagrangian Action Principle (Objective Viewpoint)

The set {g}U denotes the functional class of “un-normalized” synchronous varied
tensor functions g(r) corresponding to the 10 covariant (or counter-variant) components
of symmetric tensor field g(r). In this case, the variational tensor field g(r) ≡

{
gµν(r)

}
≡

{gµν(r)} is a tensor field associated with the background space-time
{

Q4, ĝ(r)
}

(Q4 ≡ R4).
This means that the tensor indices of g(r), namely

{
gµν(r)

}
and {gµν(r)}, are lowered and

raised by the background metric tensor ĝ(r), i.e.,

gµν ĝµη ĝνβ = gηβ,

gηβ ĝµη ĝνβ = gµν. (37)

It follows that g(r) is not a metric tensor, since generally gµνgµk 6= δk
ν. In this case,

the Ricci tensor Rµν and the Christoffel symbols Γ are background (i.e., extremal) func-
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tions of ĝ(r). As a consequence, the covariant derivatives of ĝ(r) vanish identically (see
Equations (15) and (16)), namely:

∇̂η ĝµν(r) ≡ ĝµν;η(r) = 0, (38)

∇̂η ĝµν(r) ≡ ĝµν
;η (r) = 0, (39)

where ∇̂η is the covariant derivative defined with respect to the Christoffel symbols Γ(ĝ(r)).
Instead, generally, one has that for the variational tensor:

∇̂η gµν(r) ≡ gµν;η(r) 6= 0, (40)

∇̂η gµν(r) 6= 0. (41)

Let us now consider the corresponding synchronous action functional, first introduced
in the context of CCG-theory (see Ref. [9]). Contrary to the asynchronous case, this is
found to be consistent with the choice of the objective viewpoint. Once the Lagrangian
variables g(r) ≡

{
gµν(r)

}
≡ {gµν(r)} are required to belong to the functional setting {g}U ,

the following implications follow: (1) the volume element coincides with the extremal
volume element (12), so that its variation is synchronous, namely δdΩ̂ = d4rδ

√
−|ĝ| and

it vanishes identically, since δĝ(r) = 0; (2) the Ricci tensor is assumed to be a background
tensor field, i.e., an extremal function of the type R̂ = R(ĝ(r)).

Thus, the variational functional, to be referred to as the synchronous metric-Lagrangian
action functional, expressed in terms of the Lagrangian variables, is now written as:

SLg(g(r), ĝ(r)) =
∫

Q4
dΩ̂Lg(g(r), ĝ(r)), (42)

where dΩ̂ coincides with the extremal volume element, and Lg(g(r), ĝ(r)) denotes a
g−dependent 4−scalar variational Lagrangian. As a consequence, the variation of the
volume element vanishes identically, while the variational Lagrangian is indeed a 4−scalar.
This proves, therefore, that the objective viewpoint discussed above is sufficient to demand
that the same variational Lagrangian must be a 4−scalar. The fact that the variational
metric Lagrangian Lg(g(r), ĝ(r)) is a 4−scalar follows since

Lg(g(r), ĝ(r)) ≡ h(g(r), ĝ(r))L(g(r), ĝ(r)), (43)

where
h(g(r), ĝ(r)) = 2− 1

4
gηβ(r)gµν(r)ĝηµ(r)ĝβν(r) (44)

identifies a 4−scalar variational weight-factor, while again L(g(r), ĝ(r)) coincides with the
prescription of the 4−scalar Lagrangian given above (see Equation (28)). For convenience,
here the compact notations

Lg(g(r), ĝ(r)) = Vog(g(r), ĝ(r)) + VFg(g(r), ĝ(r)), (45)

Vog(g(r), ĝ(r)) = αLh
[

gµνR̂µν − 2Λ
]
, (46)

VFg(g(r), ĝ(r)) ≡ −αLκhLFg , (47)

are introduced, where LFg is the 4−scalar Lagrangian associated with external fields,
coupled to the gravitational field through the tensors (g(r), ĝ(r)). Incidentally, we no-
tice that an alternative equivalent representation of the external-field contribution to the
Lagrangian (43) can be adopted in the framework of the synchronous principle [5]. This
can be realized by the formal replacement

h(g(r), ĝ(r))αLκLFg(g(r), ĝ(r))→ αLgµν(r)κT̂µν(r), (48)



Symmetry 2022, 14, 2083 13 of 28

where T̂µν denotes the energy-stress tensor evaluated in terms of the background metric
tensor ĝ(r) [23]. Then, the synchronous Lagrangian action principle for EFE follows at once.
This is obtained by requiring that the variational equation

δSLg(g(r), ĝ(r))
∣∣∣
g=ĝ(r)

= 0, (49)

holds for arbitrary synchronous variations δg(r) belonging to the unconstrained set {g}U ,
while noting that by construction, δĝ(r) ≡ 0.

Let us now show explicitly that the synchronous Lagrangian action principle (49)
yields the Einstein field equations as extremal equations (see also Ref. [6]). The proof is as
follows. First, the symbol δ denotes, as usual, the variation operator, i.e., again the Frechet
derivative, which in the present case is defined as

δSLg(g(r), ĝ(r))
∣∣∣
g=ĝ(r)

≡ d
dθ

SLg(gextr(r) + θδg(r), ĝ(r))
∣∣∣∣
θ=0

. (50)

Recalling the property of the volume element of being extremal under the action of
the synchronous operator δ and invoking the Definition (43), we have that

δSLg(g(r), ĝ(r))
∣∣∣
g=ĝ(r)

=
∫

Q4
dΩ̂δLg(g(r), ĝ(r))

∣∣∣∣
g=ĝ(r)

=
∫

Q4
dΩ̂[δh(g(r), ĝ(r))]L(g(r), ĝ(r))

∣∣∣∣
g=ĝ(r)

+
∫

Q4
dΩ̂h(g(r), ĝ(r))[δL(g(r), ĝ(r))]

∣∣∣∣
g=ĝ(r)

. (51)

We treat first the 4−scalar variational factor h(g(r), ĝ(r)) defined in Equation (44). By
identifying gextr(r) with the background metric tensor field, i.e., letting gextr(r) = ĝ(r), its
variation gives

δh(g(r), ĝ(r))|g=ĝ(r) = −
1
2

ĝµν(r)δgµν, (52)

while identically it holds that

h(g(r), ĝ(r))|g=ĝ(r) = h(ĝ(r)) = 1. (53)

Then, let us consider the 4−scalar Lagrangian function L(g(r), ĝ(r)). Using the
Definitions (45)–(47), its synchronous variation gives∫

Q4
dΩ̂hδL(g(r), ĝ(r)) =

∫
Q4

dΩ̂h
{

αLδ
[

gµνR̂µν − 2Λ
]
− αLδLFg

}
=

∫
Q4

dΩ̂h
{

αL

[
R̂µν −

δLFg

δgµν

]
δgµν

}
. (54)

On the other hand, the extremal value of L(g(r), ĝ(r)) becomes

L(g(r), ĝ(r))|g=ĝ(r) ≡ L(ĝ(r)) = αL

[
ĝµνR̂µν − 2Λ

]
− αL LFg

∣∣∣
g=ĝ(r)

. (55)

Finally, inserting Equations (52)–(55) into Equation (51), after straightforward algebra,
one recovers immediately the Einstein field equations

R̂µν −
(

1
2

R̂−Λ
)

ĝµν = κT̂µν, (56)
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where again the variational definition of the tensor T̂µν is the customary one that arises
in the Einstein–Hilbert theory (see Ref. [23]). The same result can also be obtained if the

relation (48) is used in place of (47), since manifestly
δ(αLgµν(r)κT̂µν(r))

δgµν = αLκT̂µν(r).

3.4. Search of a Metric-Hamiltonian Action Principle

The crucial question is whether, based on the two Lagrangian approaches described
above (see Sections 3.2 and 3.3), a Hamiltonian variational principle can be achieved that
takes either a form consistent either with PMC or EPMC. It is easy to show that the only
available route is provided by a synchronous Hamiltonian action principle, i.e., which
is consistent with the objectivity principle. The result recovers, therefore, the classical
manifestly-covariant theory of GR (CCQ-theory) earlier reported in Refs. [6,9]. In fact,
the construction of a Hamiltonian principle requires the introduction of a variational
“exchange term”, which carries a contribution due to the covariant derivatives of the
variational field g(r). A contribution of this type remains excluded for the asynchronous
formulation. Indeed, in view of Equations (24) and (23), when the constrained setting
{g}C is adopted, the variational derivatives of the corresponding variational field g(r) are
always identically vanishing in such a setting. Things change, however, in the context of
the unconstrained functional setting {g}U , i.e., the manifestly covariant approach based on
the adoption of the principle of objectivity stated above. This occurs because only in such
a framework the covariant derivatives of the variational tensor field g(r), namely ∇̂η gµν

and ∇̂η gµν ≡ ĝηβ(r)∇̂η gµν, are both non-vanishing, as exemplified by Equations (40) and
(41). For this purpose, we introduce here a modified form of the variational Lagrangian
4−scalar function which, departing from Equation (43) above, is now taken of the form

Lg(g(r), ∇̂g(r), ĝ(r)) = Tg − σVg(g(r), ĝ(r)), (57)

Vg(g(r), ĝ(r)) = Vog(g(r), ĝ(r)) + VFg(g(r), ĝ(r)), (58)

where the symbol ∇̂g(r) denotes the covariant derivative, i.e., respectively, ∇̂η gµν or
∇̂η gµν. The 4−scalar function Lg(g(r), ∇̂g(r), ĝ(r)) will be referred to as metric-Lagrangian.
For completeness, detailed expressions, together with the corresponding synchronous
Hamiltonian variational principle, are reported in Appendix B.

4. Extended Lagrangian Variables: The Metric-Ricci Action Principle

Here we address the issue of completeness for the manifestly-covariant Lagrangian
description of GR: namely whether there may exist additional independent Lagrangian
variables, possibly associated with classical treatment of covariant gravity theory. The
complete set of Lagrangian variables determined in this way will be called extended
Lagrangian variables. Here, we claim that a possible variational formulation exists in which
both the tensor field g(r) ≡

{
gµν(r)

}
≡ {gµν(r)} (not a metric tensor) and the Ricci tensor

R(r) ≡
{

Rµν(r)
}
≡ {Rµν(r)} are considered variational and endowed with independent

tensor variations δg(r) and δR(r). A positive answer requires, however, that the Einstein
field equations should remain unchanged, i.e., that the extremal values of g(r) and R(r)
are mutually related via the standard connections. In order to develop a synchronous
variational formulation of the type considered above, this involves adopting the varied
tensor fields {g(r, θ) ≡ gextr(r) + θδg(r), R(r, θ) ≡ Rextr(r) + θδR(r)}, hereon referred to
briefly as metric and Ricci variational fields, belonging to the metric-Ricci functional setting
(A4) (see again Appendix A), with the extremal tensor fields {gextr(r), Rextr(r)} to be
properly prescribed. Here, the variations δg(r)|∂Q4 and δR(r)|∂Q4 are both required to
vanish on the improper boundary of Q4. Notice that here, the tensor indexes of both
variation fields g(r) and R(r) are raised and lowered by the countervariant and covariant
components of the background metric tensor ĝ(r), while δg(r) and δR(r), i.e., the variations
of the tensor fields g(r) and R(r), are assumed to be linearly independent. In addition, the
standard connections (Christoffel symbols) Γ ≡ Γη

µν are again considered functions of the



Symmetry 2022, 14, 2083 15 of 28

background metric tensor ĝ(r). It follows that the covariant derivatives of g(r) defined in
terms of the standard connection are generally non-vanishing (see Equations (40) and (41)).
Then, a possible realization of the variational Lagrangian function also applicable in the case
of non-vacuum fields is provided by the coupled metric-Ricci (extended) variational 4-scalar
Lagrangian field, i.e., a linear combination (via a suitable dimensionless and real coupling
constant α1) of two Lagrangians, respectively, of the g−dependent Lagrangian defined
above, namely Lg(g(r), ĝ(r)) given by Equation (57), and suitably effective R−dependent

Lagrangian, LR

(
R(r), ĝ(r), R̂(r)

)
, namely

Lg+R

(
g(r), ĝ(r), R(r), R̂

)
= Lg

(
g(r), ĝ(r), R̂(r)

)
+ α1LR

(
R(r), ĝ(r), R̂(r)

)
, (59)

with α1 denoting a 4−scalar coupling coefficient, and with LR being defined here as follows:

LR

(
R(r), ĝ(r), R̂(r)

)
= TR(ĝ(r), R(r)) + σVR

(
R(r), ĝ(r), R̂(r)

)
. (60)

Notice that TR and σVR denote now the effective kinetic and potential energies

TR

(
g(r), ĝ(r), R(r), R̂

)
=

1
2Λ

αL∇̂η Rµν∇̂η Rµν, (61)

VR = VoR + VFR . (62)

Thus, in particular, VoR and VFR. identify, respectively,

VoR

(
R(r), ĝ(r), R̂(r)

)
= αL ĝµν

(
Rµν − R̂µν

)
+ αL

[
1

2Λ

(
RµνRµν − R̂µνR̂µν

)
− 1

4Λ

(
R2 − R̂2

)]
, (63)

VFR ≡ −αL
Λ

(
Rµν − R̂µν

)
κT̂µν, (64)

while the rest of the notations are standard. In the case of non-vanishing coupling coefficient
α1, the corresponding variational principle

δSLg+R(g(r), R(r)) = 0, (65)

which is assumed to hold for arbitrary independent tensor variations (δg(r), δR(r)), re-
quires the following Frechet derivatives to vanish identically:

dLg

(
gextr(r) + θδg, ĝ(r), R̂(r)

)
dθ

∣∣∣∣∣∣
θ=0,g(r)=gextr(r)

= 0, (66)

dLR

(
Rextr(r) + ηδR, ĝ(r), R̂(r)

)
dη

∣∣∣∣∣∣
η=0,R(r)=Rextr(r)

= 0. (67)

These equations represent the Euler–Lagrange equations associated with Equation (65).
Due to the linear independence of the synchronous variations δgµν and δRµν, these can be
written in terms of the variational derivatives. Upon letting

(gextr(r), Rextr(r)) =
(

ĝ(r), R̂(r)
)

, (68)
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then Equations (66) and (67) deliver the metric-Ricci Euler–Lagrange equations
∇̂η

[
∂Lg(g,ĝ,R̂)

∂∇̂η gµν

]
g=ĝ
− ∂Lg(g,ĝ,R̂)

∂gµν

∣∣∣∣
g=ĝ

= 0,

∇̂η

[
∂LR(ĝ,R,R̂)

∂∇̂η Rµν

]
R=R̂
− ∂LR(ĝ,R,R̂)

∂Rµν

∣∣∣∣
R=R̂

= 0.
(69)

The proof of the statement is an immediate consequence of the extended (synchronous)
Lagrangian formalism here pointed out. In fact, from Equation (59), we first notice that the
variational field gµν is only carried by the Lagrangian Lg, while the variational field Rµν is
only contained in LR, with the consequence that the two equations in (69) are effectively
decoupled. In addition, we have that identically, when evaluated for extremal fields, the
new Ricci contribution is vanishing, namely

LR

(
ĝ, R, R̂

)∣∣∣
R=R̂
≡ LR

(
ĝ, R̂

)
= 0. (70)

The explicit evaluation of the Euler–Lagrange equation for gµν is then exactly the
same as the one outlined in Sections 3.3 and 3.4. On the other hand, one can read-
ily see that the mathematical structure of the two Lagrangians Lg

(
g(r), ĝ(r), R̂(r)

)
and

LR

(
R(r), ĝ(r), R̂(r)

)
is the same for their respective variational fields, so that both contain

the same type of quadratic kinetic term and analogous potential contributions. Based on
these considerations, thanks to the validity of the customary Lagrangian formalism for
continuum fields, one can immediately reach the proof of the formal representation of the
Euler–Lagrange equation for Rµν (i.e., the second equation in (69)).

We notice that by construction, ∇̂η ĝµν = 0. If one requires additionally that

∇̂η R̂µν = 0, (71)

should hold identically as well, this means that R̂ must actually depend on ĝ(r), such as, for
example, in the case in which the background metric tensor identifies the de Sitter solution.
From the Einstein field Equation (35), it follows, therefore, that the extremal stress-energy
tensor T̂µν(r) must satisfy the constraint condition

∇̂η T̂µν = 0. (72)

Such a requirement is, of course, trivially satisfied in a vacuum. However, subject to
the requirement T̂µν = Tµν(ĝ(r)), it may also be fulfilled in the case of gravitational external
sources. In such a case, it follows that the Lagrangian Equation (69) reduces identically to

δLg(g,ĝ,R̂)
δgµν

∣∣∣∣
g=ĝ

= αL

(
− 1

2 ĝµνR̂ + R̂µν + Λĝµν

)
− αLκT̂µν = 0,

δLR(ĝ,R,R̂)
δRµν

∣∣∣∣
R=R̂

= αL

(
1
Λ R̂µν + ĝµν − 1

2Λ R̂ĝµν

)
− αL

Λ κT̂µν = 0.
(73)

Again, the proof of the first equation in (73) is exactly similar to Section 3.3. Instead,
the second equation in (73) represents the new theoretical goal of the formalism developed
in the present section and deserves a separate proof. The latter can be obtained with
straightforward algebra as follows. First, we notice that in validity of the condition (71)
on the extremal fields, the dynamical contribution generated by the kinetic term in the
Lagrangian LR

(
R(r), ĝ(r), R̂(r)

)
necessarily vanishes identically. Therefore, in such a
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setting, only the potential contribution matters. From the second equation in (69), we need
only to evaluate the following contribution:

∂LR

(
ĝ, R, R̂

)
∂Rµν =

∂VR

(
ĝ, R, R̂

)
∂Rµν =

∂VoR
∂Rµν +

∂VFR

∂Rµν . (74)

In detail, from Equation (63) and the fact that necessarily ∂
∂Rµν R̂µν = 0, one finds

∂VoR
∂Rµν = αL ĝµν

∂

∂Rµν Rµν + αL

[
1

2Λ
∂

∂Rµν

(
RµνRµν

)
− 1

4Λ
∂

∂Rµν R2
]

= αL ĝµν + αL

[
1
Λ

Rµν −
1

2Λ
Rĝµν

]
, (75)

∂VFR

∂Rµν = −αL
Λ

κT̂µν
∂

∂Rµν Rµν = −αL
Λ

κT̂µν. (76)

When evaluated for the extremal field R = R̂ these contributions yield the second equation
in (73).

The last two equations coincide identically with the non-vacuum Einstein field equa-
tions. The first implication from this result is that the original condition on the extremal
Ricci tensor introduced in the synchronous approach is eliminated. In other words, the
requirement (not a constraint) Rµν = R̂µν originally set in the synchronous variational
principle (see Equation (49) above) is formally replaced by the new metric-Ricci varia-
tional principle and subject to the requirement (68) on the extremal fields (gextr(r), Rextr(r)).
Second, the new classical physical requirement Λ 6= 0 arises. In the present context, it
can be simply explained as a necessary requirement for the validity of the metric-Ricci
variational principle. This feature suggests, however, the interesting role taken by the
cosmological constant in this approach, which provides a new derivation of the classical
Einstein equations based on the variational theory for the Ricci tensor, implying that Λ
must be a foundational element of GR theory [25]. In fact, the role of Λ > 0 is proved to
be of high relevance in cosmology and astrophysics, as summarized in Refs. [26,27]. In
addition, the request of a positive cosmological constant in the variational principle for the
Einstein equations of GR is a condition in agreement with the result pointed out in Ref. [4],
where it was shown that Λ > 0 can be associated with the validity of the orthogonality
condition ĝµν ĝµk = δk

ν for the extremal metric tensor.

5. Manifestly Covariant Metric-Ricci Hamiltonian Approach

Given the previous results, we are now in position to attempt formulating a manifestly
covariant metric-Ricci Hamiltonian approach in which the canonical variables coincide with
the extended Lagrangian variables represented by the set of the metric-Ricci coordinates
(g(r), R(r)), together with their conjugate momenta, to be suitably defined. Of course, to
make sense, it is necessary to assume as before that the covariant derivatives of both the
Lagrangian tensor variables (g(r), R(r)) are non-vanishing. Again, however, a 4−tensor
extended Hamiltonian approach, i.e., in which both the 4−tensor fields (g(r), R(r)) are
variational, cannot be based on the asynchronous EH-action principle (30). The reason for
the tensor field g(r) is the same one indicated above, i.e., in the functional set {g(r)}C its
covariant derivative is identically vanishing.

However, on the contrary, it is worth stressing that alternate manifestly covariant
Hamiltonian approaches are possible. As pointed out in [25], these approaches can be
equivalently based on the asynchronous EH-action principle (30) or the synchronous action
principle (49). In both cases, the 4−tensor field R(r) is variational, while the tensor field
g(r) (and/or ĝ(r)) is considered prescribed. In such a case, in fact, the distinction between
the two types of variational principles disappears altogether.

Coming back to the issue of joint variational formulations holding for the whole set of
metric-Ricci coordinates (g(r), R(r)), no difficulty is expected in case of a synchronous ex-
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tended Hamiltonian action principle. This can be achieved by generalizing the correspond-
ing extended Lagrangian principle given above (see Equation (65)) to the whole extended
set of the metric-Ricci coordinates (g(r), R(r)). The key assumption is that of considering all
the variational fields as tensor functions with respect to the background metric field tensor
ĝ(r). The corresponding metric-Ricci Hamiltonian formulation is straightforward. Thus,
following the guidelines adopted in Section 3, upon denoting as Q(r) =

{
Qη

µν(r)
}

the

canonical momenta conjugate to the Ricci tensor R(r) =
{

Rµν(r)
}

, the functional setting is
expected to be analogous to (A4), i.e., with the varied fields {g(r, θ), Π(r, θ), R(r, θ), Q(r, θ)}
required to belong to the synchronous Hamiltonian metric-Ricci setting (A5), while the
corresponding extremal fields {gextr(r), Πextr(r), Rextr(r), Qextr(r)} are again to be suitably
prescribed. We notice, in particular, that here, all variations δg(r)|∂Q4 , δΠ(r)|∂Q4 , δR(r)|∂Q4 ,
δQ(r)|∂Q4 are required to vanish on the improper boundary of Q4 (see Appendix A, Item
5). Thus, in analogy with (A10), the relevant synchronous metric-Ricci Hamiltonian action
functional will be taken of the form

SHg+R(g(r), R(r), Π(r), Q(r)) =
∫

Q4
dΩ̂Lg+R(g(r), R(r), Π(r), Q(r), ĝ(r)), (77)

Lg+R(g(r), R(r), Π(r), Q(r), ĝ(r)) = Πη
µν(r)gµν

;η (r) + Qη
µν(r)Rµν

;η (r)

−Hg+R(g(r), R(r), Π(r), Q(r), ĝ(r)), (78)

where Hg+R(g(r), R(r), Π(r), Q(r)) denotes a 4−scalar function, to be suitably prescribed
consistent with the variational Lagrangian Lg+R(g(r), R(r), Π(r), Q(r), ĝ(r)) defined above
(see Equation (78)). Finally, here we notice that the second term in the integral, identifying
the new exchange term, is carried by the new canonical momentum Qη

µν(r) and the covari-
ant derivative of the countervariant components of the variational Ricci tensor, namely
∇̂η Rµν(r) ≡ Rµν

;η (r), with ∇̂η again being the covariant derivative evaluated with respect to
standard connections depending on ĝ(r). From the metric-Ricci Hamiltonian action principle

δSHg+R(g(r), R(r), Π(r), Q(r)) = 0, (79)

the corresponding Hamilton equations follow:

∇̂η gµν =
∂Hg+R(g(r),R(r),Π(r),Q(r))

∂Πη
µν

,

∇̂ηΠη
µν = − ∂Hg+R(g(r),R(r),Π(r),Q(r))

∂gµν ,

∇̂η Rµν =
∂Hg+R(g(r),R(r),Π(r),Q(r))

∂Qη
µν

,

∇̂ηQη
µν = − ∂Hg+R(g(r),R(r),Π(r),Q(r))

∂Rµν .

(80)

These equations read explicitly

∇̂η gµν = 1
αL

Πµν
η (r),

∇̂ηΠη
µν = −σαL

∂
∂gµν

[
h
(

gαβR̂αβ − 2Λ
)]

+ αLκT̂µν,

∇̂η Rµν = 1
αLΛ Qµν

η (r),

∇̂ηQη
µν = −σαL

∂
∂Rµν

(
ĝαβRαβ + 1

2Λ RαβRαβ

)
+ σαL

4Λ

(
∂

∂Rµν R2
)
+ σαL

Λ κT̂µν,

(81)

where again it is understood that the equations are evaluated for the appropriate prescribed
extremal fields (g(r), R(r), Π(r), Q(r)) = (gextr(r), Rextr(r), Πextr(r), Qextr(r)). The proof
of the statement can be obtained at once based on straightforward algebra, simply invoking
the same calculations developed for the evaluation of the derivatives in the metric-Ricci
Euler–Lagrange equations outlined above, recalling that by construction, the Hamiltonian
equations for the variables (g(r), Π(r)) decouple from those holding for the set (R(r), Q(r)).
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In particular, one has, for example, that
∂Hg+R(g(r),R(r),Π(r),Q(r))

∂Rµν =
∂LR(ĝ,R,R̂)

∂Rµν , and therefore,
the calculation reduces to that reported in Equation (74).

Indeed, the previous equations are equivalent to the corresponding metric-Ricci Euler–
Lagrange Equation (69). In particular, the metric-Ricci action principle and the correspond-
ing Hamilton equations imply the validity of the Einstein field equations under prescrip-
tions of the extremal fields (gextr(r), Rextr(r), Πextr(r), Qextr(r)). This happens indeed, as
expected, when one sets (gextr(r), Rextr(r), Πextr(r), Qextr(r)) ≡ (ĝ(r), R̂(r), Π̂(r), Q̂(r)) and
the generalized velocities ∇̂η gµν, ∇̂η Rµν, together with the conjugate momenta Πµν(r) and
Qµν(r), vanish identically (see previous discussion in Section 4). As a result, the second
and fourth Hamilton equation recover at once the extremal Euler–Lagrange Equations (73).
In particular, the last two equations in (80) become

∇̂η R̂µν = 0, (82)

−σαL

[
∂

∂Rµν

(
ĝαβRαβ +

1
2Λ

RαβRαβ

)]
R=R̂(r)

+
σαL
4Λ

[
∂

∂Rµν

(
ĝαβRαβ

)2
]

R=R̂(r)
+

σαL
Λ

κT̂µν = 0, (83)

where, provided Λ 6= 0, the second equation recovers identically EFE (35). As stated
before, the first equation (83) also implies the validity of the constraint condition (72), a
requirement which can be satisfied in the case of vacuum and suitably prescribed external
sources. In such cases, Equation (80) provides, therefore, a manifestly covariant Hamil-
tonian representation for EFE (see Equation (35)) in which all variational canonical fields
g(r), R(r), Π(r), Q(r) are considered independent 4−tensor fields.

5.1. Gauge Properties of the metric-Ricci Lagrangian and Hamiltonian Action Principles

An interesting issue concerns the characteristic gauge properties of all the synchronous
Lagrangian and Hamiltonian action principles given above, i.e., in particular, the metric-
Ricci synchronous Lagrangian and Hamiltonian action principles (A9) and (65), together
with its Hamiltonian counterpart (A9). Here, we refer in particular to the additive gauge
properties fulfilled by the variational metric-Ricci Lagrangian Lg+R

(
g(r), ĝ(r), R(r), R̂

)
(59) and the modified variational metric-Ricci Lagrangian Lg+R(g(r), R(r), Π(r), Q(r), ĝ(r))
(78). The first property is achieved noting that a general gauge transformation is pro-
vided by

Lg+R(g(r), R(r), Π(r), Q(r), ĝ(r))→ Lg+R(g(r), R(r), Π(r), Q(r), ĝ(r)) + C(ĝ(r)), (84)

which holds for an arbitrary 4−scalar real field of the form C = C(ĝ(r)). Furthermore, if
Gη(g(r), ĝ(r), r) is an arbitrary smooth 4−vector field, then it determines a gauge function.
In fact, one can show that in the functional settings (A4) and (A5), the map

Lg+R(g(r), R(r), Π(r), Q(r), ĝ(r))→
Lg+R(g(r), R(r), Π(r), Q(r), ĝ(r)) + ∇̂ηGη(g(r), R(r), ĝ(r), r) (85)

realizes a gauge transformation. This includes the particular cases in which
Gη ≡ Gη(g(r), R(r), ĝ(r), r) and ∇̂ηGη(g(r), R(r), ĝ(r), r) = C(ĝ(r)).

The interesting implication is, therefore, that a necessary condition for the invariance
with respect to the previous gauge transformation properties (which are all characteristic
of flat-space-time classical field theory) is the variational Lagrangian to be a 4−scalar. In
turn this means that, under the same condition, the adoption of a synchronous variational
principle for GR is required. The synchronous variational principle (79), therefore, is
characterized by unique characteristic gauge properties.
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5.2. Discussion and Comparisons

An interesting comparison can be made with some of the literature approaches which
have some apparent similarity with the present treatment. These include, in particular,
approaches ‘a la Palatini’, based typically on the adoption of an asynchronous variational
principle as the original EH-action principle [28]. However, unlike in the asynchronous
functional setting {g(r)}C considered above, these involve dropping any a priori relation-
ship between the metric tensor g(r) and the connections Γ(r) and considering them as
independent geometric quantities [29] while at the same time retaining the relationship
between the same connections and the Ricci tensor. In practice, this means that in the
resulting action functional, the metric tensor g(r) and the connections now denoted Γ′(r)
are treated as independent variational quantities, while the Riemann and/or the Ricci
tensors are considered prescribed or expressed in terms of the same Γ′(r). We stress that an
analogous approach is developed in Ref. [18], where the Riemann tensor, and hence the
Ricci tensor as well, is assumed prescribed in terms of the same independent connections
Γ′(r). Such a setting is therefore substantially different from the metric-Ricci one considered
in this Section, with the Ricci tensor to be considered variational and independent of the
standard connections Γ(r). Most importantly, all ‘a la Palatini’ approaches violate the prin-
ciple of manifest covariance because the variational connections Γ′(r) are not 4−tensors.
This is the primary motivation of our choice of considering them prescribed in terms of the
background metric tensor.

For completeness, however, it is worth pointing out how, despite the feature indicated
above (i.e., the intrinsic non-manifestly covariant feature carried by the varied non-tensor
fields Γ′(r)) a manifestly covariant Hamiltonian representation can also be achieved in the
contest of ‘a la Palatini’ approaches of this type. This information, in fact, can be valuable
by itself at least for comparison with the metric-Hamiltonian theory described above in
Sections 2 and 3. To begin with, one notices that, as a consequence of such a setting,
the covariant derivatives of gµν(r) and gµν(r) are now defined in terms of variational
connections Γ′(r) and therefore take the form

∇′αgµν(r) = ∂αgµν(r)− Γ′dαµ(r)gdν(r)− Γ′dαν(r)gdµ(r), (86)

∇′αgµν(r) = ∂αgµν(r) + Γ′µαd(r)gdν(r) + Γ′ναd(r)gµd(r), (87)

and are generally non-vanishing, while, in addition, the same covariant derivatives identify,
up to an arbitrary multiplicative 4−scalar factor γ, 3rd-order 4−tensor fields. The conjecture
is whether they can actually be associated with canonical momenta of the form πα

µν =
γ∇′αgµν(r). One can show that the prerequisite for this to happen is that the 4−scalar

function ∇α

[
πα

µν(r)gµν(r)
]

(where ∇α still denotes here the standard covariant derivative,
i.e., with standard connections defined with respect to g(r)) results in a gauge function,
namely it is such that the identity

δ
∫

Q4
dΩ∇α

[
πα

µν(r)gµν(r)
]
≡ δ

∫
Q4

d4r∂α

[√
−|g(r)|πα

µν(r)gµν(r)
]
= 0 (88)

is fulfilled. Such a constraint condition can indeed be satisfied by properly prescribing
δgµν(r) and δπα

µν(r) to vanish on the improper boundary ∂Q4. In fact, since the rhs of
the previous equation does not depend on the choice of the connections (i.e., it holds
for arbitrary connections), by introducing the auxiliary 4−tensor-density [18] π̃α

µν(r) =√
−|g(r)|πα

µν(r), then the following identity holds:

δ
∫

Q4
d4rπ̃α

µν(r)∇′αgµν(r) + δ
∫

Q4
d4rgµν(r)∇′απ̃α

µν(r) = 0, (89)

in which the contributions carried by the variational connections Γ′(r) have been intro-
duced. Let us invoke therefore, in analogy to the prescription for {g}C adopted above (see
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Equation (A1)), the asynchronous Hamiltonian–Palatini functional setting (A6) for the varied
fields {g(r, θ), π(r, θ), Γ′(r, θ)}, which are defined with respect to corresponding properly
defined extremal fields {gextr(r), πextr(r), Γ′extr(r)}.

This implies that if, in such a setting, one considers only variations with respect
to the independent tensor functions

{
δgµν(r), δπ̃α

µν(r)
}

(see Appendix A, Item 6), i.e.,
performed while also keeping constant the varied connections and at the same time letting
Γ′extr(r) 6= Γ(r), an approach ’a la Palatini’ should admit an asynchronous Hamiltonian
action principle of the form

δSP(g(r), π̃(r)) = δ
∫

Q4
dΩ
[
πα

µν(r)∇′αgµν(r)− HP(g(r), π̃(r))
]
= 0, (90)

with SP(g(r), π̃(r)) and HP(g(r), π̃(r)) denoting a 4−scalar Palatini functional and corre-
sponding 4−scalar Hamiltonian function. Thus, introducing the corresponding 4−scalar-
density Hamiltonian H̃P(g(r), π̃(r)) =

√
−|g(r)|HP(g(r), π̃(r)), the resulting Hamilton

equations, defined with respect the modified covariant derivatives (86) and (87), namely{
∇′αgµν(r) = ∂

∂π̃α
µν(r)

H̃P(g(r), π̃(r)),

∇′απ̃α
µν(r) = − ∂

∂gµν(r) H̃P(g(r), π̃(r)),
(91)

are implied. Notice that, as expected, these equations are cast in 4−tensor-density form
and cannot be cast in an equivalent 4−tensor form, with the exception of the first equation
in (91), which can also be written as

∇′αgµν(r) =
∂

∂πα
µν(r)

HP(g(r), π̃(r)), (92)

i.e., in a manifestly covariant 4−tensor form. However, it must be noted that, once
Γ′extr(r) = Γ(r) is set, the same equation reduces manifestly to

∇αgµν(r) =
∂

∂π̃α
µν(r)

H̃P(g(r), π̃(r)) ≡ 0,

so that ∇απ̃α
µν(r) ≡ 0 is also implied. As a consequence, the second Hamilton equation

in (91) is expected to recover exactly EFE (i.e., Equation (35)), which means that X ≡
{gextr(r), πextr(r), Γ′extr(r)} should coincide with Xextr ≡

{
ĝ(r), π̂(r) ≡ 0, Γ̂(r)

}
. We finally

notice that if the variation with respect to δΓ′(r) is performed, one finds out that the
constraint equation ∫

Q4
dΩπα

µν(r)
[
δΓ′µαpgpν + δΓ′ναpgµp

]∣∣∣∣
X=Xextr

= 0 (93)

must be fulfilled. This happens if the Ricci tensor is considered a prescribed tensor field
which is independent of δΓ′ and if the Palatini Hamiltonian HP(g(r), π̃(r)) does not depend
explicitly on the variational derivatives of the tensor fields g(r) or π(r). A first solution
is obviously δΓ′(r) = 0. Another one is that of requiring identically πextr(r)) = 0, which
implies in turn that Xextr should again coincide with

{
ĝ(r), π̂(r) ≡ 0, Γ̂(r)

}
.

We stress that Equations (90) and (91) appear formally analogous to the variational
principles and Hamilton equations reported in Ref. [18], being also expressed in terms of
4−tensor-density canonical momenta and a 4−scalar-density Hamiltonian. In particular,
this means that all such variational principles are asynchronous, just as the action prin-
ciple (90) reported here. Comparison with the 4−tensor metric-Hamilton Equation (A15)
(reported above in Section 3) is also instructive. In contrast with all approaches based
on asynchronous variational principles, the latter appears, in fact, as the only possible
realization of a manifestly-covariant Hamiltonian formulation of GR which is expressed in
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4−tensor form and satisfies the same gauge properties that are characteristic of flat-space-
time field theories.

6. Conclusions

In this paper, aspects of the variational theory of general relativity (GR) have been
investigated in the context of the general covariance and manifest covariance principles
for GR, which concern both the tensor and gauge representations of Lagrangian and
Hamiltonian theories for the Einstein field equations.

After recalling the general covariance principle, the possible realization of the condi-
tions of invariance, i.e., the properties of manifest covariance and covariance have been
pointed out. In particular, manifest covariance has been shown to correspond either to
4−tensor or 4−tensor-density transformation laws for the relevant tensor fields. The conjec-
ture concerning a possible universal 4−tensor property has been investigated and proved
to be realized by the objectivity principle. Its physical implications regarding the notion
of background space-time and the identification of objective classical observables have
been pointed out. In this reference, an interesting result is that customary non-4-tensor
formulations of GR, i.e., represented in non-manifestly covariant form, can, in principle, be
reduced to a purely manifestly covariant one, i.e., in which the Lagrangian field variables
are represented by 4−tensor fields.

As far as Lagrangian theories of the Einstein field equations are concerned, two
possible formulations based either on asynchronous or synchronous variational action
principles have been considered. However, their major difference is related to the existence
of a possible corresponding manifestly covariant Hamiltonian realization of the Einstein–
Hilbert action principle. The notable conclusion which is reached is that the explicit
construction of a manifestly covariant Hamiltonian approach, in fact, can only be achieved
by adopting a synchronous action principle which is cast in Hamiltonian form.

Subsequently, the issue of completeness for the Lagrangian manifestly covariant
description of GR has been addressed, namely whether there may exist additional inde-
pendent Lagrangian variables, possibly associated with classical treatment of covariant
gravity theory. The complete set of Lagrangian variables thus determined, which also
includes the variational Ricci tensor, besides the variational tensor g(s), is referred to as
extended Lagrangian variables. Such a set is shown to realize an ensemble of independent
Lagrangian variational coordinates. For this purpose, a synchronous variational formula-
tion of the Lagrangian action principle based on the extended variables is shown to exist
and to recover exactly, under appropriate assumptions, the Einstein field equations. In
terms of the same variational principle, the construction of a manifestly covariant extended
Hamiltonian approach has been developed, in which the canonical variables coincide with
the extended Lagrangian variables represented by the “metric-Ricci” set (g(r), R(r)) and
by their conjugate momenta, to be suitably defined. Additionally, in this case an extended
Hamiltonian approach has been achieved by means of a synchronous EH-action principle.

As a final topic, the issue of the prescription of the appropriate gauge properties
has been addressed. As a result, it has been shown that for synchronous variational
principles, the same gauge properties actually apply, which are characteristic of flat-space-
time theories. This property appears notable especially because it is peculiar and unique
to the synchronous variational principles considered here. Indeed, on the contrary, it is
manifestly violated by all asynchronous variational principles, including the Einstein–
Hilbert action variational principle.

The main conclusions of the paper can be summarized as follows:

• The first one is that the asynchronous EH-action principle does not permit the con-
struction of a manifestly covariant Hamiltonian approach for EFE. In fact, such a
possibility is simply ruled out by the prescription of the functional setting for the same
action principle, the reason being that the “generalized velocities”, i.e., the covariant
derivatives of the variational metric tensors g(r) vanish.
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• On the contrary, a manifestly–covariant 4−tensor Hamiltonian theory exists, which
is based on the adoption of a synchronous action variational principle. As shown
here, such a result can be achieved by means of suitably prescribed Lagrangian and
Hamiltonian (synchronous) action principles.

• As a third issue, we have shown that based on the same type of synchronous action
principles, an extended-variable manifestly-covariant Hamiltonian variational formu-
lation can also be reached, in which Lagrangian coordinates are represented by the
set of the metric-Ricci variational fields {g(r), R(s)}. The resulting Euler–Lagrange
equations have been obtained in manifestly covariant 4−tensor form. In terms of the
corresponding metric-Ricci action principle, the Einstein field equations have been
recovered as particular solutions.

• Fourth, all the synchronous variational principles considered here have been shown
to fulfill the fundamental gauge property characteristic of all classical field theories
in flat space-time. Namely, the 4−scalar variational Lagrangian, which characterizes
these theories, is gauge-invariant with respect to an arbitrary additive constant of the
same variational Lagrangian.

• Fifth, all synchronous variational principles obtained here are background indepen-
dent in the sense that they hold for an arbitrary background metric field tensor ĝ(r),
namely an arbitrary particular solution of the Einstein field equations.

Finally, further interesting results concern the establishment of alternate possible
Hamiltonian formulations for the Einstein field equations.

The most significant one is undoubtedly the first one, which is based on the treatment
of the Ricci tensor R(r) as an independent variational tensor field (Section 5) while keeping
the tensor field g(r) (together with ĝ(r)) as prescribed. This means that generally, two
different Hamiltonian treatments can effectively coexist. Indeed, they can actually be
coupled by means of a dimensionless and 4−scalar coupling coefficient (α1) through their
corresponding Lagrangian and Hamiltonian functions in which g(r) and R(r) are treated
as independent variations and R(r) and g(r) are treated as constrained quantities. The
significant feature in both cases is their unique manifestly covariant character, which affords
its joint 4−tensor representation represented by a linear combination of the corresponding
Lagrangian and Hamiltonian functions. This route is interesting in that it represents a
possible non-trivial generalization of the manifestly covariant approach represented by
CCG-theory (see, in particular, [6,25]).

However, for the sake of reference, a further variational approach is pointed out. This is
here achieved in the framework of a ’la Palatini’ variational approach, in which—as usual—
the connections (denoted as Γ′(r)) are treated as variational trial functions (Section 5.2).
Its characteristic property, as in the original EH-action principle, is due to being based on
an asynchronous variational principle. For this reason, the approach appears analogous
to the covariant canonical gauge approach earlier developed in Ref. [18]. In fact, both the
variational Hamiltonian and the canonical moment are found to be expressed, respectively,
by means of a scalar density and a 4−tensor density. However, this approach (just as all
Palatini approaches) is obviously not manifestly covariant since it is not expressible in fully
manifestly 4−tensor form, a conclusion that follows due to the adoption of non-tensor
Lagrangian variables, i.e., the same variational connections Γ′(r).

These conclusions are interesting because they indicate that, based on the principles of
general and manifest covariance, as well as the principle of objectivity, a conceptually sound
route to a possible complete Hamiltonian representation of classical GR has actually been
achieved, which is still based, as the original CCG-theory, on the adoption of synchronous
variational principles. Nevertheless, its actual relevance for the explicit construction of a
consistent theory of quantum gravity, i.e., satisfying a suitable set of axioms [19], remains
to be ascertained. Fundamental open questions in this regard include, in particular, the
possible non-uniqueness of a manifestly covariant theory of quantum gravity achieved on
this basis, the notion of background space-time in quantum gravity, the role of manifest
covariance and the meaning of background independence, i.e., whether quantum gravity
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can also self-consistently prescribe its background metric tensor by means of a suitable
dynamical equation. These issues will be discussed in the forthcoming Part 2 of the present
investigation.
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Appendix A. Functional Settings

1—Asynchronous functional setting. This is the ensemble of 4−tensor functions, which
identify metric field tensors, such that:

{g}C ≡



g(r, θ) ≡ gextr(r) + θδg(r) ∈ C2(Q4)
θ ∈ [−1, 1]

δg(r)|∂Q4 = 0
R ≡ R(g(r)), Γ = Γ(g(r))

dΩ = d4r
√
−|g(r)|

gµνgµk = δk
ν


, (A1)

where R ≡ R(g(r)), Γ = Γ(g(r)) and dΩ denote, respectively, the Ricci tensor, the standard
connections (Christoffel symbols) and the asynchronous and g(r)−dependent 4−scalar
volume element.

2—Synchronous functional setting. This is the ensemble of 4−tensor functions g(r, θ) ≡
gextr(r) + θδg(r) defined with respect to the background metric tensor ĝ(r):

{g}U ≡



g(r, θ) ≡ gextr(r) + θδg(r) ∈ C2(Q4)
θ ∈ [−1, 1]

R ≡ R(ĝ(r)), Γ = Γ(ĝ(r))
dΩ̂ = d4r

√
−|ĝ(r)|

gµν = ĝµη ĝνβgηβ(r)
ĝµν ĝµk = δk

ν


. (A2)

Here, R̂ ≡ R(ĝ(r)) and Γ̂ = Γ(ĝ(r)) denote, respectively, the Ricci tensor and the
standard connections (Christoffel symbols) evaluated with respect to the same background
metric tensor ĝ(r), while dΩ̂ is the synchronous ĝ(r)−dependent 4−scalar volume element.

3—Synchronous metric-Hamiltonian functional setting. This is the ensemble of 4−tensor
functions {g(r, θ) ≡ gextr(r) + θδg(r), Π(r, θ) ≡ Πextr(r) + θδΠ(r)} defined with respect to
the background metric tensor ĝ(r):

{g, Π}U ≡



g(r, θ) ≡ gextr(r) + θδg(r) ∈ C2(Q4)
Π(r, θ) ≡ Πextr(r) + θδΠ(r) ∈ C2(Q4)

θ ∈ [−1, 1]
R ≡ R(ĝ(r)), Γ = Γ(ĝ(r))

dΩ̂ = d4r
√
−|ĝ(r)|

gµν = ĝµη ĝνβgηβ(r)
ĝµν ĝµk = δk

ν


. (A3)

Here, R̂ ≡ R(ĝ(r)), Γ̂ = Γ(ĝ(r)) and dΩ̂ have the same meaning of Equation (A2).
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4—Synchronous metric-Ricci functional setting. This is the ensemble of extended 4−tensor
functions {g(r, θ) ≡ gextr(r) + θδg(r), R(r, θ) ≡ Rextr(r) + θδR(r)}:

{g, R}U ≡



g(r, θ) ≡ gextr(r) + θδg(r) ∈ C2(Q4)
R(r, θ) ≡ Rextr(r) + θδR(r) ∈ C2(Q4)

θ ∈ [−1, 1]
Γ = Γ(ĝ(r))

dΩ̂ = d4r
√
−|ĝ(r)|

T̂ = T(ĝ(r), R̂(r))
gµν = ĝµη ĝνβgηβ(r)
Rµν = ĝµη ĝνβRηβ(r)

ĝµν ĝµk = δk
ν


. (A4)

Again, here, Γ̂ = Γ(ĝ(r)) denote the standard connections (Christoffel symbols) evalu-
ated with respect to the same background metric tensor ĝ(r), while dΩ̂ is the synchronous
ĝ(r)−dependent 4−scalar volume element. In addition, T̂ =

{
Tµν

(
ĝ(r), R̂(r)

)}
is the

stress-energy tensor expressed in terms of the background fields (ĝ(r), R̂(r)).
5—Synchronous metric-Ricci Hamiltonian functional setting. This is the ensemble of

extended Hamiltonian 4−tensor functions {g(r, θ), Π(r, θ), R(r, θ), Q(r, θ)}:

{g, R}U ≡



g(r, θ) ≡ gextr(r) + θδg(r) ∈ C2(Q4)
Π(r, θ) ≡ Πextr(r) + θδΠ(r) ∈ C2(Q4)
R(r, θ) ≡ Rextr(r) + θδR(r) ∈ C2(Q4)
Q(r, θ) ≡ Qextr(r) + θδQ(r) ∈ C2(Q4)

θ ∈ [−1, 1]
Γ = Γ(ĝ(r))

dΩ̂ = d4r
√
−|ĝ(r)|

T̂ = T(ĝ(r), R̂(r))
gµν = ĝµη ĝνβgηβ(r)
Rµν = ĝµη ĝνβRηβ(r)

ĝµν ĝµk = δk
ν



. (A5)

As in the previous case, Γ̂ = Γ(ĝ(r)) denote the standard connections (Christoffel
symbols) evaluated with respect to the same background metric tensor ĝ(r), while and
dΩ̂ is the synchronous ĝ(r)−dependent 4−scalar volume element. In addition, T̂ ={

Tµν(ĝ(r), R̂(r))
}

is the stress-energy tensor expressed in terms of the background fields

(ĝ(r), R̂(r)).
6—Asynchronous Hamiltonian–Palatini functional setting. This is the ensemble of Hamiltonian–

Palatini 4−tensor functions {g(r, θ), π(r, θ), Γ′(r, θ)}:

{g, π, Γ}C ≡



g(r, θ) ≡ gextr(r) + θδg(r) ∈ C2(Q4)
π(r, θ) ≡ πextr(r) + θδπ(r) ∈ C2(Q4)
Γ′(r, θ) ≡ Γ′extr(r) + θδΓ′(r) ∈ C2(Q4)

θ ∈ [−1, 1]
δg(r)|∂Q4 = 0

R ≡ R(g(r)), Γ = Γ(g(r))
dΩ = d4r

√
−|g(r)|

gµνgµk = δk
ν


, (A6)

where g(r, θ) and π(r, θ) are canonically conjugate variables, while Γ′(r, θ) and Γ′extr(r)
denote, respectively, variational and extremal connections, with Γ′extr(r) generally different
from the standard connections Γ̂(r).
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Appendix B. The Metric-Lagrangian and Hamiltonian Principles

In the definition of the 4−scalar function Lg(g(r), ∇̂g(r), ĝ(r)) (57) given above,
σ = ±1 is a signature to be suitably prescribed [5], while Tg denotes the effective kinetic
energy, which is defined as

Tg =
1
2

αL∇̂η gµν∇̂η gµν, (A7)

and in the setting, {g}U is non-vanishing. Then, the corresponding Lagrangian variational
principle, to be denoted as the synchronous metric-Lagrangian action principle (49), requires
the evaluation of the Frechet derivative:

δSLg(g(r), ĝ(r))
∣∣
g=ĝ(r) ≡

d
dθ

SLg(gextr(r) + θδg(r), ĝ(r))
∣∣∣∣
θ=0

= 0. (A8)

The synchronous Lagrangian action principle (A8) can readily be cast in Hamil-
tonian form. This requires, first, properly changing the definition given for {g}U (see
Equation (A2)), i.e., requiring that the varied fields
{g(r, θ) ≡ gextr(r) + θδg(r), Π(r, θ) ≡ Πextr(r) + θδΠ(r)} belong to the synchronous metric-
Hamiltonian setting (A3) with the extremal tensor fields {gextr(r), Πextr(r)} to be properly
prescribed and the variations δg(r)|∂Q4 and δΠ(r)|∂Q4 are both required to vanish on the
improper boundary of Q. Second, the Hamiltonian variational principle (to be referred to
as the synchronous metric-Hamiltonian action principle) is set as

δSHg(g(r), Π(r), ĝ(r))
∣∣∣
g=ĝ(r)

= 0. (A9)

Here, the functional

SHg(g(r), Π(r), ĝ(r)) =
∫

Q4
dΩ̂Lg(g(r), Π(r), ĝ(r)) =

∫
Q4

dΩ̂
[
Πη

µν∇̂η gµν − Hg(g(r), Π(r), ĝ(r))
]

(A10)

identifies the Hamiltonian action principle in standard notations, with the corresponding
modified variational metric Lagrangian

Lg(g(r), Π(r), ĝ(r)) ≡ Πη
µν∇̂η gµν − Hg(g(r), Π(r), ĝ(r)), (A11)

and Hg(g(r), Π(r), ĝ(r)) being a suitably prescribed 4−scalar variational Hamiltonian
density defined by Equation (A13) below. Thus, ∇̂η gµν denotes the “generalized ve-
locity” associated with gµν(r), i.e., its covariant derivative defined with respect to the
background metric field tensor ĝ(r), while Πη

µν is the 4−tensor identifying the conjugate
canonical momentum of gµν. Thus, Πη

µν(r) denotes the 4−tensor canonical momentum,
and Hg(g(r), Π(r), ĝ(r)) is the 4−scalar variational Hamiltonian functional, defined as

Πη
µν(r) =

∂Lg(g(r), ĝ(r))

∂∇̂η gµν
= αL∇̂η gµν, (A12)

Hg(g(r), Π(r), ĝ(r)) =
1

2αL
Πη

µν(r)Π
µν
η (r) + Vg(g(r), ĝ(r)). (A13)

Given these definitions and the validity of the Hamiltonian structure associated with
the synchronous Lagrangian theory, it is possible to proceed obtaining the corresponding
Hamiltonian equations. Two different but equivalent methods are available. The first one
consists of evaluating the variational equations generated by the Lagrangian (A11) for the
set of independent variables (g(r), Π(r)). The explicit derivation follows the steps outlined
above, with the additional evaluation of the exchange term Πη

µν∇̂η gµν. An alternative is
provided by direct evaluation of the Hamilton equations generated by the Hamiltonian
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function Hg(g(r), Π(r), ĝ(r)) given by Equation (A13). These are written explicitly in the
customary form as  ∇̂η gµν = ∂H(g(r),Π(r),ĝ(r))

∂Πη
µν

,

∇̂ηΠη
µν = − ∂Hg(g(r),Π(r),ĝ(r))

∂gµν .
(A14)

The evaluation of the partial derivatives in the previous equations can be established
at once with straightforward algebra, being analogous to the variational calculations of
Equations (51)–(55). In conclusion, one finally obtains the continuous metric-Hamilton
equations, which are expressed as{

∇̂η gµν = 1
αL

Πµν(r),

∇̂ηΠη
µν = − ∂

∂gµν

[
αLh

[
gµνR̂µν − 2Λ

]
+ VFg(g(r), ĝ(r))

]
,

(A15)

where it is understood that the equations are evaluated at (g(r), Π(r)) = (gextr(r), Πextr(r)).
Here, we notice that all fields involved, i.e., the canonical variables (g(r), Π(r)), the varia-
tional Hamiltonian function Hg(g(r), Π(r), ĝ(r)) and the Hamilton equations themselves
are 4−tensor functions with respect to the background metric field tensor ĝ(r). From
the previous analysis it follows that the result represented by Equation (A15) is the only
possible Hamiltonian formulation of GR which is expressed in manifestly covariant form by means
of 4−tensor equations. In other words, no analogous Hamiltonian representation can be
achieved in terms of the asynchronous functional setting, where it is understood that the
equations are evaluated at (g(r), Π(r)) = (gextr(r), Πextr(r)). Here, we notice that all fields
involved, i.e., the canonical variables (g(r), Π(r)), the variational Hamiltonian function
Hg(g(r), Π(r), ĝ(r)) and the Hamilton equations themselves are 4−tensor functions with re-
spect to the background metric field tensor ĝ(r). From the previous analysis, it follows that
the result represented by Equation (A15) is the only possible Hamiltonian formulation of GR,
which is expressed in manifestly covariant form by means of 4−tensor equations. In other words,
no analogous Hamiltonian representation can be achieved in terms of the asynchronous
functional setting.
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