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Abstract: Vague graphs (VGs), belonging to the fuzzy graphs (FGs) family, have good capabilities
when faced with problems that cannot be expressed by FGs. The notion of a VG is a new mathematical
attitude to model the ambiguity and uncertainty in decision-making issues. A vague fuzzy graph
structure (VFGS) is the generalization of the VG. It is a powerful and useful tool to find the influential
person in various relations. VFGSs can deal with the uncertainty associated with the inconsistent
and indeterminate information of any real-world problems where fuzzy graphs may fail to reveal
satisfactory results. Moreover, VGSs are very useful tools for the study of different domains of
computer science such as networking, social systems, and other issues such as bioscience and medical
science. The subject of energy in graph theory is one of the most attractive topics that is very important
in biological and chemical sciences. Hence, in this work, we extend the notion of energy of a VG
to the energy of a VFGS and also use the concept of energy in modeling problems related to VFGS.
Actually, our purpose is to develop a notion of VFGS and investigate energy and Laplacian energy
(LE) on this graph. We define the adjacency matrix (AM) concept, energy, and LE of a VFGS. Finally,
we present three applications of the energy in decision-making problems.

Keywords: fuzzy graph; spectrum; eigenvalues; Laplacian energy; vague fuzzy graph; vague graph
structure

1. Introduction

In this modern epoch of technology, modeling uncertainties in engineering, computer
sciences, social sciences, medical sciences, and economics is growing extensively. Classical
mathematical methods are not always useful for dealing with such problems. FG models
are advantageous mathematical tools for solving problems in various aspects. Fuzzy graph-
ical models are obviously better than graphical models because of the natural existence
of vagueness and ambiguity. The subject of a fuzzy set (FS) was introduced by Zadeh [1]
in 1995. After the introduction of fuzzy sets, FS theory has included a large research field.
Since then, the theory of FSs has become a vigorous area of research in different disciplines
including life sciences, management, statistic, graph theory, and automata theory. The
subject of FGs was proposed by Rosenfeld [2]. Kaufmann [3] presented the definitions
of FGs from the Zadeh fuzzy relations in 1973. Akram et al. [4–6] introduced several
concepts in FGs. Some of these product operations on FGs were presented by Mordeson
and Peng [7]. Gau and Buehrer [8] proposed the concept of vague set (VS) in 1993 by
replacing the value of an element in a set with a subinterval of [0, 1]. One type of FG
is VG. VGs have a variety of applications in other sciences, including biology, psychol-
ogy, and medicine. Moreover, a VG can concentrate on determining the uncertainties
coupled with the inconsistent and indeterminate information of any real-world problems
where FGs may not lead to adequate results. Ramakrishna [9] introduced the concept
of VGs and studied some of their properties. After that, Akram et al. [10] introduced
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vague hypergraphs. Borzoei and Rashmanlou [11–13] investigated different subjects of
VGs. Rao et al. [14–16] studied certain properties of domination in vague incidence graphs.
Shi et al. [17,18] investigated the domination of product VGs with an application in trans-
portation. Qiang et al. [19] defined novel concepts of domination in vague graphs. New
concepts of coloring in vague graphs are presented by Krishna [20]. A graph structure (GS)
is a generalization of simple graphs. GSs are very useful in the study of different domains
of computer science and computational intelligence. Borzoei and Rashmanlou [21] pre-
sented the concept of the maximal product of graphs under a vague environment. Akram
et al. [22–24] investigated certain types of vague cycles, vague trees, and Cayley vague
graphs. First, Sampathkumar [25] introduced the notion of a GS. Fuzzy graph structures
(FGSs) are more useful than GSs because they involve the uncertainty and ambiguity
of many real-world phenoms. Dinesh [26] introduced the notion of FGSs and investi-
gated some related concepts. Ramakrishna and Dinesh [27] expressed generalized FGSs.
Kosari et al. [28,29] presented the notion of VG structure with an application in the medical
diagnosis, and they studied a novel description of VG with an application in transportation
systems. VGSs are the generalization of FGSs and are powerful tools in the explanation of
some structures. Moreover, VFGSs are more applicable than GSs because they confront the
uncertainty and ambiguity of many real-world problems. Specific properties of a VFGS are
investigated, including the order of a VFGS, the degree of a vertex, and various types of en-
ergy in VFGS. Talebi et al. [30] studied the interval-valued fuzzy graph with an application
in energy industry management.

Tchier et al. [31] expressed a new group decision-making technique under picture
fuzzy soft expert information. Alolaiyan et al. [32] presented a novel MADM framework
under q-Rung orthopair fuzzy bipolar soft sets. Akram et al. [33,34] introduced a new
notion of pythagorean fuzzy matroids with application and also expressed new results of
group decision-making with fermatean fuzzy soft expert knowledge.

Gutman [35], in 1978, presented the notion of graph energy. Certain bounds on energy
are discussed in [36–38]. The energy of the graph is extended to the energy of FG by Anjali
and Sunil Mathew [39] in 2013. Moreover, the energy of an FG is extended to the energy
of an intuitionistic fuzzy graph by Praba and Deepa [40] in 2014. Naz et al. [41] extended
the energy of an FG to the energy of a bipolar fuzzy graph in 2018. Shi et al. [42] extended
the energy on picture fuzzy graphs in 2022. In 2006, Gutman and Zhou [43] defined the
Laplacian energy (LE) of a graph as the sum of the absolute deviations (i.e., the distance
from the mean) of the eigenvalues of its Laplacian Matrix (LM). Although VGs are better
at expressing uncertain variables than FGs, they do not perform well in many real-world
situations, such as IT management. Therefore, when the data come from several factors,
it is necessary to use VFGSs. Belonging to the FG family, VFGSs have good capabilities
when facing problems that cannot be expressed by VGs and GSs. VFGSs have several
applications in real-life systems and applications where the level of information inherited in
the system varies with time and has different accuracy levels. In this paper, we developed
the energy on a VFGS and investigated its properties. We want to solve real problems
through the energy applications of this graph. Considering the decision making, a method
was suggested to rank the available options using the VFGS and its LE.

2. Preliminaries

Definition 1 ([30]). A fuzzy graph on a graph G∗ = (W, E) is a pair G = (ξ, χ) where ξ is a
fuzzy set on W, and χ is a fuzzy set on E, such that,

χ(vz) ≤ min{ξ(v), ξ(z)},

for all vz ∈ E.

Definition 2 ([8]). A vague set (VS) Q is a pair (tQ, fQ) on set W, where tQ and fQ are real
valued functions which can be defined on W → [0, 1] so that, tQ(v) + fQ(v) ≤ 1, ∀v ∈W.
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Definition 3 ([9,21]). Suppose G∗ = (W, E) is a graph. A pair G = (Q, R) is named a VG on
graph G∗ = (W, E), where Q = (tQ, tQ) is a VS on W and R = (tR, fR) is a vague relation on W
such that,

tR(v, z) ≤ min{tQ(v), tQ(z)},

fR(v, z) ≥ max{ fQ(v), fQ(z)},

for all v, z ∈W . Note that R is called vague relation on Q. A VG G is named strong if

tR(vz) = min{tQ(v), tQ(z)},

fR(vz) = max{ fQ(v), fQ(z)},

for all v, z ∈W.

Definition 4 ([12]). Suppose G = (Q, R) is a VFG on G∗, the degree of vertex v is defined as
D(v) = (Dt(v),D f (v)), where

Dt(v) = ∑
v 6=z,z∈W

tR(vz) , D f (v) = ∑
v 6=z,z∈W

fR(vz).

The order of G is defined as

O(G) =

(
∑

v∈W
tQ(v), ∑

v∈W
fQ(v)

)
.

Definition 5 ([25]). A graph structure (GS) G∗ = (W, E1, E2, . . . , En) contains a non-empty set
W with relations E1, E2, . . . , En on set W that are separated such that each relation Ei, 1 ≤ i ≤ n
is symmetric and irreflexive. The GS G∗ = (W, E1, E2, . . . , En) can be described as similar as a
graph, where each edge is labeled as Ei, 1 ≤ i ≤ n.

Definition 6 ([27]). Suppose ζ be the FS on W and τ1, τ2, . . . , τn be FSs on E1, E2, . . . , En, re-
spectively. If 0 ≤ τi(vz) ≤ min{τ(v), τ(z)} for all v, z ∈ W, i = 1, 2, . . . , n, then G =
(ζ, τ1, τ2, . . . , τn) is called FGS of GS G∗.

G = (Q, R1, R2, . . . , Rn) is named a VFGS of a GS G∗ = (W, E1, E2, . . . , En) if Q =
(tQ, fQ) is a VS on W, and for every i = 1, 2, . . . , n, Ri = (tRi , fRi ) is a VS on Ei such that:

tRi (vz) ≤ min{tQ(v), tQ(z)},

fRi ≥ max{ fQ(v), fQ(z)},

∀vz ∈ Ei ⊂W ×W.
Note that tRi (vz) = 0 = fRi (vz), for all vz ∈ W ×W − Ei and 0 ≤ tRi (vz) ≤ 1, 0 ≤

fRi (vz) ≤ 1, vz ∈ Ei, where W and Ei(i = 1, 2, . . . , n) are named the underlying vertex set and
underlying i-edge set of G, respectively.

Example 1. Consider a graph structure G∗ = (W, E1, E2, E3) , where W = {a, b, c, d, e, f },
E1 = {ab, cd}, E2 = {bc, ed}, and E3 = {be, e f }. Suppose Q, R1, R2, and R3 is a vague fuzzy
subset of W, E1, E2, and E3, respectively, such that

Q = {< a, (0.2, 0.5) >,< b, (0.2, 0.5) >,< c, (0.4, 0.7) >,< d, (0.3, 0.5) >,
< e, (0.1, 0.5) >,<, f , (0.4, 0.9) >},
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R1 = {< ab, (0.2, 0.7) >,< cd, (0.3, 0.8) >},

R2 = {< bc, (0.2, 0.7) >,< de, (0.1, 0.6) >},

R3 = {< be, (0.1, 0.7) >,< e f , (0.1, 0.9) >}.

Then, G = (Q, R1, R2, R3) is a VFGS on G∗ as shown in Figure 1.

Figure 1. VFGS G = (Q, R1, R2, R3).

Definition 7. Two vertices that are connected by an edge are named adjacent. The AM A = [vpq]
for a graph G∗ = (W, E) is a matrix with n rows and m columns, n = |V|, and its entries are
defined by

vpq =

{
1 i f (zp, zq) ∈ E
0 i f otherwise.

Definition 8. The spectrum of a matrix is defined as a set of its eigenvalues, and we denote it with
SP(G). The eigenvalues γp, p = 1, 2, . . . , l of the AM of G are the eigenvalues of G. The spectrum
γ1, γ2, . . . , γl of the AM of G is the SP(G); the eigenvalues of the graph satisfy the following
relations:

l

∑
p=1

γp = 0,
l

∑
p=1

γ2
p = 2k.

Definition 9. The energy of a graph G is denoted by E(G) and is defined as the sum of the absolute
values of the eigenvalues of A, that is,

E(G) =
l

∑
p=1
|γp|,

where γp is an eigenvalues of A.

Theorem 1. Suppose that G is a graph with l vertices and k edges and A is the AM of G then√
2k + l(l − 1)|A| 2l ≤ E(G) ≤

√
2kl.

All the essential notations are shown in Table 1.
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Table 1. Some essential notations.

Notation Meaning

FS Fuzzy Set

FG Fuzzy Graph

VS Vague Set

VG Vague Graph

GS Graph Structure

AM Adjacency Matrix

LE Laplacian Energy

LM Laplacian Matrix

FGS Fuzzy Graph Structure

VFGS Vague Fuzzy Graph Structure

VFA Vague Fuzzy Averaging

VFE Vague Fuzzy Element

VFPR Vague Fuzzy Preference Relation

VFWA Vague Fuzzy Weighted Averaging

3. Energy of a Vague Fuzzy Graph Structure

In this section, we express a new notion of the extension of the energy of an FGS called
VFGS. We define the notion of energy of a VFGS which can be used in real science.

Definition 10. The AM A(G) of a VFGS, G = (Q, R1, R2, . . . , Rn) is defined as A(G) =

(AR1, AR2, . . . , ARn), where ARi , (i = 1, 2, . . . , n) is a square matrix as [vpq] in which v(i)pq =

(t(i)pq , f (i)pq ), where t(i)pq = tRi (zpzq) and f (i)pq = fRi (zpzq) represent the strength of relationship
between zp and zq, respectively.

Definition 11. The energy of a VFGS G = (Q, R1, R2, . . . , Rn) is defined as the following:

E(G) =< E(ARi) >, 1 ≤ i ≤ n

with

E(ARi) =

(
l

∑
p=1
|(ηp)Ri |,

l

∑
p=1
|(φp)Ri |

)
,

where (ηp)Ri and (φp)Ri are eigenvalues of A(tRi (zpzq)) and A( fRi (zpzq)), respectively.

Example 2. Consider a GS G∗ = (W, E1, E2, E3) , where W = {m1, m2, m3, m4, m5, m6, m7, m8},
E1 = {m1m2, m4m5}, E2 = {m2m5, m3m4, m6m7, m7m8}, and E3 = {m5m6, m2m3, m4m7}.
Suppose Q, R1, R2, and R3 is a vague fuzzy subset of W, E1, E2, and E3, respectively, then,
G = (Q, R1, R2, R3) is a VFGS on G∗ as shown in Figure 2, such that

Q = {< m1(0.1, 0.4) >,< m2(0.5, 0.8) >,< m3(0.3, 0.6) >,< m4(0.4, 0.5) >,<
m5(0.6, 0.8) >,< m6(0.2, 0.7) >,< m7(0.3, 0.5) >,< m8(0.4, 0.5) >}

R1 = {< m1m2(0.1, 0.8) >,< m4m5(0.4, 0.8) >},

R2 = {< m2m5(0.5, 0.8) >,< m3m4(0.3, 0.7) >,< m6m7(0.2, 0.7) >,
< m7m8(0.3, 0.5) >},
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R3 = {< m5m6(0.2, 0.8) >,< m2m3(0.3, 0.8) >,< m4m7(0.2, 0.5) >}.

Figure 2. VFGS G = (Q, R1, R2, R3).

The AMs and energy of each degree of G are obtained as follows:

A(tR1) =



0 0.1 0 0 0 0 0 0
0.1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0.4 0 0 0
0 0 0 0.4 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


E(A(tR1)) =

l

∑
p=1
|(ηp)R1 | = 1

A( fR1) =



0 0.8 0 0 0 0 0 0
0.8 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0.8 0 0 0
0 0 0 0.8 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


E(A( fR1)) =

l

∑
p=1
|(φp)R1 | = 3.2

A(tR2) =



0 0 0 0 0 0 0 0
0 0 0 0 0.5 0 0 0
0 0 0 0.3 0 0 0 0
0 0 0.3 0 0 0 0 0
0 0.5 0 0 0 0 0 0
0 0 0 0 0 0 0.2 0
0 0 0 0 0 0.2 0 0.3
0 0 0 0 0 0 0.3 0


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E(A(tR2)) =
l

∑
p=1
|(ηp)R2 | = 2.32

A( fR2) =



0 0 0 0 0 0 0 0
0 0 0 0 0.8 0 0 0
0 0 0 0.7 0 0 0 0
0 0 0.7 0 0 0 0 0
0 0.8 0 0 0 0 0 0
0 0 0 0 0 0 0.7 0
0 0 0 0 0 0.7 0 0.5
0 0 0 0 0 0 0.5 0


E(A( fR2)) =

l

∑
p=1
|(φp)R2 | = 4.72

A(tR3) =



0 0 0 0 0 0 0 0
0 0 0.3 0 0 0 0 0
0 0.3 0 0 0 0 0 0
0 0 0 0 0 0 0.2 0
0 0 0 0 0 0.2 0 0
0 0 0 0 0.2 0 0 0
0 0 0 0.2 0 0 0 0
0 0 0 0 0 0 0 0


E(A(tR3)) =

l

∑
p=1
|(ηp)R3 | = 1.4

A( fR3) =



0 0 0 0 0 0 0 0
0 0 0.8 0 0 0 0 0
0 0.8 0 0 0 0 0 0
0 0 0 0 0 0 0.5 0
0 0 0 0 0 0.8 0 0
0 0 0 0 0.8 0 0 0
0 0 0 0.5 0 0 0 0
0 0 0 0 0 0 0 0


E(A( fR3)) =

l

∑
p=1
|(φp)R3 | = 4.2

Therefore, the energy of a VFGS G = (Q, R1, R2, R3) is equal to

E(G) =< (1, 3.2), (2.32, 4.72), (1.4, 4.2) > .

Theorem 2. Suppose that G = (Q, R1, R2, . . . , Rn) is a VFGS and A(G) is its AM. If (η1)Ri ≥
(η2)Ri ≥ . . . ≥ (ηn)Ri and (φ1)Ri ≥ (φ2)Ri ≥ . . . ≥ (φn)Ri are the eigenvalues of A(tRi (vpvq))
and A( fRi (vpvq)), respectively, then,

I)
l

∑
p=1

(ηp)Ri = 0,
l

∑
p=1

(φp)Ri = 0.

I I)
l

∑
p=1

(ηp)
2
Ri

= 2 ∑
1≤p≤q≤l

(tRi (zpzq))
2,

l

∑
p=1

(φp)
2
Ri

= 2 ∑
1≤p≤q≤l

( fRi (zpzq))
2,
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Proof. (I) Since ARi (G) is a symmetric matrix with zero trace, its eigenvalues are real
with a sum equal to zero.

(II) By effect properties of the matrix, we have

tr((A(tRi (zpzq)))
2) =

l

∑
p=1

(ηp)
2
Ri

,

where
tr((A(tRi (zpzq)))

2) = (0 + (tRi (z1z2)))
2 + . . . + (tRi (z1zl))

2

+(tRi (z2z1))
2 + 0 + . . . + (tRi (z2zl))

2

...

+(tRi (zlz1))
2 + (tRi (zlz2))

2 + . . . + 0) = 2 ∑
1≤p≤q≤l

(tRi (zpzq))
2.

Hence,
l

∑
p=1

(ηp)
2
Ri

= 2 ∑
1≤p≤q≤l

(tRi (zpzq))
2.

Moreover, we have,

tr((A( fRi (zpzq)))
2) =

l

∑
p=1

(φp)
2
Ri

,

where
tr((A( fRi (zpzq)))

2) = (0 + ( fRi (z1z2))
2 + . . . + ( fRi (z1zl))

2

+( fRi (z2z1))
2 + 0 + . . . + ( fRi (z2zl))

2

...

+( fRi (zlz1))
2 + ( fRi (zlz2))

2 + . . . + 0) = 2 ∑
1≤p≤q≤l

( fRi (zpzq))
2.

Hence,
l

∑
p=1

(φp)
2
Ri

= 2 ∑
1≤p≤q≤l

( fRi (zpzq))
2.

Theorem 3. Let G = (Q, R1, R2, . . . , Rn) be a VFGS and ARi (G) be the AM of G. Then,

(I) √√√√√2 ∑
1≤p≤q≤l

(tRi (zpzq))2 + l(l − 1)|det(A(tRi (zpzq)))|
2
l

≤ E(tRi (zpzq)) ≤
√

2 ∑
1≤p≤q≤l

(tRi (zpzq))2.

(II) √√√√√2 ∑
1≤p≤q≤l

( fRi (zpzq))2 + l(l − 1)|det(A( fRi (zpzq)))|
2
l
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≤ E( fRi (zpzq)) ≤
√

2 ∑
1≤p≤q≤l

( fRi (zpzq))2.

Proof. (I) Applying Cauchy–Schwarz inequality to the vectors (1, 1, . . . , 1) and
(|(η1)Ri |, |(η2)Ri |, . . . , |(ηn)Ri |) with n entries, we obtain:

l

∑
p=1
|(ηp)Ri | ≤

√
l

√√√√ l

∑
p=1
|(ηp)Ri |2, (1)

(
l

∑
p=1

(ηp)Ri )
2 =

l

∑
p=1
|(ηp)Ri |

2 + 2 ∑
1≤p≤q≤l

(ηp)Ri (ηq)Ri . (2)

By comparing the coefficients of (ηRi
)l−2 in the characteristic polynomial

l

∏
p=1

((ηRi
)− (ηp)Ri ) = |ARi (G)− (ηp)Ri |,

we have
∑

1≤p≤q≤l
(ηp)Ri (ηq)Ri = − ∑

1≤p≤q≤l
(tRi (zpzq))

2. (3)

By replacing (3) in (2), we obtain

l

∑
p=1
|(ηp)Ri |

2 = 2 ∑
1≤p≤q≤l

(tRi (zpzq))
2, (4).

Replacing (4) in (1), we obtain:

l

∑
p=1
|(ηp)Ri | ≤

√
l
√

2 ∑
1≤p≤q≤l

(tRi (zpzq))2 =
√

2l ∑
1≤p≤q≤l

(tRi (zpzq))2.

Therefore,

E(tRi (zpzq)) ≤
√

2l ∑
1≤p≤q≤l

(tRi (zpzq))2.

(E(tRi (zpzq)))
2 = (

l

∑
p=1
|(ηp)Ri |)

2 =
l

∑
p=1
|(ηp)Ri |

2 + 2 ∑
1≤p≤q≤l

|(ηp)Ri (ηq)Ri |

= 2 ∑
1≤p≤q≤l

(tRi (zpzq))
2 +

2l(l − 1)
2

AM{|(ηp)Ri (ηq)Ri |}.

Since AM{|(ηp)Ri (ηq)Ri |} ≥ GM{|(ηp)Ri (ηq)Ri |}, 1 ≤ p ≤ q ≤ l,

E(tRi (zpzq)) ≥
√

2 ∑
1≤p≤q≤l

(tRi (zpzq))2 + l(l − 1)GM{|(ηp)Ri (ηq)Ri |},

also, since

GM{|(ηp)Ri (ηq)Ri |} =
(

∏
1≤p≤q≤l

|(ηp)Ri (ηq)Ri |
) 2

l(l − 1)
=

(
l

∏
p=1
|(ηp)Ri |

l−1

) 2
l(l − 1)
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=

(
l

∏
p=1
|(ηp)Ri |

)2
l
= |det(A(tRi (zpzq)))|

2
l ,

so,

E(tRi (zpzq)) ≥

√√√√√2l ∑
1≤p≤q≤l

(tRi (zpzq))2 + l(l − 1)|det(A(tRi (zpzq))|
2
l .

Thus,

√
2ltRi (zpzq)

2 + l(l − 1)|det(A(tRi (zpzq)))|
2
l ≤ E(tRi (zpzq))

≤
√

2l ∑
1≤p≤q≤l

(tRi (zpzq))2.

Similarly, we can prove cases (II).

Theorem 4. Suppose G = (Q, R1, R2, . . . , Rn) is a VFGS and ARi (G) is a AM of G. If l ≤
2 ∑1≤p≤q≤l(tRi (zpzq))2, l ≤ 2 ∑1≤p≤q≤l( fRi (zpzq))2,

then

(I) E(tRi (zpzq)) ≤
2 ∑1≤p≤q≤l(tRi (zpzq))2

l

+

√√√√√(l − 1)

2 ∑
1≤p≤q≤l

(tRi (zpzq))2 −
(

2 ∑1≤p≤q≤l(tRi (zpzq))2

l

)2
.

(I I) E( fRi (zpzq)) ≤
2 ∑1≤p≤q≤l( fRi (zpzq))2

l

+

√√√√√(l − 1)

2 ∑
1≤p≤q≤l

( fRi (zpzq))2 −
(

2 ∑1≤p≤q≤l( fRi (zpzq))2

l

)2
.

Proof. (I) If ARi = [vpq]n×n is a symmetric matrix with zero trace, then (ηRi )max ≥
2 ∑1≤p≤q≤l zpzq

l
, where (ηRi )max is the maximum eigenvalue of ARi . If ARi (G) is the adja-

cency matrix of a VFG G, then, η1 ≥
2 ∑1≤p≤q≤l tRi

(zpzq)

l , where (η1)Ri ≥ (η2)Ri ≥ . . . ≥ (ηl)Ri .
Moreover, since

l

∑
p=1

(ηp)
2
Ri

= 2 ∑
1≤p≤q≤l

(tRi (zpzq))
2

l

∑
p=2

(ηp)
2
Ri

= 2 ∑
1≤p≤q≤l

(tRi (zpzq))
2 − (η1)

2
Ri

. (5)
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Applying Cauchy–Schwarz unequality to the vectors (1, 1, ..., 1) and
(|(η1)Ri |, |(η2)Ri |, ..., |(ηl)Ri |) with l − 1 entries, we obtain

E(tRi (zpzq))− (η1)Ri =
l

∑
p=2
|(ηp)Ri | ≤

√√√√(l − 1)
l

∑
p=2
|(ηp)Ri |2. (6)

Replacing (5) in (6), we must have

E(tRi (zpzq))− (η1)Ri ≤

√√√√(l − 1)

(
2 ∑

1≤p≤q≤l
(tRi (zpzq))2 − (η1)

2
Ri

)

E(tRi (zpzq)) ≤ (η1)Ri +

√√√√(l − 1)

(
2 ∑

1≤p≤q≤l
(tRi (zpzq))2 − (η1)

2
Ri

)
. (7)

Now, the function M(e) = e +
√
(l − 1)

(
2 ∑1≤p≤q≤l(tRi (zpzq))2 − e2

)
, decreases on

the interval

√2 ∑1≤p≤q≤l(tRi (zpzq))2

l
,
√

2 ∑1≤p≤q≤l(tRi (zpzq))2

.

Moreover, l ≤ 2 ∑1≤p≤q≤l(tRi (zpzq))2, 1 ≤
2 ∑1≤p≤q≤l(tRi (zpzq))2

l
.

So,√
2 ∑1≤p≤q≤l(tRi (zpzq))2

l
≤

2 ∑1≤p≤q≤l(tRi (zpzq))2

l
≤

2 ∑1≤p≤q≤l(tRi (zpzq))

l

≤ (η1)Ri ≤
√

2 ∑1≤p≤q≤l(tRi (zpzq))2.

Therefore, (7) implies

E(tRi (zpzq)) ≤
2 ∑1≤p≤q≤l(tRi (zpzq))2

l
+

√√√√√(l − 1)

2 ∑
1≤p≤q≤l

(tRi (zpzq))2 −
(

2 ∑1≤p≤q≤l(tRi (zpzq))2

l

)2
.

Similarly, we can prove cases (II).

Theorem 5. Suppose G = (Q, R1, R2, . . . , Rn) is a VFGS. Then, ERi (G) ≤ l
2
(1 +

√
l).

Proof. Let G = (Q, R1, R2, . . . , Rn) be a VSFG. If l ≤ 2 ∑1≤p≤q≤l(tRi (zpzq))2 = 2g, then

by usual calculus, it is clear to show that h(g) =
2g
l
+
√
(l − 1)(2g− ( 2g

l )
2) is maximized

when z = l2+l
√

l
4 . Replacing this value of g in place of g = ∑1≤p≤q≤l(tRi (zpzq))2, we must

have E(tRi (zpzq)) ≤ l
2 (1 +

√
l).

Similarly, it is easy to show that E( fRi (zpzq)) ≤ l
2 (1 +

√
l). Hence, ERi (G) ≤ l

2 (1 +√
l).
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Definition 12. Suppose G = (Q, R1, R2, . . . , Rn) is a VFGS on n vertices. The degree matrix
KRi (G) = [k(i)pq ] of G is an n× n diagonal matrix, which is defined as:

(kpq)Ri =

{
dG(vp) p = q
0 p 6= q

Definition 13. The LE of a VFGS G = (Q, R1, R2, . . . , Rn) is defined as LRi (G) = KRi (G)−
ARi (G), where KRi (G) and ARi (G) are the degrees matrix and AM of a VFGS, respectively.

Definition 14. The LE of a VFGS G = (Q, R1, R2, . . . , Rn) is defined as the following:

LERi (G) =< LE(tRi (zpzq)),LE( fRi (zpzq)) >,

LERi (G) =<
l

∑
p=1
|(ηp)Ri |,

l

∑
p=1
|(φp)Ri | >,

where

(ηp)Ri = (ηp)
∗
Ri
−

2 ∑1≤p≤q≤l tRi (zpzq)

l
,

(φp)Ri = (φp)
∗
Ri
−

2 ∑1≤p≤q≤l fRi (zpzq)

l
,

(ηp)∗Ri
and (φp)∗Ri

are the eigenvalues of L(tRi (zpzq)) and L(tRi (zpzq)).

Example 3. Consider a GS G∗ = (W, E1, E2) , where W = {x, w, z, y, m}, E1 = {xw, wy, zy},
and E2 = {wz, ym}. Suppose Q, R1, and R2 are a vague fuzzy subset of W, E1, and E2, respec-
tively, then, G = (Q, R1, R2) is a VFGS on G∗ as shown in Figure 3, such that

Q = {< x(0.2, 0.5) >,< w(0.4, 0.5) >,< z(0.6, 0.8) >,< y(0.3, 0.7) >,< m(0.5, 0.7) >
}

R1 = {< xw(0.2, 0.6) >,< wy(0.2, 0.7) >,< zy(0.3, 0.8) >},

R2 = {< wz(0.4, 0.8) >,< ym(0.3, 0.7) >}.

Figure 3. VFGS G = (Q, R1, R2).
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The AMs and energy of each degree of G are obtained as follows:

AR1 =


0 (0.2, 0.6) 0 0 0

(0.2, 0.6) 0 0 (0.2, 0.7) 0
0 0 0 (0.3, 0.8) 0
0 (0.2, 0.7) (0.3, 0.8) 0 0
0 0 0 0 0


E(A(tR1)) =

l

∑
p=1
|(ηp)R1 | = 1.076

E(A( fR1) =
l

∑
p=1
|(φp)R1 | = 3.128

AR2 =


0 0 0 0 0
0 0 (0.4, 0.8) 0 0
0 (0.4, 0.8) 0 0 0
0 0 0 0 (0.3, 0.7)
0 0 0 (0.3, 0.7) 0


E(A(tR2)) =

l

∑
p=1
|(ηp)R1 | = 1.4

E(A( fR2) =
l

∑
p=1
|(φp)R1 | = 3

Therefore, the energy of a VFGS G = (Q, R1, R2) is equal to E(G) =< (1.076, 3.128),
(1.4, 3) >

The degree matrix and LE are as follows:

KR1 (G) =


(0.2, 0.6) 0 0 0 0

0 (0.4, 1.3) 0 0 0
0 0 (0.3, 0.8) 0 0
0 0 0 (0.5, 1.5) 0
0 0 0 0 0


According to the relationship LR1(G) = KR1(G)−AR1(G), we have

LR1 (G) =


(0.2, 0.6) (−0.2,−0.6) 0 0 0

(−0.2,−0.6) (0.4, 1.3) 0 (−0.2,−0.7) 0
0 0 (0.3, 0.8) (−0.3,−0.8) 0
0 (−0.2,−0.7) (−0.3,−0.8) (0.5, 1.5) 0
0 0 0 0 0


After computing, we have LE(A(tR1)) = 1.39 and LE(A( fR1)) = 4.2.

KR2 (G) =


0 0 0 0 0
0 (0.4, 0.8) 0 0 0
0 0 (0.4, 0.8) 0 0
0 0 0 (0.3, 0.7) 0
0 0 0 0 (0.3, 0.7)


According to the relationship LR2(G) = KR2(G)−AR2(G), we have

LR2 (G) =


0 0 0 0 0
0 (0.4, 0.8) (−0.4,−0.8) 0 0
0 (−0.4,−0.8) (0.4, 0.8) 0 0
0 0 0 (0.3, 0.7) (−0.3,−0.7)
0 0 0 (−0.3,−0.7) (0.3, 0.7)


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After computing, we have LE(A(tR2)) = 1.4 and LE(A( fR2)) = 3.

Therefore, theLE of a VFGS G = (Q, R1, R2) is equal toLE(G) =< (1.39, 4.2), (1.4, 3) > .

Theorem 6. Suppose that G = (Q, R1, R2, . . . , Rn) is a VSFG and LRi (G) is the LERi of G. If
(η1)

∗
Ri
≥ (η2)

∗
Ri
≥ . . . ≥ (ηl)

∗
Ri

and (φ1)
∗
Ri
≥ (φ2)

∗
Ri
≥ . . . ≥ (φl)

∗
Ri

are the eigenvalues of
L(tRi (zpzq)) and L( fRi (zpzq)), then

I)
l

∑
p=1

(ηp)
∗
Ri

= 2 ∑
1≤p≤q≤l

tRi (zpzq) ,
l

∑
p=1

(φp)
∗
Ri

= 2 ∑
1≤p≤q≤l

fRi (zpzq),

I I)
l

∑
p=1

(ηp)
∗2
Ri

= 2 ∑
1≤p≤q≤l

(tRi (zpzq))
2 +

l

∑
p=1

dQ(zp).

l

∑
p=1

(φp)
∗2
Ri

= 2 ∑
1≤p≤q≤l

( fRi (zpzq))
2 +

l

∑
p=1

d2
Ri
(zp).

Proof. (I) Since LRi (G) is a symmetric matrix with non-negative Laplacian eigenvalues,
therefore,

l

∑
p=1

(ηp)
∗
Ri

= tr(LRi (G)) =
l

∑
p=1

dQ(zp) = 2 ∑
1≤p≤q≤l

(tRi (zpzq)).

Then, ∑l
p=1(ηp)∗Ri

= 2 ∑1≤p≤q≤l tRi (zpzq), similarly, ∑l
p=1(φp)∗Ri

= 2 ∑1≤p≤q≤l
fRi (zpzq).

(II) By tracing the properties of the matrix, we have

tr((L(tRi (zpzq)))
2) =

l

∑
p=1

(ηp)
∗
Ri

,

where
tr((L(tRi (zpzq)))

2) =
(

d2Q(z1) + t2
Ri
(z1z2) + . . . + t2

Ri
(z1zl)

)
+
(

t2
Ri
(Z2Z1) + d2Q(z2) + . . . + t2

Ri
(z2zl)

)
...

+
(
(t2

Ri
(zlz1) + t2

Ri
(zlz2) + . . . + d2Q(zl)

)
= 2 ∑

1≤p≤q≤l
(tRi (zpzq))

2 +
l

∑
p=1

d2
Q(zl).

Hence,
l

∑
p=1

(ηl)
∗2
Ri

= 2 ∑
1≤p≤q≤l

(tRi (zpzq))
2 +

l

∑
p=1

d2
Q(zp).

Similarly, the other relations are fixed.

Theorem 7. Suppose G = (Q, R1, R2, . . . , Rn) is a VFGS on n vertices and LRi (G) is the LM
of G, then

(I)

LE(tRi (zpzq)) ≤

√√√√2l ∑
1≤p≤q≤l

(tRi (zpzq))2 + l
l

∑
p=1

(
dQ(zp)−

2 ∑1≤p≤q≤l(tRi (zpzq)

l

)2

.
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(II)

LE( fRi (zpzq)) ≤

√√√√2l ∑
1≤p≤q≤l

( fRi (zpzq))2 + l
l

∑
p=1

(
dRi (zp)−

2 ∑1≤p≤q≤l( fRi (zpzq)

l

)2

.

Proof. (I) Applying Cauchy–Schwarz inequality to the vectors (1, 1, . . . , 1) and
(|(η1)Ri |, |(η2)Ri |, . . . , |(ηn)Ri |) with n entries, we obtain

l

∑
p=1
|(ηp)Ri | ≤

√
l

√√√√ l

∑
p=1
|(ηp)Ri |2

LE(tRi (zpzq)) ≤
√

l
√

2AtRi
=
√

2lAtRi
,

since

AtRi
= 2l ∑

1≤p≤q≤l
(tRi (zpzq))

2 +
1
2

l

∑
p=1

(
dQ(zp)−

2 ∑1≤p≤q≤l tRi (zpzq)

l

)2

.

Therefore, we have

LE(tRi (zpzq)) ≤

√√√√2l ∑
1≤p≤q≤l

(tRi (zpzq))2 + l
l

∑
p=1

(
dQ(zp)−

2 ∑1≤p≤q≤l(tRi (zpzq)

l

)2

.

Similarly, we can prove cases (II).

Theorem 8. Suppose G = (Q, R1, R2, . . . , Rn) is a VFGS and LRi (G) is a LE of G. Then
(I) LE(tRi (zpzq)) ≤ |(ηp)Ri |

+

√√√√√(l − 1)

2 ∑
1≤p≤q≤l

(tRi (zpzq))2 +
l

∑
p=1

(
dQ(zp)−

2 ∑1≤p≤q≤l(tRi (zpzq)

n

)2

− (ηp)2
Ri

.

(II) LE( fRi (zpzq)) ≤ |(φp)Ri |

+

√√√√√(l − 1)

2 ∑
1≤p≤q≤l

( fRi (zpzq))2 +
l

∑
p=1

(
dRi (zp)−

2 ∑1≤p≤q≤l( fRi (zpzq)

l

)2

− (φp)2
Ri

.

Proof. Using the Caushy–Schwarz inequality, we obtain

I)
l

∑
p=1
|(ηp)Ri | ≤

√√√√l
l

∑
p=1
|(ηp)Ri |2,

l

∑
p=2
|(ηp)Ri | ≤

√√√√(l − 1)
l

∑
p=2
|(ηp)Ri |2.

LE(tRi (zpzq))− |(η1)Ri | ≤
√
(n− 1)(2AtRi

− (η1)
2
Ri
),

LE(tRi (zpzq)) ≤ |(η1)Ri |+
√
(n− 1)(2AtRi

− (η1)
2
Ri
),
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Since

AtRi
= ∑

1≤p≤q≤l
(tRi (zpzq))

2 +
1
2

l

∑
p=1

(
dQ(zp)−

2 ∑1≤p≤q≤l(tRi (zpzq))

l

)2

.

Therefore, LE(tRi (zpzq)) ≤ |(ηp)Ri |

+

√√√√√(l − 1)

2 ∑
1≤p≤q≤l

(tRi (zpzq))2 +
l

∑
p=1

(
dQ(zp)−

2 ∑1≤p≤q≤l(tRi (zpzq)

l

)2

− (ηp)2
Ri

.

Similarly, we can prove cases (II).

4. Applications of the Energy VFGS in Decision Making
4.1. Designing an Organizational Communication System

In the real world, communication is very important in every sector, and one of the
things we want to talk about is organizational communication. Organizational communi-
cation has attracted the attention of many behavioral and organizational science thinkers
to the extent that many organizational difficulties have been analyzed and suitable solu-
tions have been found for them. Some thinkers of organizational communication, such as
management consultants who have been studying organizational inadequacies in recent
years, believe that many of the issues and problems governing organizations are a result of
incorrect communication context and lack of attention to the subtleties of organizational
communication. If the managers were aware of these issues, they would probably perform
their work more effectively and efficiently. With the continuation of interactions between
employees, communication networks are formed naturally. Because duties, relations, and
memberships are changing, the connections are not fixed and permanent. According to
these concepts, we present an example of multiple organizational relationships and exam-
ine the importance and impact of multiple relationships in increasing the efficiency and
success of an organization.

In this example, we consider education organization as a graph whose vertices include
organization management (z1), financial vice president (z2), education unit (z3), educa-
tional vice president (z4), technology unit (z5), and research unit (z6). In this educational
organization, we want to examine the three desired relationships between the introduced
units’ efficient manpower (R1), improving the scientific and educational level (R2), and
the relationship between salaries and benefits in raising the quality and efficiency of the
organization (R3).

Here, we consider a set of units Q and a set of relations Ri. Consider Q = { orga-
nization management , financial vice president , education unit , educational vice presi-
dent , technology unit, research unit } as a set of units in an education organization and
Ri = {efficient manpower, improving the scientific and educational level, } as sets of
relations between units of an education organization.

Now, in Figure 4, we assume G = (Q, R1, R2, R3) is the VFGS, where Q = {z1, z2, z3, z4,
z5, z6} is the set of vertices and R1 = {z1z6, z2z3, z4z6, z2z5}, R2 = {z1z2, z3z4, z5z6}, and
R3 = {z4z5, z2z6, z2z4, z3z6} are sets of relations between vertices in this graph.

Q = {< z1(0.2, 0.4) >,< z2(0.5, 0.7) >,< z3(0.3, 0.6) >,< z4(0.7, 0.8) >,
< z5(0.5, 0.8) >,< z6(0.2, 0.5) >},

R1 = {< z1z6(0.2, 0.6) >,< z2z3(0.3, 0.7) >,< z4z6(0.2, 0.8) >,< z2z5(0.4, 0.8) >},

R2 = {< z1z2(0.2, 0.7) >,< z3z4(0.3, 0.8) >,< z5z6(0.2, 0.8) >},

R3 = {< z4z5(0.4, 0.8) >,< z2z6(0.2, 0.7) >,< z2z4(0.5, 0.8) >,< z3z6(0.1, 0.6) >}.
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Figure 4. VFGS G = (Q, R1, R2, R3).

In Figure 4, it is clear that there are three different relationships between the units; we
first obtain the energy of each relationship. The AMs and energy of each degree of G are
obtained as follows:

AR1 =



0 0 0 0 0 (0.2, 0.6)
0 0 (0.3, 0.7) 0 (0.4, 0.8) 0
0 (0.3, 0.7) 0 0 0 0
0 0 0 0 0 (0.2, 0.8)
0 (0.4, 0.8) 0 0 0 0

(0.2, 0.6) 0 0 (0.2, 0.8) 0 0



E(A(tR1)) =
l

∑
p=1
|(ηp)R1 | = 1.56

E(A( fR1) =
l

∑
p=1
|(φp)R1 | = 4.126

AR2 =



0 (0.2, 0.7) 0 0 0 0
(0.2, 0.7) 0 0 0 0 0

0 0 0 (0.3, 0.8) 0 0
0 0 (0.3, 0.8) 0 0 0
0 0 0 0 0 (0.2, 0.8)
0 0 0 0 (0.2, 0.8) 0


E(A(tR2)) =

l

∑
p=1
|(ηp)R2 | = 1.4

E(A( fR2) =
l

∑
p=1
|(φp)R2 | = 4.6

AR3 =



0 0 0 0 0 0
0 0 0 (0.5, 0.8) 0 (0.2, 0.7)
0 0 0 0 0 (0.1, 0.6)
0 (0.5, 0.8) 0 0 (0.4, 0.8) 0
0 0 0 (0.4, 0.8) 0 0
0 (0.2, 0.7) (0.1, 0.6) 0 0 0


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E(A(tR3)) =
l

∑
p=1
|(ηp)R3 | = 1.634

E(A( fR3) =
l

∑
p=1
|(φp)R3 | = 3.944

Therefore, the energy of a VFGS G = (Q, R1, R2, R3) is equal to E(G) =< (1.56, 4.126),
(1.4, 4.6), (1.634, 3.944) > .

The degree matrix and LE are as follows:

KR1 (G) =



(0.2, 0.6) 0 0 0 0 0
0 (0.7, 1.5) 0 0 0 0
0 0 (0.3, 0.7) 0 0 0
0 0 0 (0.2, 0.8) 0 0
0 0 0 0 (0.4, 0.8) 0
0 0 0 0 0 (0.4, 1.4)


According to the relationship LR1(G) = KR1(G)−AR1(G), we have

LR1 (G) =



(0.2, 0.6) 0 0 0 0 (−0.2,−0.6)
0 (0.7, 1.5) (−0.3,−0.7) 0 (−0.4,−0.8) 0
0 (−0.3,−0.7) (0.3, 0.7) 0 0 0
0 0 0 (0.2, 0.8) 0 (−0.2,−0.8)
0 (−0.4,−0.8) 0 (−0.4,−0.8) (0.4, 0.8) 0

(−0.2,−0.6) 0 0 (−0.2,−0.8) 0 (0.4, 1.4)


After computing, we have LE(A(tR1)) = 2.19 and LE(A( fR1)) = 5.8.

KR2 (G) =



(0.2, 0.7) 0 0 0 0 0
0 (0.2, 0.7) 0 0 0 0
0 0 (0.3, 0.8) 0 0 0
0 0 0 (0.3, 0.8) 0 0
0 0 0 0 (0.2, 0.8) 0
0 0 0 0 0 (0.2, 0.8)


According to the relationship LR2(G) = KR2(G)−AR2(G), we have

LR2 (G) =



(0.2, 0.7) (−0.2,−0.7) 0 0 0 0
(−0.2,−0.7) (0.2, 0.7) 0 0 0 0

0 0 (0.3, 0.8) (−0.3,−0.8) 0 0
0 0 (−0.3,−0.8) (0.3, 0.8) 0 0
0 0 0 0 (0.2, 0.8) (−0.2,−0.8)
0 0 0 0 (−0.2,−0.8) (0.2, 0.8)


After computing, we have LE(A(tR2)) = 1.4 and LE(A( fR2)) = 4.6.

KR3 (G) =



0 0 0 0 0 0
0 (0.7, 1.5) 0 0 0 0
0 0 (0.1, 0.6) 0 0 0
0 0 0 (0.9, 1.6) 0 0
0 0 0 0 (0.4, 0.8) 0
0 0 0 0 0 (0.3, 1.3)


According to the relationship LR3(G) = KR3(G)−AR3(G), we have

LR3 (G) =



0 0 0 0 0 0
0 (0.7, 1.5) 0 (−0.5,−0.8) 0 (−0.2,−0.7)
0 0 (0.1, 0.6) 0 0 (−0.1,−0.6)
0 (−0.5,−0.8) 0 (0.9, 1.6) (−0.4,−0.8) 0
0 0 0 (−0.4,−0.8) (0.4, 0.8) 0
0 (−0.2,−0.7) (−0.1,−0.6) 0 0 (0.3, 1.3)





Symmetry 2022, 14, 2081 19 of 26

After computing, we have LE(A(tR3)) = 2.39 and LE(A( fR3)) = 5.79.
Therefore, the LE of a VFGS G = (Q, R1, R2, R3) is equal to LE(G) =< (2.19, 5.8),

(1.4, 4.6), (2.39, 5.79) >.
In this application, we can clearly see that if the amount of energy in the relationships

between the units is greater, the units have a greater impact on each other. Here, it is clear
that the energy in R3 is more than others. Therefore, the educational vice president unit
and technology unit, education unit and research unit, education unit and educational vice
president unit , and education unit and research unit have a greater effect on each other.

4.2. Role of Virtual Social Networks on Cultural Communication

Virtual space has entered many areas of life in different human societies in such a
way that it is used for various purposes, including business, games and entertainment,
and similar work activities, and the beneficiaries of individuals and institutions use these
virtual spaces to facilitate work or provide special services. Currently, social networks are
the inhabitants of the turbulent ocean of the Internet. Networks play an essential role in
the world’s media equations with virtual socialism. The virtual space is formed depending
on social constructions, and technological growth, media convergence, and related issues
are different outputs in different social conditions. Virtual social networks, such as Twitter,
Instagram, Facebook, WhatsApp, Telegram, etc., which provide the opportunity to meet
people from different cultures with different languages and ethnicities, are very important
in intercultural communication, and since in Iran the application of virtual social networks
is widespread, these virtual social networks are considered an important source for the
intercultural communication of Iranians. Due to the fact that today’s era is the era of
communication and virtual space, it is not possible to communicate in this space without
accepting cultures and accepting cultures without taking into account customs and beliefs
and, ultimately, creating a common culture. Therefore, the main issue of this application is
the role of virtual social networks in cultural communication in Iran.

We used five platforms zp(p = 1, 2, 3, 4, 5): Twitter (z1), Instagram (z2), Facebook
(z3), WhatsApp (z4), and Telegram (z5) to investigate the role of virtual space in cultural
communication. Meanwhile, we invited four experts el(l = 1, 2, 3, 4) in the field of cultural
issues to examine each of these platforms’ vague fuzzy preference relations (VFPRs)Ml =
(ml

pq)5×5(l = 1, 2, 3, 4) as follows:

M1 =


(0.3, 0.3) (0.6, 0.5) (0.3, 0.6) (0.7, 0.5) (0.3, 0.5)
(0.5, 0.6) (0.3, 0.3) (0.4, 0.3) (0.8, 0.7) (0.4, 0.6)
(0.6, 0.3) (0.3, 0.4) (0.3, 0.3) (0.2, 0.8) (0.5, 0.2)
(0.5, 0.7) (0.7, 0.8) (0.8, 0.2) (0.3, 0.3) (0.7, 0.1)
(0.5, 0.3) (0.6, 0.4) (0.5, 0.2) (0.7, 0.1) (0.3, 0.3)



M2 =


(0.3, 0.3) (0.3, 0.5) (0.3, 0.6) (0.2, 0.8) (0.3, 0.6)
(0.5, 0.3) (0.3, 0.3) (0.4, 0.6) (0.5, 0.4) (0.4, 0.8)
(0.6, 0.3) (0.6, 0.4) (0.3, 0.3) (0.2, 0.7) (0.3, 0.7)
(0.8, 0.2) (0.4, 0.5) (0.7, 0.2) (0.3, 0.3) (0.2, 0.4)
(0.6, 0.3) (0.8, 0.4) (0.7, 0.3) (0.4, 0.2) (0.3, 0.3)



M3 =


(0.3, 0.3) (0.2, 0.5) (0.3, 0.9) (0.5, 0.8) (0.2, 0.8)
(0.5, 0.1) (0.3, 0.3) (0.4, 0.7) (0.3, 0.4) (0.4, 0.8)
(0.9, 0.3) (0.7, 0.4) (0.3, 0.3) (0.2, 0.7) (0.3, 0.5)
(0.5, 0.8) (0.4, 0.3) (0.7, 0.2) (0.3, 0.3) (0.2, 0.1)
(0.8, 0.2) (0.8, 0.4) (0.5, 0.3) (0.1, 0.2) (0.3, 0.3)



M4 =


(0.3, 0.3) (0.5, 0.6) (0.3, 0.6) (0.2, 0.8) (0.3, 0.1)
(0.6, 0.5) (0.3, 0.3) (0.8, 0.6) (0.8, 0.3) (0.4, 0.7)
(0.6, 0.3) (0.6, 0.8) (0.3, 0.3) (0.2, 0.8) (0.2, 0.4)
(0.8, 0.2) (0.3, 0.8) (0.8, 0.2) (0.3, 0.3) (0.2, 0.1)
(0.1, 0.3) (0.7, 0.4) (0.4, 0.2) (0.1, 0.2) (0.3, 0.3)


The VFDGs Ml corresponding to VFPRs given in matrices Ml , (l = 1, 2, 3, 4) are

shown in Figures 5–8, respectively
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Figure 5. Platforms’ vague fuzzy preference relationM1.

Figure 6. Platforms’ vague fuzzy preference relationM2.

Figure 7. Platforms’ vague fuzzy preference relationM3.
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Figure 8. Platforms’ vague fuzzy preference relationM4.

The energy of each VFDG is calculated as:
E(M1) = (3.367, 3.044), E(M2) = (2.596, 2.596), E(M3) = (2.764, 3.295), and

E(M4) = (2.692, 2.692).
Then, the weight of each expert can be calculated as:

wl = (wl , wl), l = 1, 2, 3, 4

wl =

(
E((Mt)l)

∑4
k=1 E((Mt)k

),
E((M f )l)

∑4
k=1 E((M f )k

)

)
.

Here,

w1 = (0.294, 0.261), w2 = (0.227, 0.223), w3 = (0.242, 0.283), w4 = (0.235, 0.231).

Therefore, the weight vector of four experts el(l = 1, 2, 3, 4) is:
w = ((0.294, 0.261), (0.227, 0.223), (0.242, 0.283), (0.235, 0.231)).
Compute the averaged vague fuzzy element (VFE) vl

p of the platforms zp (Twitter (z1),
Instagram(z2), Facebook (z3), WhatsApp (z4), and Telegram (z5)) over all the other testing
venues for the experts el(l = 1, 2, 3, 4) by the vague fuzzy averaging (VFA) operator:

vl
p = VFA(vl

p1, vl
p2, . . . , vl

pn) =


√√√√√√1−

(
n

∏
q=1

(1− t2
pq

) 1
n

,

(
n

∏
q=1

fpq

) 1
n


p = 1, 2, . . . , n.

The aggregation results are listed in Table 2.
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Table 2. The aggregation results of the experts.

Experts The Overall Results of the Experts

e1

v1
1 = (0.4946, 0.4661)

v1
2 = (0.6967, 0.4661)

v1
3 = (0.4186, 0.3465)

v1
4 = (0.6505, 0.3129)

v1
5 = (0.5485, 0.2338)

e2

v2
1 = (0.2833, 0.5334)

v2
2 = (0.4294, 0.4441)

v2
3 = (0.4484, 0.4459)

v2
4 = (0.5748, 0.2992)

v2
5 = (0.6184, 0.293)

e3

v3
1 = (0.3163, 0.6127)

v3
2 = (0.3901, 0.3676)

v3
3 = (0.6334, 0.4169)

v3
4 = (0.4944, 0.2701)

v3
5 = (0.621, 0.2701)

e4

v4
1 = (0.3394, 0.3866)

v4
2 = (0.6517, 0.4521)

v4
3 = (0.4387, 0.4704)

v4
4 = (0.6044, 0.2491)

v4
5 = (0.4184, 0.2701)

Compute a collective VFE vp(p = 1, 2, 3, 4, 5) of the platforms zp ( Twitter (z1), Insta-
gram (z2), Facebook (z3), WhatsApp(z4), and Telegram (z5)) over all the other platforms
using the vague fuzzy weighted averaging (VFWA) operator [32]:

vl
p = VFWA(v1

p, v2
p, . . . , vs

p) =

(√
1−

s

∏
l=1

(1− t2
l )

wl ,
s

∏
l=1

( fl)
wl

)
Therefore, Twitter (v1) = (0.3584, 0.4997), Instagram (v2) = (0.5419, 0.4324) , Face-

book (v3) = (0.4847, 0.4199) , Whatsapp (v4) = (0.581, 0.2828) , and Telegram (v5) =
(0.5515, 0.2667).

Compute the score functions s(vp) = t2
p − f 2

p [33] of vp(p = 1, 2, 3, 4, 5) and rank all
the platforms zp ( Twitter (z1), Instagram (z2), Facebook (z3), WhatsApp (z4), and Telegram
(z5)) according to the values of s(vp)(p = 1, 2, 3, 4, 5) (Twitter (s(v1)), Instagram (s(v2)),
Facebook (s(v3)), WhatsApp (s(v4)), and Telegram(s(v5))) .

s(v1) = −0.1212, s(v2) = 0.2225, s(v3) = 0.0586, s(v4) = 0.2575, s(v5) = 0.233.

Then, s(v4) > s(v5) > s(v2) > s(v3) > s(v1). Thus, the best platform is WhatsApp.

4.3. Role of Advertising Tools in Raising the Quality Level of Advertising Companies

An advertising company is a company that creates, plans, and manages all aspects
of advertising for its customers. Advertising companies can specialize in a specific field
and branch of advertising, such as interactive advertising, or comprehensively provide
services and use all advertising tools such as websites, social media, online advertising,
etc. Brochures, catalogs, instant messaging with direct mail, print media, television ads,
sales invitations, etc., are among the advertising tools that the advertising company uses
to operate in this field. In this part, four advertising companies signed contracts among
themselves to raise the quality level of their work. In these contracts, the companies defined
relationships between themselves. In their meeting, these four companies expressed the
factors that can affect their work promotion, among which are the right price regarding the
quality, the professional production group, company services, and customer orientation.
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We assume that there are four advertising companies with the names A, B, C, and D. We
define the relationships between them as follows,

Consider Q = {A, B, C, D} as a set of advertising companies and Ri = { creating
television teasers (R1), designing and printing billboards (R2), advertising photography
(R3) } as sets of relations between advertising companies.

Now, in Figure 9, we assume G = (Q, R1, R2, R3) is the VFGS, where Q = {A, B, C, D}
is the set of vertices and R1 = {AD}, R2 = {AB, CD} and R3 = {BC, BD} are sets of
relations between vertices in this graph.

Q = {< A(0.2, 0.4) >,< B(0.5, 0.7) >,< C(0.3, 0.6) >,< D(0.4, 0.5) >},
R1 = {< AD(0.2, 0.5) >}, R2 = {< AB(0.2, 0.7) >,< CD(0.3, 0.7) >},

R3 = {< BC(0.3, 0.8) >,< BD(0.4, 0.7) >}.

In Figure 9, it is clear that there are three different relationships between the advertising
companies; we first obtain the energy of each relationship. The AMs and energy of each
degree of G are obtained as follows:

Figure 9. VFGS G = (Q, R1, R2, R3).

AR1 =


0 0 0 (0.2, 0.5)
0 0 0 0
0 0 0 0

(0.2, 0.5) 0 0 0


E(A(tR1)) =

l

∑
p=1
|(ηp)R1 | = 0.4

E(A( fR1) =
l

∑
p=1
|(φp)R1 | = 1

AR2 =


0 (0.2, 0.7) 0 0

(0.2, 0.7) 0 0 0
0 0 0 (0.3, 0.7)
0 0 (0.3, 0.7) 0


E(A(tR2)) =

l

∑
p=1
|(ηp)R2 | = 1
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E(A( fR2) =
l

∑
p=1
|(φp)R2 | = 2.8

AR3 =


0 0 0 0
0 0 (0.3, 0.8) (0.4, 0.7)
0 (0.3, 0.8) 0 0
0 (0.4, 0.7) 0 0


E(A(tR3)) =

l

∑
p=1
|(ηp)R3 | = 1

E(A( fR3) =
l

∑
p=1
|(φp)R3 | = 2.12

Therefore, the energy of a VFGS G = (Q, R1, R2, R3) is equal to E(G) =< (0.4, 1),
(1, 2.8), (1, 2.12) > .

The degree matrix and LE are as follows:

KR1 (G) =


(0.2, 0.5) 0 0 0

0 0 0 0
0 0 0 0
0 0 0 (0.2, 0.5)


According to the relationship LR1(G) = KR1(G)−AR1(G), we have

LR1 (G) =


(0.2, 0.5) 0 0 (−0.2,−0.5)

0 0 0 0
0 0 0 0

(−0.2,−0.5) 0 0 (0.2, 0.5)


After computing, we have LE(A(tR1)) = 0.4 and LE(A( fR1)) = 1.

KR2 (G) =


(0.2, 0.7) 0 0 0

0 (0.2, 0.7) 0 0
0 0 (0.3, 0.7) 0
0 0 0 (0.3, 0.7)


According to the relationship LR2(G) = KR2(G)−AR2(G), we have

LR2 (G) =


(0.2, 0.7) (−0.2,−0.7) 0 0

(−0.2,−0.7) (0.2, 0.7) 0 0
0 0 (0.3, 0.7) (−0.3,−0.7)
0 0 (−0.3,−0.7) (0.3, 0.7)


After computing, we have LE(A(tR2)) = 1 and LE(A( fR2)) = 2.8.

KR3 (G) =


0 0 0 0
0 (0.7, 1.5) 0 0
0 0 (0.3, 0.8) 0
0 0 0 (0.4, 0.7)


According to the relationship LR3(G) = KR3(G)−AR3(G), we have

LR3 (G) =


0 0 0 0
0 (0.7, 1.5) 0 (−0.3,−0.8) (−0.4,−0.7)
0 (−0.3,−0.8) (0.3, 0.8) 0
0 (−0.4,−0.7) 0 (0.4, 0.7)


After computing, we have LE(A(tR3)) = 0.74 and LE(A( fR3)) = 2.25.
Therefore, the LE of a VFGS G = (Q, R1, R2, R3) is equal to

LE(G) =< (0.4, 1), (1, 2.8), (0.74, 2.25) >.
In this application, we can clearly see that if the amount of energy in the relationships

between the advertising companies is greater, they have a greater impact on each other.
Here, it is clear that the energy in R2 is more than others. Therefore, in order to raise the
quality level of their work, two companies A and B, and also two companies C and D, can
cooperate in the field of designing and printing advertising billboards.
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5. Conclusions

Graph theory has many applications in solving different problems of several domains,
including networking, planning, and scheduling. VGSs are very valuable tools for the study
of various domains of computational intelligence and computer science. Optimization,
neural networks, and operations research can be mentioned among the applications of
VGSs in different sciences. Since many parameters in real-world networks are specifically
related to the concept of energy, this concept has become one of the most extremely used
concepts in graph theory. However, the energy in FG is so important because of the
confrontation with uncertain and ambiguous topics. This concept becomes more interesting
when we know that we are dealing with an FG called VFGS. This led us to examine the
energy in VFGSs. So, in this work, we presented the notion of the energy of a VFGS and
investigated some of its properties. We obtained the energy of the VFGS by using the
eigenvalues of the AM and calculating its spectrum. Moreover, we expanded the concept of
the LE on a VFGS. Finally, three applications of the VFGS in decision making are presented.
In our future work, we will investigate the concepts of domination set, vertex covering, and
independent set in VGSs and give applications of different types of domination in VGSs
and other sciences.
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