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Abstract: We focus on a variety of bivariate models with proportional hazard components. Models
with proportional hazard marginals are described together with a selection of models with propor-
tional hazard conditional distributions. The bivariate distributions with marginal proportional
hazards distributions are shown to be closely related to certain known bivariate exponential models.
Two distinct kinds of conditional specification are investigated. Discussion is provided of cases
with hazard function components that are (1) completely unknown, (2) known to belong to given
parametric families and (3) completely known. Since the models are designed for use with survival
data, it is inevitable that the marginal and conditional distributions will be asymmetric. However,
logarithmic transformations in some cases will result in symmetric component distributions.

Keywords: bivariate exponential models; conditional specification; gumbel distribution; dependent
lifetime data; functional equation

1. Introduction

Survival models involving families of densities with proportional hazard functions
have proved to be useful for analyzing many lifetime data sets. Not infrequently bivariate
survival data (involving related lifetimes) need to be analyzed. In this paper, we review
several methods for generating suitable bivariate models for such situations. The key
observation in the development is that proportional hazard models can be viewed as
ones obtained via monotone transformations applied to exponential models. In the latter
sections of the paper, related statistical inference issues are discussed. Since the models
are designed for use with survival data, it is inevitable that the marginal and conditional
distributions will be asymmetric. However, logarithmic transformations in some cases will
result in symmetric component distributions.

2. Bivariate Distributions with Proportional Hazard Marginals

Let F; and F, be two absolutely continuous distribution functions with support
(0, c0) and with corresponding densities f; and f, and hazard functions 1 and h; (where
hi=fi/(1-F), i=12)

We will say that (X3, X») has a bivariate marginal proportional hazard distribution
associated with F; and F, and with parameters a1, a; > 0if fori = 1,2

fx, (% By a) = a;[1 — F(x)]% 1 fi(x) I(x; > 0), 1

and we will write (X7, X3) ~ PHM(Fy,a1; F,,a5) and also X; ~ PH(F;, ;) i = 1,2 (here
PHM is an acronym for proportional hazard marginals). Note that the name is appropriate
since fori =1,2

hx, (xi; B, a;) = aihi(x;). 2)
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Observe that if (X1, Xp) ~ PHM(Fy, a1; F>, ) then the X;’s admit a representation of
the form
Xi=F1(1-e"), i=12 (3)

where for each i, Y; ~ exp(a;) (i.e., fy,(y;) = aje” ¥ I(y; > 0)).

Note that the transformations in (3) are monotone increasing.

In fact, it is not necessary to build the model with reference to two distribution
functions F; and F,. Instead we can begin with Y; ~ exp(«;), i = 1,2 and use two monotone
increasing functions g; : (0,00) — (0,0) to define X; = g;(Y;),i = 1,2. If we denote the
corresponding inverse functions by h;(x) = g; ' (x), then it is readily verified that each X;
has a proportional hazard distribution, i.e., that fori =1, 2,

hx, (i3 81, 00) = aihy(x;), x; > 0. 4

It is however customary to use the representation (3) involving the two distribution
functions F; and F,, and we will adhere to this convention.

Of course, in the representation (3), (Y1, Y2) can have any bivariate exponential dis-
tribution that we wish to utilize. Popular choices of bivariate exponential distributions
involving few additional parameters include:

(i) Gumbel Type I distribution, with
P(Y1 > y1,Y2 > y2) = exp|—aqy1 — aoy2 — daqanyqyz], 0 <6 <1
(i) Gumbel Type II distribution, with
P(Y1 <y, Yo <yp) =[1—e “N[1 —e *2¥2][1 + fe- 1170242 5 € [-1,1].
(iii) Marshall-Olkin distribution (see Marshall and Olkin [1]), with

P(Yl > y1,Y2 > ]/2) = exp[—leyl — ol — (St)thzmax(yl,yz)], o€ [O, OO)

Many other choices are possible, see for example Kotz et al. ([2], pp. 350-385).
For a specific example, if we choose (Y1, Y2) to have a Gumbel Type I density, i.e.,

fri v (Y1, y2) = aran[(1+0y1) (1 + 0y2) — 0] exp{—a1y1 — a2y> — m1a2dy1y2},  (5)

and use Fi(x;) = x?l, 0 < x; <land K(x2) = x3%, 0 < xp < 1, then the resulting PHM
density will be of the form:

fxux (x1,%2) = maoyy2[(1—aglog(l—x]1)) (1 —azlog(l — x3?)) — 6]« x)?
x exp{ —aaz6log(1 — x]") log(1 — x)?) }.

In application of such models, it is frequently desirable to postulate that each F;
is a member of some parametric family of distributions to add flexibility to the model.
The dependence structure will however be completely determined by the copula of the
particular bivariate exponential distribution used in the construction.

Alternatively, one could “let the data tell us which F;’s to use in the model”. Thus, we
would seek monotone marginal transformations that will make the transformed marginal
sample distributions look as much like exponential distributions as possible. This semi-
parametric approach will be returned to later in the paper.

3. Bivariate Distributions with Proportional Hazard Conditionals

We will consider two types of conditioning. The first kind is quite traditional in that we
consider the distribution of one variable given that a second variable takes on a particular
value. The second kind involves conditioning on the event that the second variable is larger
than a particular value.
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3.1. The First Kind

Consider two proportional hazard families of densities as in (1). Recall that we write
X; ~ PH(F;, «;) if the corresponding densities are given by (1).

For this conditional proportional hazards paradigm, we seek to identify joint distribu-
tions for (X1, X») with all conditional densities of the forms in (1). Thus, for each x; > 0
we wish to have

X1|X2 = x2 ~ PH(Fy, 01 (x2)), (6)

and for each x; > 0,

X2|X1 = X1~ PH(Fz,th(xl)), (7)
for some functions aq (x2) and ay(x7). It is not difficult to verify that this will be the case if
and only if

X;=F1'1-¢), i=12, (8)
where (Y7, Y>) has a joint distribution with exponential conditionals, i.e., such that for each
y2 >0

Y1[Yz = ya ~ exp(ar (y2)), ©)

and for eachy; > 0
Ya|Y1 = y1 ~ exp(az(y1))- (10)

The class of all densities with such exponential conditionals is identified in Arnold
and Strauss [3] and is of the form:

fri v, W1, v2) = k(6)mia exp[—aryr — aoys — a1a20y1y2]I(y1 > 0,y2 >0),  (11)

where a1 > 0, ay > 0 and 6 > 0. The normalizing constant, k(¢), in (10) can be expressed
in terms of the exponential integral function. Thus

K(6) = dexp{—1/6}

= 2P A0) (12)
Ji7s SR e

Consequently, bivariate densities with conditionals of the proportional hazard form
will be given by

frox(x1,02) = aqask(9) fi(x1)[1 = Fi(x)]" ™ fa(xa) [1 = Fa(x2)]2
x exp{—ajazdlog[l — Fy(x1)]log[l — Fa(x2)]}. (13)
This model is discussed in Arnold and Kim [4] and we will follow their nomenclature

and call it a proportional hazard conditionals model of the first kind. If (X;X>) has a
density of the form (13), we will write

(Xl,Xz) ~ PHC(I) (Fl,lxl;Fz, no, 5)

3.2. The Second Kind

Again consider two proportional hazard families of densities as in (1). Recall that we
write X; ~ PH(F;, ;) if the corresponding densities are given by (1). The second kind of
conditional model (also introduced in Arnold and Kim [4]) involves conditioning on events
of the form {X; > x1} and {X, > x,}. Thus, we seek to identify joint survival functions
for (X1, X3) such that for each x; > 0,

X1|{X2 > XQ} ~ PH(Fl,Dél(JQ)), (14)

and for each x; > 0,
X2|{X1 > xl} ~ PH(Fz,az(xl)), (15)

for some functions aq (x7) and ay(x1).
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To analyze this situation (since F; and F, are known) it is again convenient to write
X;=F'1-e), i=12, (16)

where the Y;’s are exponential random variables.
The conditions (14) and (15) are then equivalent to the statements

Yi{Y2 > y2} ~ exp(a1(y2)), (17)

and
Y2{Y1 > y1} ~ exp(az(y1)). (18)

Denote the survival functions of Y7 and Y, by ¢1(y1) = P(Y1 > y1) and ¢(y2) =
P(Y, > y»). It then follows that

¢2(y2)e*%1(y2)y1 — P(Yl > ]/1/Y2 > ]/2) — lPl (yl)e*“Z(yl)yz‘ (19)

Taking logarithms we have:

log ¥ (y2) — a1(y2)y1 = log ¥1(y1) — a2(y1)y2- (20)

This is a Stephanos-Levi-Civita-Suto functional Equation (see Arnold et al. [5], p. 13)
which is readily solved to yield the following expression for the joint survival function of
(Yl ’ Yz) :

P(Y1 > yerZ > }/2) = exp[faqyl — Yy — alazéylyz] (21)

fory; > 0,y2 > 0, where a; > 0, ap > 0and 0 < § < 1. This is recognizable as Gumbel’s
Type I bivariate exponential distribution (with exponential marginals). From Equation (21)
we obtain the joint survival function of (X1, X») in the form:

P(X1 > x1, Xp > X2) = [1 — Fl(xl)}lxl [1 — Fz(Xz)]az
x  exp{—ajazdlog[l — F;(x1)]log[l — Fx(x2)]}. (22)

Then, the joint cumulative distribution function is

F(x1,x0) = [1—=F(x1)]""[1 = F(x2)]"? exp{—ajaz5log[l — F;(x1)]log[1 — F(x2)]}
1= (1= F(x1)"] +[1 = (1 - F(x2))?] - 1. (23)

and the joint density function is

fruxa(x1,02) = araafi(x1)[1 = Fi(x1)]" o) [1 = Ba(x2))
x exp{—ajaxdlog[l — Fy(x1)] log[l — Fa(x2)]}
x[(1 —a10log[l — Fi(x1)])(1 — apdlog[l — Fa(x2)]) — J].  (24)

The vector (Y3, Y,) with density (21) has exponential marginals, i.e., Y; ~ exp(«;), for

i =1,2,and thus X; ~ PH(F;, a;, ) for i = 1,2. Consequently, for j, /' = 1,2 the conditional
densities are given by

fxix, (%) = aafj(x)[1- Fi(x))]"" exp{—ajaydlog[1 — F(x)] log [1 - Fj/(xj/)} }
x[(1 - a610g[1 — Fy(x)]) (1 - ayolog |1 — Fy(x;)] ) —o]. (25)
If (X1, X3) has a survival function of the form (22), we write
(X1, Xp) ~ PHC(II)(Fy,a1; F, a2;6),

note that X; and Xj in (22) will be independent if and only if 5 = 0.
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4. If F; and F, Are Known

Suppose that we have available a sample of size n, (Xl,j/ lej), j=12,...,n from
one of the bivariate proportional hazard models discussed in this paper. Since F; and F,
are known, it is appropriate to transform the data to obtain

Y= —log(1-F(X;)), i=12 j=12,...n

and thus to have a sample (Yl,jr YZJ-), j=1,2,...,n from the corresponding well-known
bivariate exponential distribution. See the following references for appropriate estimation
strategies for these bivariate exponential data sets:

e Gumbel [6],

e Besag|7],

e  Arnold and Strauss ([3,8]),
e  (Castillo and Hadi [9],

e Arnold et al. [5].

5. If F; and F, are Known to Belong to Some Given Parametric Families

We will illustrate this with a particular example. Other examples may treated in
analogous fashion. Suppose that in the PHC(II) model, (23), we replace F; (x1) by F;(x1;0)
and F,(xp) by Fy(xp; T), where the parameters 6 and T are unknown. In this case, the
model becomes more complicated, but we can still envision success in estimating all the
parameters in the model. As a specific example, consider the following distributions of the
Weibull form:

Fi(x;;0) =1—¢ 1, x; >0, (26)

and
F(xp;T) =1—e %2, xp > 0. 27)

The corresponding log-likelihood function is of the form
n n 0
0(0;X1,X2) = nlog(agaft) + (0 —1) ) log(xy;) + (1 —1) ) log(xy) — a1 Y x{;
i=1 i=1
n n
— w06y ok — ay Y x3i+ ) log Kl + oc1§x%) (1+ apdxy;) — (5}
i=1 i=1
The score function U(0) = (U(),U(7),U(d), U(a1), U(ay)), has elements which

are derivative of the log-likelihood function with respect to the parameters and thus are
given by

20(6) (14 ap0x3) xS,
4 _ _n s s i) "1 ,
(a1) 9 ; Y2 Z i+ Z (1+ ocléxh) (14 azdx3;) — o
20(0) (1 —I—uqéxﬁ’-)x;
4 _ _n s 5 i i ,
(az) Y Z Xg; — & Z X333 + E (1+ ocléxll) (14 azéxl;) — 0
a6(6) _ L (@] + apxg; — 1) + 2mapdnd g,
as) — 240 _ ; i %
(9) EY a2 Z i3 + ;1 (14 a10x8,) (1 + apéxl;) — 6
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IAC n &
ue) = % =3 + Zlog x1;) — &1 th log(x1;) — aqan6 Z xhle log(x1;)
i=1 i=1 i=1
o (1+ apdxg;) x8 log(x1;)

5 ,
om Z 1+0c1(5x11)(1+0c2(5x2i)—(5

n n n n
u(r) = == + ) log(xzi) —ap Y x3;log(xi) — aqand Y %3 log (xo7)
i=1 i=1 i—1

N i (1+ a16x9,) x5, log(x2;)
= (1+ adx) (14 adxf) =6

By equating the scores to zero we obtain the score equations, i.e., (U(0) = 0). These
equations are typically solved by means of Newton—-Raphson or quasi-Newton numeri-
cal methods to obtain the maximum likelihood estimators & = (8, %,, &1, &) of the pa-
rameter vector 0 = (6,7,6,a1,a2). The observed information matrix of 6 is given by
K(6) = —%U(G} = (Keje,-, ), i.e., with elements of the form of minus the second deriva-

tive of the log-likelihood function with respect to the parameters. The Fisher information
matrix of vector 6, I(0) is given by 1(0) = E(K(8)) and should be calculated numerically.

When, we use the base distributions (26) and (27) in the PHC(I) model, a technique
known as pseudo-likelihood estimation (see Arnold and Strauss [10]) will provide estimates
of all five parameters in the model. Besag [7], defined the pseudo-likelihood estimator of 0
as the value 0p of 8 that maximizes the pseudo likelihood function, which in the present
bivariate situation is based on the conditional PH densities and is given by

n
Lp(B; X1, X2) = [ fxy 1% (X1i1%2) fxy x, (%2i]%1)- (28)
i=1
Thus for the example with distributions:
Fi(x;;m) =x]', 0<x <1,

and
F(x2;72) = %32, 0 < xp < 1,

we have the following log pseudo likelihood.

p(B; X1, X2) = m ilog(xli) +2 ilog[(l —a16log(1— x]1)) (1 — azélog(l — xJ?)) — §]

i=1 i=1

n
+  nlog(maoy172) + 712 Y log(xai) — 2a1a6 Zlog (1—x]1)log(1 — xJ?)
i=1 i=1

Parallel to the definition of the score function, the pseudo—score function is defined to
be the vector whose coordinates are partial derivatives of the log-pseudo-likelihood func-
tion with respect to each of the parameters in the model. It is denoted by
Up(B) = (Up(m), Up(712), Up(9), Up(ar), Up(az))".

The estimating equations are constructed by setting the elements of the pseudo—score
vector equal to zero. Solutions of these equations correspond to the pseudo-likelihood
estimates of the parameters of the model. Typically, these solutions are obtained numerically
using iterative methods such as Newton—Raphson or quasi-Newton.

The pseudo-likelihood estimator B of B obtained in the above fashion can be verified
to be consistent and asymptotically normally distributed with covariance matrix given by

Zp =] (BKB) ()
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(see Arnold and Strauss [10]), where for [,m = 1,2
ol ol ! 0%(
Klm(ﬂ) =E [{ apﬁ(lﬁ) }{ alljﬂ(f) } ]r ]lm(ﬁ) = _E[aﬁlgéﬂrjl .

As a consistent estimate of the asymptotic variance-covariance matrix of the pseudo-
likelihood estimator, we will use the sandwich estimator proposed by Cheng and Riu [11].
This estimator is developed as follows.

Let Upi(B) = aéa%ﬁ , be the vector of pseudo-scores for the i-th observation. Then define

1

X "ol
Jn(B) = —% Z gﬁ(ﬁ) |B'

=1

which is the sum over all the observations of the matrices of second derivatives of £,(8)
evaluated at the pseudo-likelihood estimator . In addition, define

n

Ru(B) = 5 3 Un(BU(BY |5

i=1

Using this, we construct a consistent sandwich estimator of the asymptotic variance-
covariance matrix in the form

e 1o i 50 51,3
£(B) =~ T (B)Ru(B)] " (B).
A detailed discussion and analysis of such a model, but with power Lindley base distribu-
tions, utilizing pseudo-likelihood estimation, may be found in Martinez-Flérez et al. [12].

6. If F; and F; are Unknown

All but one of the bivariate proportional hazard models described in this paper have
marginals of the proportional hazard form. The exception is the PHC(I) model which,
for unknown F; and F,, we will discuss in Section 7. For the other models, we know
that if F; and F, were known, we could transform the data to obtain a sample from a
well-known bivariate exponential model. Consequently, if we consider an estimate Fy ,(x)
of F; based on X 1, X1, ... X1, and an estimate len(x) of F, based on X5 1,X22,... X0,
we can transform the data using

Z1j = —log Fy ,(Xy,)

and N
Zy; = —log b (Xa),

and then we will have approximately a sample from a bivariate distribution with standard
exponential marginals and we can then estimate the parameters in this exponential model.
Note that for identifiability in unknown F; and F, models we have to fix &1 and a; to be
equal to 1.

For the PHC(II) model with Weibull component distributions, given in (26) and
(27), a small simulation study of the performance of the maximum likelihood parameter
estimates has been implemented for a variety of sample sizes and for several parametric
configurations. With minimal loss of generality we set a1 = ap = 1 throughout the
simulation study. Three values of the dependence parameter § were used, namely 0.15,0.30
and 0.45, together with four sample sizes n = 30,50, 70, 90. The table presents results for
three representative choices of values for 6 and 7. As for measures of performance, the
relative bias (RB) and the square root of the mean squared error (MSE) are given.
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The results in Table 1 confirm that both the relative bias and the root mean-squared
error of the estimates decrease as sample size increases.

Table 1. RB and v MSE for the PHC(II)-Weibull model.

A

A

~

0 T 0 &1 (%)
Parameters n RB MSE RB MSE RB MSE RB MSE RB MSE
30 01964 0.2630 04915 04029 16753 03424 0.2011 0.2591 0.5361 0.5931
50 0.1911 0.2583 0.4864 0.3853 1.4262 0.2828 0.1983 0.2342 0.5339  0.5705
(1.25,0.75,0.15,1,1) 70 0.1842 0.2590 0.4819 0.3782 13480 0.2549 0.1974 0.2264 0.5330 0.5633
90 0.1717 0.2597 04751 03686 1.3117 0.2376 0.1933 0.2165 0.5307 0.5541
30 0.1948 0.2675 0.4966 0.4078 1.6798 0.3393 0.1957 0.2542 0.5358  0.596
50 0.1934 0.2620 0.4830 0.3823 14519 0.2841 0.1957 0.2310 0.5356 0.5731
(1.25,0.75,0.30,1,1) 70 0.1887 0.2611 0.4827 03771 13260 0.2514 0.1935 0.2238 0.5332 0.5653
90 0.1756 0.2579 0.4762 03688 1.2861 0.2351 0.1916 0.2178 0.5424 0.5629
30 0.1894 0.2610 0.5316 04336 04177 03002 0.1918 0.2463 0.6127 0.6808
50 0.1827 0.2512 0.5149 0.4090 0.4022 0.2688 0.1904 0.2297 0.6018 0.6428
(1.25,0.75,0.45,1,1) 70 0.1799 0.2483 0.4966 0.3884 0.4009 0.2604 0.1900 0.2210 0.5904 0.6193
90 0.1679 02512 0.4905 03799 03958 0.2376 0.1779 0.2126 0.5878  0.6136
30 04228 0.7457 1.2543 0.6503 1.6778 0.3378 0.4287 0.4473 1.4193 1.4930
50 0.4189 0.7427 1.2332 0.6305 15481 0.2941 04270 0.4353 1.4191 14.435
(1.75,0.5,0.15,1,1) 70 0.4193 0.7422 1.2311 0.6262 13103 0.2455 0.4245 0.4347 1.4048 1.4378
90 04093 0.7326 1.2276 0.6215 1.2531 0.2294 04227 04346 1.3939 1.4363
30 04218 0.7455 1.2862 0.6652 0.8103 0.3439 0.4204 0.4352 1.4968 1.5718
50 0.4207 0.7428 1.2554 0.6408 0.7520 0.2984 0.4152 04288 1.4907 1.5178
(1.75,05,0.30,1,1) 70 04171 0.7395 1.2544 0.6373 0.6981 0.2686 0.4154 04281 1.4804 1.5167
90 04098 0.7334 1.2421 0.6300 0.6730 0.2539 0.4143 0.4250 1.4733 1.5102
30 04179 0.7376  1.2780 0.6602 0.4190 0.2985 0.4149 04270 1.5069 1.5796
50 04169 0.7361 1.2606 0.6456 0.4115 0.2725 0.4148 0.4250 1.4762 1.5240
(1.75,0.5,0.45,1,1) 70 04126 0.7326 1.2354 0.6268 0.4056 0.2597 0.4122 0.4239 1.4655 1.4988
90 0.4034 0.7225 1.2303 0.6238 0.3916 0.2455 0.4062 0.4227 1.4550 1.4831
30 0.3903 03270 0.2506 0.3899 13177 03091 0.3590 04395 02778 0.3212
50 0.3661 0.2980 0.2434 0.3887 1.1349 0.2508 0.3479 0.4006 0.2776  0.3044
(0.75,15,0.15,1,1) 70 0.3516 0.2811 0.2493 0.3877 1.1461 0.2343 0.3471 03816 0.2761 0.2962
90 0.3452 02721 0.2305 03871 1.0392 0.2106 0.3449 0.3755 0.2748 0.2929
30 03877 0.3280 0.2439 0.3831 0.6461 03136 0.3794 04639 0.2677 0.3001
50 03699 03006 0.2424 0.3817 0.6403 0.2784 0.3539 0.4050 0.2660 0.2871
(0.75,1.5,0.30,1,1) 70 0.3568 0.2861 0.2365 03785 0.6328 0.2611 0.3527 0.3896 0.2600 0.2884
90 03532 0.2784 0.2273 0.3767 0.6066 0.2373 03513 0.3819 0.2492  0.2823
30 03933 03324 0.2529 0.3914 0.3934 0.2906 03774 04611 0.2664 0.3023
50 0.3685 0.2996 0.2439 03900 0.3893 0.2662 0.3653 0.4186 0.2639 0.2872
(0.75,1.5,045,1,1) 70 03557 0.2834 0.2495 03883 03649 0.2523 0.3595 0.3955 0.2594 0.2856
90 0.3482 0.2747 0.2286 0.3861 0.3486 0.2379 0.3551 0.3833 0.2526  0.2829

7. If F; and F, Are Unknown in the PHC(I) Model
Our model is of the PHC(I)(1, Fi; 1, F; 6) form, i.e.,

Fxy,x, (X1, %2)

= k(&)[(1 —log(1 = F1(x1))) (1 — log(1 — F(x2))) — J]
x f1(x1) f2(x2) exp{—dlog[l — Fi(x1)] log[1 — Fa(x2)]}-

(29)

where 4, F, and F, are unknown. Although it would be easy to estimate ¢, via pseudolikeli-
hood, if F; and F, were known, it is not apparent how to estimate F; and F, assuming that
0 is known. So it is not clear how to implement an iterative strategy for estimating F;, F,
and ¢ simultaneously. Perhaps our only choice is to assume that the F;’s belong to some
parametric families of distributions, with once more utilizing pseudo likelihood to avoid
dealing with k(J).
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8. Application

The data analyzed in this example consist of the maximum water levels registered at
two stations on the Fox river in Wisconsin during the period 1918-1950. Measurements
were made at an upstream location (Berlin, X;) and a downstream location (Wrightstown,
X»). This data set was previously analyzed by Gumbel and Mustafi [13] using a bivariate
extreme model.

In our analysis of this data set we will fit four models namely:

*  The Arnold and Strauss [3] bivariate exponential conditionals distribution. denoted
by BEC.

*  Gumbel’s [6] first bivariate exponential distribution, denoted by BG(I).

*  The proportional hazard conditionals Weibull extension of the BEC distribution, de-
noted by PHC(I)-W.

¢ The proportional hazard conditionals Weibull extension of the BG(I) distribution,
denoted by PHC(II)-W.

In both of the Weibull proportional hazard conditionals extensions mentioned above,
i.e., PHC(I)-W and PHC(II)-W, as described in Section 3, we use the following choices for
the component distributions F; and F:

F(x;0) =1— e_xﬁ, x1 >0 and F(xy71)=1-— e2, xy > 0.

Using the Arnold and Strauss [3] density given in Equation (11), the density of the
PHC(I)-W is given by

fxy,x, (x1,%2) = a1a297k(5)x§*1x§*1 exp(—txlxi) — apxy — txlzxzéxﬁ)xg).

The corresponding log-pseudo-likelihood function for a sample of size n takes the

form

n n
U6; Xy, X)) = nlog(araabt) + (6 —1) Y log(xy,) + Zlog[a +ap0xd) (1 + azaxg)}
i=1 i=1
n n n
+ (t—1) Y log(xy) —ay Y (1+ 120x5)x8 —ap Y (14 ay0x8) 3.
i=1 i=1 i=1

The log-pseudo-likelihood for the BEC model is obtained from the expression for the
PHC(I)-W by setting # = 1 and 7 = 1.

The log-likelihood function for a sample of size n from the PHC(II)-W is of the form
given in Equation (28), with simple change of notation. In this case the corresponding
log-likelihood function for the BG(I) model is again obtained by setting # =1 and t = 1.

Using the Fox river data, maximizing the log-likelihood for the models BG(I) and
PHC(I)-W and the log-pseudo-likelihood for the models BEC and PHC(I)-W, we obtain
the estimates of the parameters of the four models given in Table 2 (with standard errors in
parentheses).

To compare model fitting, we use the AIC (Akaike [14]) criterion, namely AIC=—27(-) +
2p. We also consider the BIC (Schwarz [15]) criterion, namely BIC=—27(-) + log(n)p, crite-
rion where p is the number of parameters for the model being considered. The best model
is the one with the smallest AIC or BIC.

According to the values of the AIC and BIC criteria for the Fox river data, the best
model is the PHC(I)-W followed by the PHC(II)-W model.
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Table 2. Estimates (standard errors) for the fitted models.

Estimates BG() PHC(ID-W BEC PHCI)-W

o0y 0.2198 0.0775 0.0940 0.0277
(0.0185) (0.0389) (0.0081) (0.0077)

oy 0.0656 0.0055 0.0283 0.0046
(0.0056) (0.0029) (0.0089) (0.0008)

5 0.8344 0.9053 3.8624 0.8753
(0.3041) (0.3341) (0.3254) (0.0006)

6 1.6396 2.0337
(0.2979) (0.0007)

£ 1.8895 1.8384
(0.1995) (0.0006)
AIC 400.6863 364.4660 415.2929 353.4773
BIC 405.1758 371.9485 419.7824 360.9598

Since the BEC and BG(I) models are special cases of the PHC(I)-W and PHC(II)-W
models, respectively, obtained by setting # = T = 1, we may test the hypotheses

Hy: (6,7)=(1,1) wersus Hy: (6,7) # (1,1)

for comparing the PHC(II)-W and PHC(I)-W models with the BG(I) and BEC models,
respectively.
Using the likelihood ratio statistic,

A= 4P_ (30)
Cr_w(B)
we obtain
—2log(A) ~ x3. (31)

The corresponding values of —2log(A) in each case are provided in Table 3 (note
in the BEC-PHC(I)-W comparison the log-pseudo-likelihoods have been utilized instead
of log-likelihoods) which are greater than the value of the X%,99% = 9.210 indicating that
the PHC(II)-W and PHC(I)-W models are significantly better at the 1% level. Thus, the
PHC(II)-W and PHC(I)-W models appear to be good alternative for fitting the set data. The
choice between the PHC(I)-W and PHC(II)-W is not so clear-cut, but perhaps the PHC(I)-W
might be considered to be marginally better.

The graphs in Figures 1a,b and 2a,b show the contours of the densities BG(I) and BEC
and of the fitted models for PHC(II)-W and PHC(I)-W, respectively.

Table 3. Comparison of likelihood ratio statistics.

PHCII)-W vs. BG(I) PHC(I)-W vs. BEC
-2 log(A) 40.2203 65.8156

Under the assumption that the forms of the F;’s are unknown, we use the transformations
Zl,j = — log flln(XL]-) and er]' = — log fZ,n(XZ,j)r
to arrive at a BG(I) model with joint survival function

S(z1,22) = exp(—z1 — zp — 02122).

Then, using the expression for the maximum likelihood estimate of § provided by
Kotz et al. ([2], p. 352), we obtain 0 = 0.2986, a much smaller value than the estimated
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value of the parameter ¢ obtained assuming a known form for the F;’s. Perhaps this
indicates that the Weibull choices for the F;’s are not optimal.

(a) (b)
Figure 2. Contours for (a) PHC(II)-W model and (b) PHC(I)-W model.

9. Discussion

The bivariate models discussed in this paper utilize quite different approaches to
their construction and thus can be expected to exhibit significantly different distributional
properties, especially with regard to dependence. Future research on such models should
put some focus on the problem of selecting the appropriate one of these models for a
particular data set. Of course, the old stand-by of fitting via maximum likelihood and
comparing models via AIC and BIC is always available.
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