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Abstract: The Tutte polynomial is an isomorphism invariant of graphs that generalizes the chromatic
and the flow polynomials. This two-variable polynomial with integral coefficients is known to carry
important information about the properties of the graph. It has been used to prove long-standing
conjectures in knot theory. Furthermore, it is related to the Potts and Ising models in statistical
physics. The purpose of this paper is to study the interaction between the Tutte polynomial and graph
symmetries. More precisely, we prove that if the automorphism group of the graph G contains an
element of prime order p, then the coefficients of the Tutte polynomial of G satisfy certain necessary
conditions.
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1. Introduction

Symmetry is a concept of fundamental significance in different fields of science, engi-
neering, and art. Finding the symmetries of a given object is an important research problem
in mathematics, as well as in other fields of science. This problem has its origins in a number
of interrelated facts. In most cases, determining the symmetries of a given object will lead
to a better understanding of its physical and mathematical properties. The importance and
significance of the concept of symmetry have been emphasized in many recent research
articles, see [1–3] and references therein. This paper is concerned with symmetries of graphs
and digraphs with possible extension to knots, links and spatial embedding of graphs in
the three-dimensional Euclidean space. Indeed, our primary goal is to investigate the way
the algebraic invariants of graphs interact with graph-symmetries. We confine our interest
to the study of the question of how information about the symmetries of a given graph can
be retrieved from its Tutte polynomial. Our motivation in this regard is twofold. First, we
seek to find obstruction criteria for a graph to have a certain symmetry. Second, we would
like to understand how faithful are these polynomials in reflecting graph properties. We
start by giving some definitions and notations needed in the sequel. The reader is referred
to [4] for basic graph theory terminology.

Let G be a graph with vertex set V(G) and edge set E(G). Let p ≥ 2 be an integer, the
graph G is said to be p-periodic if its automorphism group, Aut(G), contains an element
h such that hp = Id, see [5]. In other words, the finite cyclic group Zp =< h > acts on
the set of vertices of the graph in a way that preserves the incidence. We distinguish two
types of periodicity. If for any vertex v, we have hi(v) 6= v for all 1 ≤ i ≤ p− 1, then the
graph is said to be freely p-periodic. On the other hand, a graph G is said to be semi-freely
p-periodic if Aut(G) contains an element h such that hp = Id and the set of fixed vertices by
h is nonempty. The fixed subgraph under this action is denoted hereafter by F. It is worth
mentioning here that if G is semi-freely p-periodic then the graph G \ F is freely p-periodic.
For instance, the cycle graph Cn is freely p-periodic whenever p divides n. While, for any
n ≥ 3, the wheel graph W1+n is semi-freely p−periodic, whenever p divides n, with fixed
subgraph the vertex of degree n. Examples of a freely five-periodic graph and a semi-freely
five-periodic graph are given in Figure 1.
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Figure 1. A freely 5-periodic graph (left) and a semi-freely 5-periodic graph (right).

Given a p-periodic graph G, the action of the finite cycle group on G defines a quotient
graph G. This quotient is obtained by identifying the vertices which belong to the same
orbit to a single vertex and contracting the edges between vertices of distinct orbits to a
single edge.

A proper coloring of a graph G is a labeling of its vertices using k integers subject to
the condition that adjacent vertices have different colors. The chromatic polynomial PG(λ)
is a classical invariant in graph theory, which counts the number of proper colorings of the
vertices of the graph with λ distinct colors. This extensively-studied polynomial can be
recursively defined using a simple deletion–contraction formula. It is worth mentioning
here that recent research work on graph colorings extends beyond the study of proper
colorings. For more details, we refer the reader to [6,7] and references therein.

The Tutte polynomial τG(x, y) is an isomorphism invariant of graphs [8,9]. More
precisely, it is a two-variable polynomial with integral coefficients which specializes to the
chromatic and the flow polynomials. This invariant can also be defined recursively using a
deletion-contraction formula. In this paper, we find it more convenient to write our results
using Whitney’s rank generating polynomial TG(x, y), which is a modified version of the
Tutte polynomial. The two invariants are related by the formula TG(x, y) = τG(x + 1, y + 1).

The importance of the Tutte polynomial comes not only from the large amount of
information it carries about the graph, but also from its connection to other research fields
such as knot theory and statistical physics. Indeed, the Jones and HOMFLY-PT polynomials
of alternating links can be computed by using the Tutte polynomials of the Tait graphs
associated with link diagrams [10,11]. On the other hand, the Tutte polynomial specializes
to the partition function of the q−state Potts model [12].

The Tutte polynomial has been generalized into several directions. For instance,
Negami [13] introduced a three-variable polynomial NG(u, x, y) which specializes to the
Tutte polynomial. Another interesting generalization has been obtained by Murasugi [5]
who defined a polynomial invariant of weighted graphs. Bollobas and Riordan [14] intro-
duced a kind of universal Tutte polynomial of colored graphs with respect to the deletion-
contraction formula. Another important extension has been obtained recently by Awan
and Bernardi [15] who defined a version of Tutte polynomial for directed graphs. More
precisely, they introduced a three-variable polynomial of digraphs B(q, y, z) that specializes
to the Tutte polynomial once we restrict to the underlying graphs obtained by ignoring the
orientations.

The Tutte polynomial of p-periodic graphs has been studied in [16] where it was
proved that this polynomial clearly reflects the periodicity of the graph as, after a suitable
variable change, certain coefficients of this two-variable polynomial are null modulo p.
In a more recent paper [17], we studied the behavior of the characteristic polynomial of
freely periodic graphs and proved that this polynomial, with coefficients reduced modulo
p, satisfies a certain congruence relation. This result has also been extended to other graph
polynomials and applied as obstruction criteria to prove that certain graphs are not freely
periodic with prime periods. The purpose of this paper is to investigate the behavior of the
Tutte polynomial of semi-freely periodic graphs. It is noteworthy that the main motivation
for this research is the nice way the coefficients of the HOMFLY-PT polynomial interact with



Symmetry 2022, 14, 2072 3 of 10

knot symmetries, see [18–20] for instance. Similar results about the Yamada polynomial of
symmetric spatial graphs can be found in [21]. Recall that the connection between the Tutte
polynomial and knot polynomials has been established in [10,11].

This paper is organized as follows. In Section 2, we state our main results and illustrate
that by some examples. In Section 3, we define the Tutte polynomial and overview some
of its properties. The proofs of our results are given in Section 4. In Section 5, we discuss
similar research works on graph symmetry and their extension to symmetry of knots and
spatial graphs. Another example that illustrates our results is given in the Appendix A.

2. Results and Applications

In this section, we state our main results and give some examples. Indeed, we shall
use Whitney’s rank generating polynomial TG(x, y) to introduce necessary conditions for a
graph to be semi-freely p-periodic, for p prime. These conditions can be seen as obstructions
for semi-free periodicity of graphs.

Theorem 1. Let p be a prime and G be a semi-freely p-periodic connected graph with fixed subgraph
F. Let TG(x, y) = ∑

i≥0
Pi(x)yi, where Pi(x) = ∑

k≥0
ai,kxk. Assume that |V(F)| < p, then

(a) For all 0 ≤ i < p, we have ai,k
∼= 0 modulo p, whenever |V(F)|+ np + i ≤ k < (n + 1)p.

(b) For the coefficients of the polynomial P0(x), there exist integers λs such that a0,k+sp
∼= λsa0,k

modulo p, for all 0 ≤ k < p.

Example 1. We shall now illustrate Theorem 1 by considering the Tutte polynomial of the complete
4-partite graph G = K1,1,2,14, see Figure 2. This graph is semi-freely 7-periodic with the complete
3-partite graph K1,1,2 as fixed subgraph.

Figure 2. The complete 4-partite graph K1,1,2,14 is semi-freely 7-periodic.
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Let TG(x, y) denotes the Tutte polynomial of G with coefficients reduced modulo 7, then we
have:

TG(x, y) ∼= 2 + 6x + 3x2 + 2x3 + x7 + 3x8 + 5x9 + x10 + x14 + 3x15 + 5x16 + x17

+(3 + 4x + 5x7 + 2x8 + 5x14 + 2x15)y + (2 + x7 + x14)y2

+(4 + 4x + 6x2 + x7 + x8 + 5x9)y6 + (5 + 5x2 + 3x7 + 3x9)y7

+(2 + 6x + 4x7 + 5x8)y8 + (6 + 5x7)y9 + (6 + 6x + 6x7 + x8)y12

+(4 + 6x2 + x7 + 6x8)y13 + (2 + 4x + 5x2 + 6x7 + 2x8)y14

+(4 + 6x + 5x7 + 4x8)y15 + (5 + x7)y16 + (4 + 2x7)y18

+(3 + 3x + 3x7)y19 + (1 + 4x + 6x7)y20 + (2 + 6x + 6x7)y21

+(5x + 3x7)y22 + 2x7y23 + 3y25 + (4 + 4x)y26 + (6 + 3x)y27 + (5 + x)y28

+2xy29 + y32 + 5y33 + 3y34 + 3y35 + 5y36 + y37 + y39 + 5y40 + 3y41

+3y42 + 5y43 + y44.

Notice that in this example we have V(F) = 4 and the polynomial P0(x) with coefficients reduced
modulo 7 is given by:

P0(x) ∼= 2 + 6x + 3x2 + 2x3 + x7 + 3x8 + 5x9 + x10 + x14 + 3x15 + 5x16 + x17.

It is clear that P0(x) satisfies condition (a) of Theorem 1. Indeed, we have a0,k
∼= 0 modulo p for

4 ≤ k < 7 and 11 ≤ k < 14.
Condition (b) of Theorem 1 is also satisfied. Actually, it is clear that a0,k+7

∼= 4a0,k and
a0,k+14

∼= 4a0,k modulo 7, for any 0 ≤ k < 7. In other words, we have λ1
∼= λ2 ∼= 4 modulo 7.

Theorem 2. Let p be a prime and G be a semi-freely p-periodic connected graph with fixed subgraph
F. Let TG(x, y) = ∑

i≥0
Qi(y)xi, where Qi(y) = ∑

k≥0
bi,kyk. Assume that |E(F)| < p, then bi,k

∼= 0

modulo p, whenever k is not congruent to r− |V(G)|+ i + 1 modulo p, where 0 ≤ r ≤ |E(F)|.

Example 2. We shall show that the condition given by Theorem 2 holds for the complete 4-partite
graph G = K1,1,2,14. Let us first examine the condition given by Theorem 2 for the polynomial
Q0(y). Let Qi(y) denotes the polynomial Qi(y) with coefficients reduced modulo 7. We have:

Q0(y) ∼= 2 + 3y + 2y2 + 4y6 + 5y7 + 2y8 + 6y9 + 6y12 + 4y13 + 2y14 + 4y15 + 5y16

+4y18 + 3y19 + y20 + 2y21 + 3y25 + 4y26 + 6y27 + 5y28 + y32 + 5y33

+3y34 + 3y35 + 5y36 + y37 + y39 + 5y40 + 3y41 + 3y42 + 5y43 + y44.

For the graph G, we have E(F) = 5 and V(G) = 18. The values taken by r− |V(G)|+ 1 modulo
7, where 0 ≤ r ≤ |E(F)| are 0, 1, 2, 4, 5, 6. Hence

b0,3 ∼= b0,10
∼= b0,17

∼= b0,24
∼= b0,31

∼= b0,38 ∼= 0, modulo 7,

as one can observe from the formula above. For the polynomial Q1(y), we have

b1,4
∼= b1,11

∼= b1,18
∼= b1,25

∼= 0, modulo 7.

One may check easily that the condition given by Theorem 2 holds for Qi(y), for any i.

It is worth mentioning that Theorems 1 and 2 hold also in the case of freely p-periodic
graphs. The necessary conditions write in the same way by taking F to be the empty graph,
hence |V(F)| = |E(F)| = 0. More precisely, we have:

Corollary 1. Let p be a prime and G be a freely p-periodic connected graph. Let TG(x, y) =

∑
i≥0

Pi(x)yi, where Pi(x) = ∑
k≥0

ai,kxk. Then, for all 0 ≤ i < p, we have ai,k
∼= 0 modulo p,

whenever i + np ≤ k < (n + 1)p− 1.
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Corollary 2. Let p be a prime and G be a freely p-periodic connected graph. Let TG(x, y) =

∑
i≥0

Qi(y)xi, where Qi(y) = ∑
k≥0

bi,kyk. Then, bi,k
∼= 0 modulo p, whenever k is not congruent to

1 + i modulo p.

Remark 1. The conditions given by Theorems 1 and 2 can be better checked if the Tutte polynomial
is displayed in matrix-form as explained in the Appendix A.

3. The Tutte Polynomial

This section is devoted to introduce the Tutte polynomial and briefly review some of
its properties relevant to our context. More details can be found in [8,9]. The most simple
way to define the Tutte polynomial is the following recursive way based on a deletion–
contraction formula. Let G be a graph and e one of its edges. We denote by G− e the graph
obtained from G by deleting edge e and by G/e we denote the graph obtained from G by
deleting e and identifying the two endpoints of e. Let En be the graph with n vertices and
no edges. The Tutte polynomial is uniquely determined by the following relations

τG(x, y) =


xτG/e(x, y) if e is a bridge
yτG−e(x, y) if e is a loop
τG−e(x, y) + τG/e(x, y) if e is an ordinary edge

and the initialization τEn(x, y) = 1.
Given a graph G with vertex set V(G), edge set E(G) and C(G) connected components.

Other than the recursive definition above, the Tutte polynomial can be also defined using
the following subgraph expansion formula:

τG(x, y) = ∑
S⊆E(G)

(x− 1)C(S)−C(G)(y− 1)|S|−|V(G)|+C(S),

where the summation is through all subsets S of E(G). Note that C(S) denotes the number
of connected components of the subgraph of G whose edge set is S and vertex set is V(G),
and |S| denotes the number of edges in S.

4. Proofs

In this section, we shall prove Theorems 1 and 2. Our main tool in these proofs is the
subgraph expansion formula of the Tutte polynomial introduced in the previous section.
Notice that for a connected graph G, the expansion formula for Whitney’s rank polynomial
writes as follows:

TG(x, y) = ∑
S⊆E(G)

xC(S)−1y|S|−|V(G)|+C(S).

To prove Theorem 1 (a), we will start by settling the case i = 0, the general case will be
conducted similarly. Observe that the polynomial P0(x) corresponds to the contribution
of the monomials xC(S)−1 where |S| − |V(G)|+ C(S) = 0. The condition |S| − |V(G)|+
C(S) = 0 implies that S is indeed a spanning forest of the graph G,

P0(x) = ∑
S: spanning forest of G

xC(S)−1.

Note that the action of the cyclic group on G defines an action on the set of spanning
forests of G. Since p is prime, then orbits under this action are made up of either 1 or p
elements. If the orbit of a spanning forest is made up of p elements, then the contributions
of the elements of this orbit to the polynomial P0(x) add to zero modulo p. Consequently,
only spanning forests which are fixed by the action are to be considered in our computation
of P0(x) modulo p. On the other hand, it can be easily seen that no tree can be fixed by the
action unless it has a fixed vertex, hence it is adjacent to the fixed subgraph F. We conclude
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then that the number of trees in the spanning forest is of the from C(S) = C(F′) + rp,
where F′ is a subgraph of F. Finally, since we assumed that |V(F)| < p, the coefficient
of the monomial xk is zero modulo p whenever |V(F)|+ np ≤ k < (n + 1)p− 1. Since
F is nonempty, it can be easily seen that the coefficient of the monomial x(n+1)p−1 is also
congruent to zero modulo p.

The proof for the other Pi(x) uses a similar argument. Note that the subgraphs that
contribute to the value of Pi(x) are those satisfying the condition |S| − |V(G)|+ C(S) = i.
Obviously, such a subgraph S has exactly i cycles. Again, only subgraphs S which are
invariant by the action will be considered as the contribution of the other subgraphs will
add to zero modulo p. Assume that S is an invariant subgraph of G that has i cycles. Then
the action of the finite cyclic group on the components of S, either leaves a component fixed
or the orbit of the component is made up of p elements. The assumption that the number
of cycles is i < p implies that each cycle is fixed under the action. Let n be the number of
orbits made up each of p elements. Then C(S)− 1 ≤ np + |V(F)|+ i− 1. We conclude
then that the coefficient of the monomial xk is congruent to zero modulo p whenever
|V(F)|+ np + i ≤ k < (n + 1)p. This ends the proof of the first statement of Theorem 1.

Now, let us prove Theorem 1 (b). Recall that the coefficient a0,0 counts the number of
spanning trees which are invariant under the cyclic action, while a0,p counts the number
of invariant spanning forests having (p + 1) components. Obviously, in this case one
tree is fixed, while the other p trees are permuted cyclically by the action. Assume that
a0,p ∼= λ1a0,0 modulo p for a certain integer λ1. The coefficient a0,1 is the number of
spanning forests of G made up of two components each of which fixed by the action. Such
spanning forest is obtained from a fixed spanning tree by removing an edge. Similarly,
a0,p+1 represents the number of invariant spanning forests made up of p + 2 components.
Such a forest admits two fixed trees and the other p trees are permuted cyclically by the
action. Notice that this forest is obtained from a (p + 1)-component forest by removing one
edge. This implies that a0,p+1

∼= λ1a0,1 modulo p. By the same arguments we can prove
that a0,k+p

∼= λ1a0,k modulo p and in general a0,ks+p
∼= λsa0,k modulo p, for all 0 ≤ k < p.

This ends the proof of Theorem 1 (b).
The proof of Theorem 2 is also based on the analysis of the subgraph expansion for-

mula. Notice that Qi(y) is actually the sum of all monomials coming from the contribution
of subgraphs S such that C(S)− 1 = i. More precisely Qi(y) = ∑

S⊆E(G),C(S)=1+i
y|S|−|V(G)|+i+1.

It is clear that the cyclic group Zp acts on the set {S ⊆ E(G), C(S) = 1 + i}. Moreover, an
orbit under this action is either made up of one or p elements. Only orbits made up of a
single element will contribute to the summation modulo p. One can easily see that in this
case |S| is congruent to r modulo p, where r ≤ |E(F)|. Thus, bi,k

∼= 0 modulo p, whenever
k is not congruent to r− |V(G)|+ i + 1 modulo p, where r ≤ |E(F)|. This completes the
proof of Theorem 2.

5. Further Discussions

The graph symmetries considered in this paper have been also studied using other
types of graph polynomials. For instance, Wang [22] studied the characteristic polynomial
of semi-freely periodic graphs and proved that such a polynomial factorizes into a product
of a polynomial associated with the fixed subgraph F and a polynomial associated with the
free part of the action G \ F. Feng, Kwak, and Lee proved a formula for the characteristic
polynomials of graph coverings [23]. These results have been extended to the Laplacian
characteristic polynomial in [24]. A similar study of the characteristic polynomial of
symmetric graphs using block circulant matrices can be found in [25]. It is worth mentioning
here that most of the formulas introduced in the above mentioned papers express the
polynomial of the symmetric graph G in terms of the polynomial of its quotient graph G.
The advantage of the conditions introduced in Theorems 1 and 2 is that they do not involve
the quotient graph. Hence, they can be easily used as obstructions to graph periodicity.
Moreover, the obstructions for graph periodicity proved in this paper can be used to study
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the Jones and HOMFLY-PT polynomials of periodic knots. Recall that there is a simple
way to associate a planar graph with any regular knot projection [26]. Such a graph is
called a Tait graph of the knot. If the knot K is alternating, then its Jones polynomial VK(t)
is obtained from the Tutte polynomial of its Tait graph, associated with an alternating
projection, by VK(t) = τG(t, 1/t), see [10]. A similar formula relating the Tutte polynomial
and the HOMFLY-PT polynomial can be found in [11]. On the other hand, a periodic
alternating knot is represented by a periodic graph, see Figure 3. A natural question that
arises here is to investigate whether the conditions given by Theorems 1 and 2 extend to
periodic knots. Recall that knot symmetries can be seen as a special case of the more general
concept of topological symmetry groups. These groups have been introduced originally to
study the symmetries of non-rigid molecules [27]. Other interesting applications of knot
symmetries in the field of chemistry can be found in [28].

Figure 3. A 5-periodic knot (left) and its associated 5-periodic Tait graph (right).

6. Conclusions

By using elementary properties of the Tutte polynomial, we established obstruction
criteria for a graph to be symmetric. More precisely, in Theorems 1 and 2, we proved that if
a given graph G is semi-freely p-periodic, then some coefficients of its Tutte polynomial,
after a certain change of variables, are congruent to zero modulo p. These results have been
illustrated by examples. The case of freely p-periodic graphs has been also addressed. We
believe that such kind of results can be generalized to other graph polynomials. Indeed, the
Negami polynomial [13] and the digraph version of Tutte polynomial [15] are both defined
through subgraph expansion formulas. It seems possible to extend the methods used in
this paper to study the interaction of these polynomials with graph symmetries.
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Appendix A

In this appendix, we illustrate our results by another example. The graph in Figure A1
is semi-freely seven-periodic with a cycle of length 3 as the fixed subgraph F. Notice here
that |V(G)|=24 and |V(F)| = |E(F)| = 3. The coefficients of the polynomial TG(x, y) are
displayed in the matrix below. More precisely, the entries of row i are the coefficients
of the polynomial Pi−1(x), while the entries in column j represent the coefficients of the
polynomial Qj−1(y). For instance, from row two we obtain:

P1(x) ∼= 1 + 2x + 2x2 + 3x3 + 5x7 + x14 + 3x15 + 3x16 + x17 + x21.

From column two, we obtain:

Q1(y) ∼= 3 + 2y + 3y2 + y6 + 2y7 + y8 + 5y9 + 2y15 + 3y16 + 6y20 + 4y21 + 2y27 + 5y28 + 2y34 + 2y35.

In the matrix below, the entries in red indicate the coefficients of Pi(x) which are null
modulo 7 by Theorem 1, for i = 0, 1, 2, 3. Note that in row 1, entries in columns 4 to 7,
11 to 14, and 18 to 21 are zeros. In row 2, entries in columns 5 to 7, 12 to 14, and 19 to
21 are zeros. Similar patterns happen for row three and row four. The entries in blue
indicate the coefficients of Qi(y) which are null modulo 7 by Theorem 2 for i = 0, 1, 2, 3.
Note that in each column of the matrix there is a block of three consecutive zeros that is
repeated whenever one moves seven steps downwards. Moreover, the position of this
block is shifted by one step down as one moves from column j to column j + 1.

Figure A1. A semi-freely 7-periodic graph.
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3 3 1 0 0 0 0 1 1 5 0 0 0 0 3 3 1 0 0 0 0 3 3 1
1 2 2 3 0 0 0 5 0 0 0 0 0 0 1 3 3 1 0 0 0 1 0 0
0 3 3 3 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 6 3 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0
2 2 3 0 0 0 0 3 4 5 0 0 0 0 2 0 2 0 0 0 0 0 0 0
3 1 6 4 0 0 0 1 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0
0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 5 3 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0
6 0 5 0 0 0 0 4 6 1 0 0 0 0 3 1 0 0 0 0 0 0 0 0
2 2 0 2 0 0 0 6 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 6 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 4 4 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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