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Abstract: Derivatization of spirooxindole having triazole and ferrocene units was achieved by the
[3 + 2] cycloaddition (32CA) reaction approach. Reacting the respective azomethine ylide (AY) inter-
mediate generated in situ with the ethylene derivative produced novel asymmetric cycloadducts with
four contiguous asymmetric carbons in an overall high chemical yield with excellent regioselectivity
and diastereoselectivity. X-Ray single-crystal structure analyses revealed, with no doubt, the success
of the synthesis of the target compounds. The 32CA reaction of AY 5b with ferrocene ethylene 1 has
been studied within MEDT. This 32CA reaction proceeds via a two-stage one-step mechanism involving
a high asynchronous transition state structure, resulting from the nucleophilic attack of AY 5b on
the β-conjugated position of ferrocene ethylene 1. The supernucleophilic character of AY 5b and the
strong electrophilic character of ferrocene ethylene 1 account for the high polar character of this 32CA
reaction. Further, Hirshfeld analyses were used to describe the molecular packing of compounds 4b,
4e, 4h and 4i.

Keywords: asymmetric synthesis; spirooxindole; triazole; ferrocene; azomethine ylide; [3 + 2]
cycloaddition reaction; MEDT study

1. Introduction

The arena of diversity-oriented and combinatorial organic synthesis to construct
heterocyclic hybrids with structurally diverse and pharmacologically importance has
received a lot of attention in the last decades. The utilization of a simple starting material
that is commercially available with the concepts of atom economy and environmental
aspects is a pronounced challenge and attractive research for the chemical industry as well
as the scientific community [1].

Spirohybrid heterocycles have received great attention from researchers, including
chemists as well as medicinal/pharmaceutical researchers, due to their diverse importance
for the applications of these hybrids in different fields.

The preferred synthetic approach to construct symmetric and asymmetrical spiro-
hybrids is the multi-component reaction (MCRs) approach, which enables researchers to
construct interesting and highly divergent spirohybrid heterocycles in a one-pot process
with multiple bonds, with the advantage of having fewer workup steps, facile mechaniza-
tion, simple purification and extraction, tractability and reproducibility and thus makes this
approach more eco-friendly and follows atom economy [2,3]. Specifically, spiropyrrolidine
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heterocycles exist in many synthetic and natural compounds, which possess many phar-
macological interesting properties and can be synthesized by [3 + 2] cycloaddition (32CA)
based on multi-component reactions (MCRs) [4]. Many natural alkaloids embody this
spiropyrrolidine structural motif, such as horsfiline arediscovered, as a native medicine [5].
Further, spirotryprostatine A and B [6] and mitraphylline have been reported as high-
efficacy anti-cancer agents [7]. Apart from naturally occurring compounds, a huge number
of synthetic spiropyrrolidines analogs have been designed, synthesized and evaluated
against different targets, including cancer activity [8,9], local anesthetics [10], analgesic and
anti-inflammation [11] and other activity, such as anti-mycobacterial [12] and anti-microbial
agents [13], and others [14–20].

Indeed, the ferrocene motif is another interesting organometallic scaffold owing to
its potential pharmaceutical properties, photochemical and thermal stability, as well as
synthetic versatility [21,22]. Notably, organic compounds engrafted with ferrocene scaffold
exhibit many biological activities, such as anti-microbial, antimalarial and anti-cancer
activities [23]. Interestingly, hydroxyferrocifen and ferroquine, which are ferrocene-based
compounds, have already been employed in clinical trials for breast cancer treatment
and as an antimalarial drug candidates, respectively [24,25]. The hybridization of the
spiropyrrolidine with the ferrocene organometallic scaffold could provide an interesting
lead organic molecule for further research.

The 1,2,3-Triazole unit is also another interesting pharmacophore that has received a
lot of attention in the area of synthetic chemistry due to its interesting pharmacological ap-
plications [26] such as carbonic anhydrase inhibitors [27], tuberculosis treatment [28,29] and
an antimalarial agent [30]. The combination of a triazole with the ferrocene organometallic
scaffold has received a lot of interest from researchers due to the wide range of applica-
tions of these hybrid compounds in different disciplines, including medicinal chemistry
as biosensing probes, biochemistry, conducting polymer chemistry, materials science and
supramolecular chemistry [31–38]. To construct highly functionalized spirohybrid hetero-
cycles having a combined triazole with the ferrocene organometallic scaffold is a challenge.

Based on these findings, and in continuation of our research program [39,40], which
focuses on multi-component reactions for accessing highly divergent, functionalized
molecules having different pharmacophores, such as spiropyrrolidine, 1,2,3-triazole unit
and ferrocene organometallic scaffold in a single compound, might be a lead of paramount
interest in drug discovery. We reported here the synthesis, characterizations and X-ray
structure analysis of a new set of spiropyrrolidine analogs, along with the mechanistic
insights for the 32CA reaction approach (Figure 1).
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Figure 1. Retrosynthetic analysis for the spirooxindole/triazole/ferrocene-based pharmacophores.

2. Materials and Methods

The chemical utilized and instrumentations for the study investigation are provided
in the Supplementary Materials. The synthesis of ethylene derivative 1 was prepared
according to the method reported in the literature [40].
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2.1. Synthesis of Spirooxindole Hybrids 4a-i

Isatin derivatives 3a-i (0.35 mmol) and L-proline 2 (0.35 mmol) were mixed with
ethylene derivative 1 (0.35 mmol) in a one-pot reaction in 10 mL MeOH, which was refluxed
for 5 h using an oil bath system. The reaction was monitored by TLC (EtOAc: n-Hexane,
3:7). Subsequently, the reaction mixture was allowed to cool at RT overnight, and after slow
evaporation, reddish-brown crystalline compounds suitable for physico-chemical analysis,
including single-crystal X-ray diffraction analysis, were obtained.

2.1.1. (2′S,3R)-2′-(1-(3-Chloro-4-fluorophenyl)-5-methyl-1H-1,2,3-triazole-4-carbonyl)- 1′-
(ferrocin-2-yl)-1′,2′,5′,6′,7′,7a’-hexahydrospiro[indoline-3,3′-pyrrolizin]-2-one 4a

Yield: 92%; 1H NMR (400 MHz, DMSO-d6) δ 10.19 (s, 1H, NH), 7.83 (t, J = 4.4 Hz, 1H,
Ar-H), 7.72 (t, J = 8.9 Hz, 1H, Ar-H), 7.52–7.43 (m, 2H, Ar-H), 7.09–6.97 (m, 1H, Ar-H), 6.81 (t,
J = 7.5 Hz, 1H, Ar-H), 6.57 (d, J = 7.7 Hz, 1H, Ar-H), 5.14 (d, J = 10.8 Hz, 1H, CHCO), 4.26 (s,
5H, Cp-H), 4.18–4.08 (m, 4H, Cp-H), 4.02 (q, J = 7.1 Hz, 1H, NCH), 3.82 (s, 1H, NCHCH),
3.46 (t, J = 10.1 Hz, 1H, NCH2), 2.75 (q, J = 7.6, 7.2 Hz, 1H, NCH2), 2.15 (d, J = 9.5 Hz, 1H,
CH2), 2.07 (s, 3H, CH3), 1.92 (m, 1H, CH2), 1.81–1.72 (m, 2H, CH2); 13C NMR (101 MHz,
DMSO-d6) δ 194.01, 180.03, 170.94, 159.82, 157.33, 143.51, 143.06, 138.58, 132.21, 129.51,
125.91, 121.50, 121.31, 118.79, 109.67, 90.03, 72.36, 70.21, 68.95, 68.80, 67.55, 60.34, 55.50,
48.07, 27.20, 9.60; LC/MS (ESI, m/z): found 650.2 [M + H]+, exact mass 649.13 for Chemical
Formula: C34H29ClFFeN5O2. [Anal. Calcd. for C34H29ClFFeN5O2: C, 62.83; H, 4.50; N,
10.78; Found: C, 62.86; H, 4.52; N, 10.81].

2.1.2. (2′S,3R)-2′-(1-(3-Chloro-4-fluorophenyl)-5-methyl-1H-1,2,3-triazole-4-carbonyl)-5-
methoxy-)- 1′-(ferrocin-2-yl)-1′,2′,5′,6′,7′,7a’-hexahydrospiro[indoline-3,3′-pyrrolizin]-2-
one 4b

Yield: 90%; 1H NMR (400 MHz, DMSO-d6) δ 10.19 (s, 1H, NH), 7.79 (s, 1H, Ar-H),
7.69 (t, J = 4.4 Hz, 1H, Ar-H), 7.46 (m, 1H, Ar-H), 7.14 (m, 1H, Ar-H), 7.03 (s, 1H, Ar-H),
6.90 (m, 1H, Ar-H), 6.73 (m, 1H, Ar-H), 5.09 (d, J = 10.8 Hz, 1H, CHCO), 4.29 (s, 5H, Cp-H),
4.13 (m, 4H, Cp-H), 2.95 (m, 2H, NHC2), 2.74 (m, 1H, NCH2), 2.34 (m, 1H, CH2), 2.19 (s,
3H, CH3), 2.02 (s, 3H, CH3), 1.93 (m, 1H, CH2), 1.79 (m, 2H, CH2);13C NMR (126 MHz,
DMSO-d6) δ 193.29, 178.57, 159.56, 158.03, 144.23, 143.19, 138.52, 132.06, 129.60, 128.09,
127.33, 126.97, 126.90, 125.17, 121.76, 121.47, 121.32, 118.84, 118.66, 108.43, 90.05, 71.97,
70.24, 68.91, 67.61, 67.57, 67.46, 67.42, 47.96, 43.16, 30.97, 27.46, 26.59, 9.46; LC/MS (ESI,
m/z): found 680.28 [M + H]+, exact mass 679.14 for Chemical Formula: C35H31Cl2FFeN5O2.
[Anal. Calcd. for C35H31Cl2FFeN5O2: C, 61.83; H, 4.60; N, 10.30; Found: C, 61.89; H, 4.65;
N, 10.27].

2.1.3. (2′S,3R)-2′-(1-(3-Chloro-4-fluorophenyl)-5-methyl-1H-1,2,3-triazole-4-carbonyl)-5-chloro-)-
1′-(ferrocin-2-yl)-1′,2′,5′,6′,7′,7a′-hexahydrospiro[indoline-3,3′-pyrrolizin]-2-one 4c

Yield: 91%; 1H NMR (400 MHz, DMSO-d6) δ 10.35 (s, 1H, NH), 7.78 (dt, J = 6.2, 2.9 Hz,
1H, Ar-H), 7.71–7.61 (m, 1H, Ar-H), 7.46 (ddd, J = 8.8, 4.2, 2.2 Hz, 1H, Ar-H), 7.11–7.03 (m,
1H, Ar-H),), 6.97 (d, J = 2.3 Hz, 1H, Ar-H), 6.57 (d, J = 8.1 Hz, 1H, Ar-H), 5.14 (d, J = 10.5 Hz,
1H, CHCO), 4.23 (s, 5H, Cp-H), 4.15–4.03 (m, 4H, Cp-H), 3.80 (s, 1H, NCH2), 2.75–2.66 (m,
1H, NCH2), 2.44–2.34 (m, 1H, CH2), 2.15 (s, 3H, CH3), 1.96 (d, J = 10.1 Hz, 1H, CH2), 1.79 (m,
2H, CH2); 13C NMR (101 MHz, DMSO-d6) δ 193.70, 179.69, 160.59, 158.19, 143.36, 142.03,
138.60, 130.18, 129.15, 128.85, 128.01, 126.63, 125.31, 121.69, 119.47, 111.89, 110.20, 89.71,
79.85, 79.52, 79.19, 72.05, 70.89, 69.76, 69.49, 68.56, 68.50, 68.44, 68.19, 68.12, 68.05, 67.99,
67.92, 67.31, 66.77, 65.99, 10.10, 8.87; LC/MS (ESI, m/z): found 684.21 [M + H]+, exact mass
683.10 for Chemical Formula: C34H28Cl2FFeN5O2. [Anal. Calcd. for C34H28Cl2FFeN5O2:
C, 59.67; H, 4.12; N, 10.23; Found: C, 59.65; H, 4.09; N, 10.25].
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2.1.4. (2′S,3R)-2′-(1-(3-Chloro-4-fluorophenyl)-5-methyl-1H-1,2,3-triazole-4-carbonyl)-5-
bromo-)- 1′-(ferrocin-2-yl)-1′,2′,5′,6′,7′,7a’-hexahydrospiro[indoline-3,3′-pyrrolizin]-2-one 4d

Yield: 88%; 1H NMR (400 MHz, DMSO-d6) δ 10.39 (s, 1H, NH), 7.79 (dd, J = 6.3, 2.6 Hz,
1H, Ar-H), 7.69 (td, J = 8.8, 2.1 Hz, 1H, Ar-H), 7.50–7.41 (m, 1H, Ar-H), 7.22 (dd, J = 8.1,
2.1 Hz, 1H, Ar-H), 7.09 (s, 1H, Ar-H), 6.54 (d, J = 8.1 Hz, 1H, Ar-H), 5.14 (d, J = 10.4 Hz,
1H, CHCO), 4.24 (s, 5H, Cp-H), 4.17–4.06 (m, 4H, Cp-H), 3.81 (d, J = 2.1 Hz, 1H, NCH2),
3.46 (t, J = 10.2 Hz, 1H, NCH2), 2.74 (m, 1H, CH2), 2.41 (m, 1H, CH2), 2.17 (m, 2H, CH2),
2.15 (s, 3H, CH3), 1.96 (m, 1H, CH2), 1.80 (s, 2H); 13C NMR (101 MHz, DMSO-d6) δ 183.06,
163.95, 159.61, 155.74, 143.34, 142.48, 138.73, 131.18, 130.95, 125.42, 121.78, 120.60, 119.74,
115.70, 115.55, 112.94, 112.49, 107.65, 107.02, 90.99, 79.86, 79.53, 79.20, 71.96, 68.21, 68.13,
68.06, 67.99, 45.19, 8.97; LC/MS (ESI, m/z): found 728.12 [M + H]+, exact mass 727.04 for
Chemical Formula: C34H28BrClFFeN5O2. [Anal. Calcd. for C34H28BrClFFeN5O2: C, 56.03;
H, 3.87; N, 9.61; Found: C, 56.05; H, 3.88; N, 9.60].

2.1.5. (2′S,3R)-2′-(1-(3-Chloro-4-fluorophenyl)-5-methyl-1H-1,2,3-triazole-4-carbonyl)-5-
fluoro-)- 1′-(ferrocin-2-yl)-1′,2′,5′,6′,7′,7a′-hexahydrospiro[indoline-3,3′-pyrrolizin]-2-one 4e

Yield: 93%; 1H NMR (400 MHz, DMSO-d6) δ 10.21 (s, 1H, NH), 7.88 (dd, J = 6.5, 2.5 Hz,
1H, Ar-H), 7.72 (t, J = 8.9 Hz, 1H, Ar-H), 7.53 (dt, J = 6.2, 2.5 Hz, 1H, Ar-H), 6.97–6.85 (m,
2H, Ar-H), 6.57 (dd, J = 8.5, 4.5 Hz, 1H, Ar-H), 5.17 (d, J = 10.9 Hz, 1H, CHCO), 4.26 (s, 5H,
Cp-H), 4.18–4.06 (m, 4H, Cp-H), 3.80 (s, 1H), 3.48 (d, J = 10.2 Hz, 1H, NCH2), 2.50 (s, 1H),
2.37 (d, J = 8.9 Hz, 1H, NCH2), 2.14 (s, 3H, CH3), 1.98 (m, 1H, CH2), 1.95 (m, 1H, CH2),
1.80 (m, 2H, CH2); 13C NMR (101 MHz, DMSO-d6) δ 193.74, 179.96, 161.34, 157.00, 143.38,
139.28, 138.72, 138.65, 132.25, 129.10, 127.66, 121.53, 120.15, 117.76, 116.22, 110.97, 89.82,
72.56, 70.77, 68.54, 68.21, 68.14, 68.06, 67.99, 67.27, 66.80, 66.48, 65.92, 57.27, 55.48, 10.08,
8.82; LC/MS (ESI, m/z): found 668.18 [M + H]+, exact mass 667.12 for Chemical Formula:
C34H28ClF2FeN5O2. [Anal. Calcd. for C34H28ClF2FeN5O2: C, 61.14; H, 4.23; N, 10.; Found:
C, 61.19; H, 4.26; N, 10.53].

2.1.6. (2′S,3R)-2′-(1-(3-Chloro-4-fluorophenyl)-5-methyl-1H-1,2,3-triazole-4-carbonyl)-5-
nitro-)- 1′-(ferrocin-2-yl)-1′,2′,5′,6′,7′,7a′-hexahydrospiro[indoline-3,3′-pyrrolizin]-2-one 4f

Yield: 87%; 1H NMR (400 MHz, DMSO-d6) δ 11.06 (s, 1H, NH), 8.06 (dd, J = 8.8,
2.7 Hz, 1H, Ar-H), 7.85 (dd, J = 6.5, 2.7 Hz, 1H, Ar-H), 7.80 (d, J = 2.4 Hz, 1H, Ar-H),
7.70 (t, J = 8.9 Hz, 1H, Ar-H), 7.50 (dd, J = 8.1, 4.2 Hz, 1H, Ar-H), 6.82 (d, J = 8.4 Hz, 1H,
Ar-H), 5.19 (d, J = 10.5 Hz, 1H, CHCO), 4.19–4.09 (m, 5H, Cp-H), 3.82 (s, 4H, Cp-H), 3.52 (t,
J = 10.1 Hz, 1H, NCH2), 2.75 (q, J = 7.6 Hz, 1H, NCH2), 2.22–2.14 (m, 1H, NCH2), 2.14 (s,
3H, CH3), 1.98 (s, 1H, CH2), 1.96 (d, J = 8.9 Hz, 1H, CH2), 1.82 (td, J = 14.9, 14.1, 7.3 Hz, 2H,
CH2); 13C NMR (101 MHz, DMSO-d6) δ 193.57, 180.44, 180.38, 161.66, 160.32, 149.63, 143.21,
141.86, 139.49, 139.13, 132.09, 129.07, 128.97, 127.94, 126.85, 126.24, 123.69, 123.51, 121.52,
121.33, 119.27, 118.15, 110.92, 88.70, 71.41, 68.65, 68.18, 68.10, 68.03, 66.96, 8.85; LC/MS (ESI,
m/z): found 695.20 [M + H]+, exact mass 694.12 for Chemical Formula: C34H28ClFFeN6O4.
[Anal. Calcd. for C34H28ClFFeN6O4: C, 58.76; H, 4.06; N, 12.09; Found: C, 58.74; H, 4.08; N,
12.13].

2.1.7. (2′S,3R)-2′-(1-(3-Chloro-4-fluorophenyl)-5-methyl-1H-1,2,3-triazole-4-carbonyl)-6-
chloro-)- 1′-(ferrocin-2-yl)-1′,2′,5′,6′,7′,7a′-hexahydrospiro[indoline-3,3′-pyrrolizin]-2-one 4g

Yield: 89%; 1H NMR (400 MHz, DMSO-d6) δ 10.39 (s, 1H, NH), 7.81–7.66 (m, 1H,
Ar-H), 7.55–7.46 (m, 1H, Ar-H), 7.00 (d, J = 8.1 Hz, 1H, Ar-H), 6.86 (dd, J = 8.1, 2.1 Hz, 1H,
Ar-H), 6.59 (d, J = 1.9 Hz, 1H, Ar-H), 5.12 (d, J = 10.4 Hz, 1H, CHCO), 4.23 (s, 5H, Cp-H),
4.29–4.06 (m, 4H, Cp-H), 3.88–3.79 (m, 1H, NCH2), 2.70 (dd, J = 16.9, 9.0 Hz, 1H, NCH2),
2.39 (s, 1H, NCH2), 2.16 (s, 3H, CH3), 2.22–2.08 (m, 1H, CH2), 1.96–1.90 (m, 1H, CH2),
1.86–1.76 (m, 1H, CH2); 13C NMR (101 MHz, DMSO-d6) δ 193.71, 179.92, 173.22, 166.58,
159.14, 158.34, 154.12, 144.63, 143.45, 138.69, 134.06, 132.44, 129.91, 129.19, 128.20, 126.52,
124.51, 121.61, 119.88, 113.01, 108.65, 93.89, 79.88, 79.55, 79.22, 71.91, 68.19, 68.12, 68.06,
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67.99, 67.92, 67.06, 64.73, 10.17, 8.93; LC/MS (ESI, m/z): found 684.22 [M + H]+, exact mass
683.10 for Chemical Formula: C34H28Cl2FFeN5O2. [Anal. Calcd. for C34H28Cl2FFeN5O2:
C, 59.67; H, 4.12; N, 10.23; Found: C, 59.68; H, 4.10; N, 10.19].

2.1.8. (2′S,3R)-2′-(1-(3-Chloro-4-fluorophenyl)-5-methyl-1H-1,2,3-triazole-4-carbonyl)- 1-
methyl-1′-(ferrocin-2-yl)-1′,2′,5′,6′,7′,7a′-hexahydrospiro[indoline-3,3′-pyrrolizin]-2-one 4h

Yield: 85%; 1H NMR (400 MHz, DMSO-d6) δ 7.79 (s, 1H, Ar-H), 7.69 (s, 1H, Ar-H),
7.46 (s, 1H, Ar-H), 7.14 (s, 1H, Ar-H), 7.03 (s, 1H, Ar-H), 6.90 (s, 1H, Ar-H), 6.73 (s, 1H,
Ar-H), 5.09 (s, 1H, CHCO), 4.29 (s, 5H, Cp-H), 4.13 (d, J = 20.2 Hz, 3H, Cp-H), 2.95 (s, 2H,
NCH2), 2.74 (s, 1H, CH2), 2.34 (s, 3H, CH3), 2.19 (s, 1H, CH2), 2.02 (s, 3H, CH3), 1.93 (s,
1H, CH2), 1.79 (s, 2H, CH2);13C NMR (126 MHz, DMSO-d6) δ 193.29, 178.57, 159.56, 158.03,
144.23, 143.19, 138.52, 132.06, 129.60, 128.09, 127.33, 126.97, 126.90, 125.17, 121.76, 121.47,
121.32, 118.84, 118.66, 108.43, 90.05, 71.97, 70.24, 68.91, 67.61, 67.57, 67.46, 67.42, 47.96, 43.16,
30.97, 27.46, 26.59, 9.46.; LC/MS (ESI, m/z): found 664.26 [M + H]+, exact mass 663.15 for
Chemical Formula: C35H31Cl2FFeN5O2. [Anal. Calcd. for C35H31Cl2FFeN5O2: C, 63.31; H,
4.71; N, 10.55; Found: C, 63.30; H, 4.70; N, 10.61].

2.1.9. (2′S,3R)-1-(2-Bromoethyl)-2′-(1-(3-chloro-4-fluorophenyl)-5-methyl-1H-1,2,3-triazole-
4-carbonyl) -1′-(ferrocin-2-yl)-1′,2′,5′,6′,7′,7a’-hexahydrospiro[indoline-3,3′-pyrrolizin]-2-one 4i

Yield: 86%; 1H NMR (400 MHz, DMSO-d6) δ 7.82 (d, J = 6.2 Hz, 1H, Ar-H), 7.70 (t,
J = 8.9 Hz, 1H, Ar-H), 7.51 (s, 1H, Ar-H), 7.19–7.05 (m, 1H, Ar-H), 6.92 (d, J = 8.1 Hz, 1H,
Ar-H), 5.16 (d, J = 10.9 Hz, 1H, CHCO), 4.29 (s, 5H, Cp-H), 4.09 (d, J = 5.8 Hz, 4H, Cp-H),
4.00 (d, J = 14.2 Hz, 1H, NCH2), 3.87 (d, J = 17.4 Hz, 1H, NCH2), 3.75 (s, 1H, CH2), 3.56
(d, J = 16.6 Hz, 1H, CH2), 3.49–3.38 (m, 1H, CH2), 2.67 (d, J = 7.7 Hz, 1H, CH2), 2.35 (s, 1H,
CH2), 2.24–2.17 (m, 1H, CH2), 2.05 (s, 3H, CH3), 1.93 (s, 1H, CH2), 1.80 (s, 1H, CH2); 13C
NMR (126 MHz, DMSO-d6) δ 192.96, 178.57, 159.55, 157.56, 143.28, 142.95, 138.76, 132.07,
129.55, 128.15, 127.63, 127.00, 126.93, 125.06, 121.94, 121.43, 121.28, 118.76, 118.59, 109.06,
90.03, 71.84, 70.38, 68.94, 68.89, 67.60, 67.51, 67.28, 67.12, 47.51, 43.34, 40.66, 31.25, 29.63,
27.76, 9.54; Chemical Formula:. LC/MS (ESI, m/z): found 756.20 [M + H]+, exact mass
755.08 for Chemical Formula: C36H34BrClFFeN5O2. [Anal. Calcd. for C36H34BrClFFeN5O2:
C, 57.13; H, 4.26; N, 9.25; Found: C, 57.11; H, 4.28; N, 9.29].

2.2. Computational Details

The ωB97X-D functional [41], together with the standard 6-311G(d,p) basis set [42], was
used in this molecular electron density theory (MEDT) study [43]. The transition state struc-
tures (TSs) were characterized by the presence of only one imaginary frequency. Solvent
effects of methanol were taken into account by full optimization of the gas phase structures
at the same computational level using the polarizable continuum model (PCM) [44,45].
Values of ωB97X-D/6-311G(d,p) enthalpies, entropies and Gibbs free energies in solution
1M [46] were calculated with standard statistical thermodynamics at 337.8 K [42] by PCM
frequency calculations at the solvent-optimized structures. The global electron density
transfer (GEDT) [47] values were computed by using the equation GEDT(f) = Σqf, where q
is the natural charges [48,49] of the atoms belonging to one of the two frameworks (f) at
the TS geometries. The conceptual density functional theory (CDFT) indices [50,51] were
calculated by using the equations given in reference [51]. The Gaussian 16 suite of programs
was used to perform the calculations [52].

2.3. X-ray Structure Determinations

The technical, experimental work and the software [53–59] for the single crystal X-ray
diffraction analysis for the studied spirooxindole hybrids 4b, 4e, 4h and 4i are amended in
the Supplementary Materials.

2.4. Hirshfeld Surface Analysis

The topology analyses were performed using Crystal Explorer 17.5 program [60].
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3. Results and Discussion
3.1. Chemistry

The 32CA reaction approach employed for the synthesis of the target spirooxindole
hybrids linked to the ferrocene and triazole units is depicted in Scheme 1 and follow our
reported method [40]. The in situ azomethine ylide 5a-i (AYs) was generated by reacting
the isatin derivatives 3a-i with the L-proline 2 and then, in a subsequent step, reacted
with the dipolarphile ferrocene ethylene derivative 1 to construct the new spirooxindole
pharmacologically interesting hybrids 4a-i. The final cycloadducts target asymmetric
molecules were provided in stereoselective fashion and a high-chemical yield. Four chiral
centers were generated in the final compounds. The molecular structure’s complexity
of the synthesized spirooxindoles was deduced based on NMR spectroscopic analyses
(Figures S3–S16; Supplementary Materials), which are found to be in full agreement with
the proposed structures. Further, four successful crystalline compounds were obtained, and
their structures were assigned unambiguously by single-crystal X-ray-diffraction analysis.
The plausible mechanism confirms the regiospecific and the diastereospecifics of these kinds
of spirooxindole analogs are followed based on the previously reported literature where
the 32CA reaction pathway proceeds via ortho/endo in a two-stage one-step mechanism.
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3.2. Crystal-Structure Description of 4b, 4e, 4h and 4i

The X-ray structures of 4b, 4e, 4h and 4i confirmed with no doubt the success of the
synthesis of the target compounds, as shown in Figure 2. All crystal data and refinement
parameters are listed in Table 1.
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Figure 2. X-Ray structure of 4b, 4e, 4h and 4i. All hydrogen atoms were removed for better clarity. A
summary of the most important distances is given in Table S1 (Supplementary Materials). For color
codes: grey (carbon), red (oxygen), blue (nitrogen), green (chlorine), yellow (fluorine), brown (iron)
and orange (bromine).

Table 1. Crystal data of 4b, 4e, 4h and 4i.

4b 4e 4h 4i

CCDC 2203019 2203020 2203021 2203022
empirical formula C36H33Cl3FFeN5O3 C34H28ClF2FeN5O2 C35H31ClFFeN5O2 C36H32BrClFFeN5O2

fw 764.87 667.91 663.95 756.87
temp (K) 170(2) 120(2) 120(2) 120(2)

λ(Å) 0.71073 1.54184 1.54184 1.54184
cryst syst Triclinic Triclinic Monoclinic Monoclinic

space group P1 P1 P21/n P21/c
a (Å) 9.5779(2) 9.9037(2) 8.84939(4) 8.36150(10)
b (Å) 13.8939(3) 13.0148(3) 16.45070(9) 24.3249(2)
c (Å) 14.2414(3) 13.0497(2) 20.07254(9) 15.84530(10)
α(deg) 66.0890(10) 93.0000(10) 90 90
β (deg) 85.9040(10) 100.840(2) 91.7059(4) 95.8300(10)
γ(deg) 81.1600(10) 98.026(2) 90 90
V (Å3) 1711.85(6) 1630.49(6) 2920.84(2) 3206.15(5)

Z 2 2 4 4
ρcalc (Mg/m3) 1.484 1.360 1.510 1.568

µ(Mo Kα) (mm−1) 0.725 4.880 5.393 6.396
No. reflns. 30,574 41,983 82,650 40,811

Unique reflns. 8128 6822 6154 6742
Completeness 99.4% c 99.9% d 100% d 100% d

GOOF (F2) 1.026 1.070 1.042 1.041
Rint 0.0281 0.0426 0.0346 0.0340

R1
a (I ≥ 2σ) 0.0445 0.0411 0.0372 0.0363

wR2
b (I ≥ 2σ) 0.1005 0.1066 0.1052 0.0949

a R1 = Σ||Fo| − |Fc||/Σ|Fo|. b wR2 = {Σ[w(Fo
2 − Fc

2)2]/Σ[w(Fo
2)2]}1/2. c θ = 25.242 and d θ = 33.92
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Compound 4b crystallizes in the triclinic crystal system and the P-1 space group
with Z = 2. The crystal parameters are presented in Table 1. Selected bond distances are
given in Table S1 (Supplementary Materials). The asymmetric formula comprised one
molecule of the target compound and one dichloromethane as the crystal solvent, which are
connected with one another by weak C36-H36A· · ·N5 and C36-H36A· · ·O3 interactions.
The hydrogen-acceptor distances are 3.546(3) and 3.215(3) Å, respectively (Figure 3).
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Figure 3. The C-H· · ·N and C-H· · ·O interactions between the target compound and the crystal
solvent (CH2Cl2). For color codes: grey (carbon), red (oxygen), blue (nitrogen), green (chlorine),
yellow (fluorine), brown (iron), light green (hydrogen).

Every two molecules of the target compound are connected by the classical N4-
H4· · ·O3 hydrogen bonding interaction. The hydrogen bond parameters are depicted
in Table 2, while the hydrogen bond dimer is shown in Figure 4.

Table 2. Hydrogen bonds in 4b, 4h and 4i.

D-H· · ·A d(D-H) d(H· · ·A) d(D· · ·A) <(DHA) Symm. Codes

4b

N(4)-H(4)· · ·O(3) 0.84(3) 1.98(3) 2.821(2) 176(2) 1 −x + 2, −y, −z + 1
C(16)-H(16B)· · · · · ·N(3) 0.980 2.547 3.513(3) 168.4 −1 + x, y, z
C(32)-H(32)· · · · · ·O(2) 0.950 2.664 3.244(4) 119.89 −1 + x, y, z
C(8)-H(8A)· · · · · ·O(1) 0.980 2.468 3.315(3) 144.44 1 − x, 1 − y, 1 − z

4h

C4-H4· · ·O2 0.95 2.44 3.373(3) 169 3/2 − x, −1/2 + y, 3/2 − z
C16-H16· · · F1 0.95 2.48 3.192(3) 131 1 − x, 1 − y, 2 − z

C19-H19C· · ·O2 0.98 2.5 2.885(3) 103
C25-H25· · ·O1 1.00 2.47 2.831(2) 101
C31-H31· · ·O2 0.95 2.57 3.438(2) 152
C33-H33· · ·O1 0.95 2.6 3.541(2) 172 1 − x, 1 − y, 1 − z
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Table 2. Cont.

D-H· · ·A d(D-H) d(H· · ·A) d(D· · ·A) <(DHA) Symm. Codes

4i

C23-H23B· · ·O2 0.99 2.58 3.403(3) 140 −1 + x, y, z
C26-H26· · ·O1 1.00 2.41 2.816(3) 104
C33-H33· · ·Br1 0.95 2.93 3.759(3) 147 −1 + x, 3/2 − y, −1/2 + z
C34−H34· · · F1 0.95 2.46 3.207(3) 135 −1 + x, y, −1 + z

Additionally, the molecules of 4b are further connected by weak nonclassical C-H· · ·N
and C-H· · ·O interactions shown in the upper part of Figure S1 (Supplementary Materials)
and listed in Table 2. The molecular packing schemes are shown in the lower part of
Figure S1 (Supplementary Materials).
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The compounds 4h and 4i crystallize in the monoclinic crystal system with Z = 4. The
unit cell parameters are depicted in Table 1. For these compounds, the packing is dominated
by many weak interactions (Table 2). The presentation of these weak contacts found in 4h
and 4i is shown in Figure 5. Since the structure of 4e comprised an indefinite amount of
crystallized solvent, which was squeezed from the structure, the different intermolecular
contacts the contributed to the molecular packing of this structure will not be described.
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For color codes: grey (carbon), red (oxygen), blue (nitrogen), yellow (fluorine), brown (iron), orange
(bromine) and light green (hydrogen).

3.3. Hirshfeld Surface Analysis

In order to describe the different intermolecular contacts in the crystal structure of 4b
in detail, Hirshfeld calculations were performed. Different Hirshfeld surfaces are presented
in Figure 6. The presence of a large number of red spots indicates regions in which there
are important short-distance contacts. There are many O· · ·H, N· · ·H, C· · ·H and H· · ·H
contacts occurring at shorter distances than the interacting atoms. The percentages of these
contacts are 9.2%, 8.2%, 12.6% and 41.9%, respectively. Other contacts, such as Cl· · ·H and
F· · ·H, contributed 15.1% and 5.7%, but they occurred at long interaction distances and
hence are considered weak. Many contacts that also occurred at long interaction distances
and contributed less to the molecular packing of 4b are depicted in Figure 7.
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Analysis of the fingerprint plots of the O· · · · · ·H, N· · · · · ·H, C· · · · · ·H and H· · · · · ·H
contacts leave no doubt about the high percentages of the majority of these contacts
and also that these interactions occur at short distances, as indicated from the sharp
spikes corresponding to the O· · · · · ·H, N· · · · · ·H and C· · · · · ·H contacts (Figure 8). The
O1· · · · · ·H8A (2.385 Å), O3· · · · · ·H4 (1.814 Å), O3· · · · · ·H36A (2.563 Å), N3· · · · · ·H16B
(2.447 Å), C7· · · · · ·H33 (2.690 Å) and C32· · · · · ·H14 (2.525 Å) are the shortest intermolec-
ular interactions that occurred in 4b. In contrast, H4A· · · · · ·H29 (2.295 Å) is the shortest
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H· · · · · ·H interaction, but it is slightly longer than the sum of the vdWs radii of two hydro-
gen atoms. Hence, the hydrogenic interactions are considered weak, long-distance contacts.
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Figure 8. Decomposed fingerprint plots for short contacts in 4b.

Interestingly, the careful inspection of the dnorm map revealed the presence of two red
spots corresponding to the short C4· · · · · ·C2 (3.356 Å) contact. In the same region, there
are red/blue triangle combinations in the shape index map. All these features revealed the
importance of the π-π stacking interactions in the molecular packing of 4b (Figure 9).
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Figure 9. The dnorm (left), fingerprint plot (middle) and shape index (right) of π-π stacking interac-
tions in 4b.

The Hirshfeld analysis of 4h sheds light on the significant intermolecular contacts in its
crystal structure. Based on the present red spots in the dnorm map, the O· · · · · ·H, N· · · · · ·H,
C· · · · · ·H and H· · · · · ·H contacts, as well as little contributions from the F· · · · · ·H and
F· · · · · · F interactions, are important in the molecular packing of 4h (Figure 10). The
distance of the F1· · · · · · F1 interhalogen interaction is 2.713 Å and contributes only 0.7%
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to the molecular packing. In addition, there are some Cl1· · · · · ·N5 (3.281 Å) contacts
that contribute 0.5% of the whole contacts. The percentages of the other contacts are
presented in Figure 11. It is clear that the major contacts are the H· · · · · ·H, C· · · · · ·H and
Cl· · · · · ·H interactions.
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Figure 10. Hirshfeld surfaces of 4h. O· · · · · ·H (A), N· · · · · ·H (B), H· · · · · ·C (C), H· · · · · ·H (D),
F· · · · · ·H (E) and F· · · · · · F (F) appeared as red spots in dnorm.
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Figure 11. Intermolecular contacts and their percentages in 4h.

The fingerprint plots of the most important contacts are shown in Figure 12, while
a list of the short contacts is summarized in Table 3. As can be seen, there are short
H· · · · · ·H, O· · · · · ·H, N· · · · · ·H, C· · · · · ·H, F· · · · · ·H, F· · · · · · F and Cl· · · · · ·N contacts,
as indicated by their appearance as sharp spikes in the fingerprint plots. Further, all the
contacts presented in Table 3 are shorter than the vdWs radii sum of the interacting atoms.
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Table 3. The short contacts in 4h and 4i.

Contact Distance Contact Distance

4h 4i

H19C· · · · · ·H15 1.976 Br1· · · · · ·H28 2.927
C28· · · · · ·H23A 2.746 Br1· · · · · ·H33 2.82
C29· · · · · ·H25 2.631 F1· · · · · ·H34 2.371
C4· · · · · ·H22D 2.549 O2· · · · · ·H23B 2.513
C5· · · · · ·H21A 2.776 O1· · · · · ·H5 2.555
N3· · · · · ·H28 2.515 N2· · · · · ·H20 2.554
O2· · · · · ·H4 2.306 C32· · · · · ·H15B 2.579
O1· · · · · ·H33 2.466 C33· · · · · ·H15B 3.07
F1· · · · · ·H16 2.396 C34· · · · · ·H15B 2.78
Cl1· · · · · ·N5 3.281 C9· · · · · ·H8C 2.715
F1· · · · · · F1 2.713

In this case, the shortest π-π interaction occurred between C33 of the cyclopentadienyl
moiety and the C17 atom, where the interaction distance is 3.432 Å, which is slightly
longer than the vdWs radii sum of two carbon atoms. Hence, the π-π stacking interactions
appeared as a white region in the dnorm. Further, the shape index revealed the presence of
π-π stacking interactions where the percentage of the C· · · · · ·C contacts is 2.4% (Figure 13).
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For 4i, the O· · · · · ·H, N· · · · · ·H, C· · · · · ·H, Br· · · · · ·H and F· · · · · ·H contacts are
the most important in the molecular packing based on Hirshfeld analysis (Figure 14). Their
percentages are 6.8%, 5.5%, 12.7%, 9.2% and 6.6%, respectively (Figure 15). The shortest
O· · · · · ·H, N· · · · · ·H, C· · · · · ·H, Br· · · · · ·H and F· · · · · ·H contacts are listed in Table 3.
All these interactions have the characteristic of short-distance interactions as these contacts
appeared as red spots in the dnorm and sharp spikes in the fingerprint plot (Figure 16).
Similar to 4i, the π-π interactions occurred at longer distances than the vdWs radii sum
of two carbon atoms. The shortest π-π interactions are C3· · · · · ·C29 and C2· · · · · ·C30
contacts, which also occurred between the cyclopentadienyl moiety and aromatic carbon
atoms of the aryl group from an adjacent molecule (Figure S2, Supplementary Materials).
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3.4. MEDT Study of the 32CA Reaction of AY 5b with Ferrocene Ethylene Derivative 1

The behaviors of the 32CA reaction of AY 5b with ferrocene ethylene 1 were studied
within MEDT [43] (see Scheme 2).
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3.4.1. Conceptual DFT Analysis at the Ground State of the Reagents

Analysis of the CDFT reactivity indices [50,51] at the ground state of the reagents is a
powerful tool for understanding the reactivity of polar processes [61]. The global reactivity
indices, namely, the electronic chemical potential µ, chemical hardness η, electrophilicity ω
and nucleophilicity N indices of AY 5b and ferrocene ethylene 1 are gathered in Table 4.

Table 4. B3LYP/6-31G(d) electronic chemical potential µ, chemical hardness η, electrophilicity ω and
nucleophilicity N indices, in eV, of AY 5b and ferrocene ethylene 1.

µ η ω N

ferrocene
ethylene 1 −3.65 3.55 1.87 3.70

AY 5b −2.61 3.20 1.07 4.91
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The electronic chemical potential [62] of AY 5b, µ =−2.61 eV, is above that of ferrocene
ethylene 1, µ = −3.65 eV, showing that along a polar 32CA reaction, the GEDT [47] will
flux from AY 5b to the ferrocene ethylene 1, in a reaction of forward electron density flux
(FEDF) [63].

AY 5b has an electrophilicityω index [64] of 1.07 eV and a nucleophilicity N index [65]
of 4.91 eV. Consequently, AY 5b is classified as a moderate electrophile and a strong
nucleophile within the electrophilicity and electrophilicity scales [51]. The very strong
nucleophilic character of AY 5b, higher than 4.0 eV, classifies it as a supernucleophile [51].
On the other hand, ferrocene ethylene 1 has an electrophilicity ω index of 1.87 eV and a
nucleophilicity N index of 3.70 eV; thus, it is classified as a strong electrophile and strong
nucleophile. The supernucleophilic character of AY 5b and the strong electrophilic character
of ferrocene ethylene 1 point out the high polar character of this 32CA reaction of FEDF [63].

3.4.2. Study of the Reaction Mechanism of the 32CA Reaction of AY 5b with Ferrocene
Ethylene 1

Exploration of the ortho/endo reaction path of this 32CA reaction shows that it proceeds
via a one-step mechanism (see Scheme 3). Relative electronic energies, in the gas phase and
in methanol, of the stationary points involved in this 32CA reaction, are given in Scheme 3.
The total electronic energies are given in Table S2 in the Supplementary Materials.
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Scheme 3. 32CA reaction of AY 5b with ferrocene ethylene 1. Relative electronic energies, with
respect to separated reagents, are indicated in italics in kcal·mol−1. ωB97X-D/6-311G(d,p) relative
energies in methanol are given in parenthesis.

An exploration of the potential energy surface allows the characterizing of a molec-
ular complex, MC-on, in the initial stage of the reaction. MC-on, which opens the or-
tho/endo reaction path, is positioned 28.4 kcal·mol−1 below the separated reagents. TS-on
is 21.5 kcal·mol−1 more stable than the separated reagents. The gas phase activation energy
of this 32CA reaction with respect to MC-on is positive by 6.8 kcal·mol−1. This reaction is
strongly exothermic by −54.3 kcal·mol−1.

The solvent effects of methanol decrease the gas phase relative energies of all species
participating in this 32CA reaction by between 5.1 and 6.2 kcal mol−1 due to better solvation
of the reagents than the other species (see Table S2 in Supplementary Materials). As a
consequence, in methanol, the activation energy increases slightly to 7.1 kcal mol−1.

A representation of the enthalpy and Gibbs free-energy profiles associated with the
32CA reaction of AY 5b with ferrocene ethylene 1 is given in Figure 17. The total and relative
enthalpies, entropies and Gibbs free energies are given in Table S3 in the Supplementary
Materials. Adding the thermal corrections to the electronic energies in methanol reduces
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the relative enthalpies by between 1.0 and 3.4 kcal·mol−1. The relative Gibbs free energies
are computed to be between 18 and 22 kcal·mol−1 above the enthalpies as a consequence
of the unfavorable activation entropies associated with this bimolecular process, which
vary between −54 and −64 cal·mol−1·K−1. From MC-on, the activation Gibbs free energy
associated with this 32CA reaction via TS-on increases to 9.2 kcal·mol−1; the formation
of 4a is exergonic by −26.1 kcal·mol−1. It is interesting to highlight that the formation
of MC-on remains exergonic by −5.0 kcal·mol−1; note that in many 32CA reactions, the
formation of this MC is exothermic but endergonic as a consequence of the unfavorable
entropic factor associated with their formation.
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Figure 17. Profiles of MPWB1K/6-311G(d,p) enthalpy (in blue), ∆H in kcal·mol−1, and Gibbs free
energy (in red), ∆G in kcal·mol−1, in methanol 1 M at 65 ◦C, for the 32CA reaction of AY 5b with
ferrocene ethylene 1.

The geometries of MC-on and TS-on are given in Figure 18. At MC-on, the two
interacting species, which show a parallel disposition, are separated by a distance of ca
3.1 Å. At TS-on, the distances between the two pairs of interacting carbons, 2.130 and
2.730 Å, show that it is associated with a highly asynchronous C–C single bond formation
process resulting from the two-center interaction between the C4 carbon of ferrocene
ethylene 1, and the C3 carbon of AY 5b. This behavior points out that this 32CA reaction
proceeds via a non-concerted two-stage one-step mechanism [66] in which the formation
of the second C1–C5 single bond begins when the first C3–C4 single bond is practically
formed. The solvent effects of methanol do not produce any remarkable change in the gas
phase geometries (see Figure 18).

Finally, the analysis of GEDT [47] at TS-on allows characterizing the polar character
of this 32CA reaction. GEDT values lower than 0.05 e correspond to non-polar processes,
while values higher than 0.20 e correspond to high polar processes. The high GEDT value
computed at TS-on, 0.25 e, is a consequence of the supernucleophilic character of AY 5b
and the strong nucleophilic character of ferrocene ethylene 1. The flux of the electron
density, which goes from AY 5b to ferrocene ethylene 1, classifies this 32CA reaction as
FEDF, as previously characterized by the CDFT indices. This high GEDT, which favors the
bonding changes along the reaction [67], explains that TS-on is placed below the separated
reagents for enthalpy (see Figure 17).
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4. Conclusions

In conclusion, we have successfully synthesized a new set of spiroxindole analogs
having a triazole unit with a ferrocene scaffold via the 32CA approach. The 32CA reaction
between AY 5b and ferrocene ethylene 1 has been studied within MEDT. This 32CA reaction
proceeds via a non-concerted two-stage one-step mechanism involving a highly asynchronous
TS-on, resulting from the nucleophilic attack of AY 5b on the β-conjugated position of
ferrocene ethylene 1. The supernucleophilic character of AY 5b, together with the strong
electrophilic character of ferrocene ethylene 1 explain that TS-on will be located below
reagents. The high GEDT found at TS-on accounts for the high polar character of this
32CA reaction of FEDT. Single crystals of the synthesized compounds 4b, 4e, 4h and 4i
were isolated and examined using X-ray diffraction. The reported structures were found
to agree with our synthetic strategy very well. Further, the supramolecular structures of
4b, 4h and 4i were described on the basis of Hirshfeld analysis. For 4b, the O· · ·H, N· · ·H,
C· · ·H and H· · ·H contacts are the most important. On the other hand, for 4h, the H· · ·H,
O· · ·H, N· · ·H, C· · ·H, F· · ·H, F· · · F and Cl· · ·N contacts are the most important, while
for 4i, the O· · ·H, N· · ·H, C· · ·H, Br· · ·H and F· · ·H contacts are the most important. All
three compounds showed different extents of π-π stacking interactions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/sym14102071/s1. General remarks and X-ray structure determi-
nation technical protocol; Tables S1–S3: computational investigations; Figure S1. The C-H· · ·N and
C-H· · ·O contacts (upper) and the corresponding packing scheme (lower) in 4b; Figure S2. The dnorm
(left), fingerprint plot (middle) and shape index (right) of π-π stacking interactions in 4i. Figures
S3–S16: Selected NMR (1H and 13C) spectrum of the synthesized compounds.
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