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Abstract: Our main goal in this paper is to investigate stochastic ternary antiderivatives (STAD). First,
we will introduce the random ternary antiderivative operator. Then, by introducing the aggregation
function using special functions such as the Mittag-Leffler function (MLF), the Wright function (WF),
the H-Fox function (HFF), the Gauss hypergeometric function (GHF), and the exponential function
(EXP-F), we will select the optimal control function by performing the necessary calculations. Next, by
considering the symmetric matrix-valued FB-algebra (SMV-FB-A) and the symmetric matrix-valued
FC-�-algebra (SMV-FC-�-A), we check the superstability of the desired operator. After stating each
result, the superstability of the minimum is obtained by applying the optimal control function.
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1. Introduction

The study of the stability problem for group homomorphisms started with the famous
Ulam question in 1940, and in 1941 Hyers established the stability of nonlinear functions in
a particular case.In 1978, Rassias extended this problem and now it is known as the Hyers-
Ulam-Rasias problem.Various aspects of the Hyers-Ulam stability for various functions and
mappings have been investigated and among these equations and mappings, we refer the
reader to Euler-Lagrange functional equations (E-L-FE), differential equations (DE), Navier-
Stokes equations (N-SE), as well as mappings such as Cauchy-Jensen mappings, k-additive
mappings, multiplicative mappings [1–4]. Most of the investigations have been carried
out in Banach spaces and now research is conducted in other spaces as well [5–8]. Also,
the stability of groups, Banach algebra, ternary Banach algebras, and C- ternary algebras
have attracted the attention of many researchers [9–11]. Among the various applications of
ternary algebras, we mention Nambu mechanics and quark in physics and mathematics
and we also point to different applications of the additive principle in physics in the field
of internal energy and the superposition principle. In addition, many physics problems can
be considered as a linear system and can be solved [12,13].

In 2003, Radu-Mihet proposed a new method to obtain the exact solution and er-
ror estimation, which was based on the alternative fixed-point method. Note that fixed
point theory arises in various fields such as dynamical systems, equilibrium problems,
and differential equations because this theory provides basic tools for examining these
problems [14,15].
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Specific functions can be used to establish stability and the selection of the control
function plays a special role. The Mittag-Leffler function (M-LF) is used in many fields of
science and engineering and certain areas of physical, biological, and earth sciences [16].
Another important function that is particularly important in solving partial differential
equations and fractional theory is the Wright function (WF) [17,18]. Two other types of
functions used in this article are the H-Fox function (H-FF) and the Gauss hypergeometric
function (GHF) [19,20]. We note that many special functions that we encounter in physics,
engineering, and probability theory are special cases of Gauss hypergeometric functions.
To determine the optimal control function, we introduce the aggregation functions (AF)
and aggregation functions are rooted in different fields. Application areas of aggregation
functions include applied mathematics, probability, statistics, decision theory, computer
science, artificial intelligence, operations research, as well as many applied fields, economics
and finance, pattern recognition and image processing, data fusion, multicriteria decision
aid, automated reasoning, etc. [8,20].

In this article, we define a stochastic ternary antiderivative operator and consider the
symmetric matrix-valued FB-algebra (SMV-FB-A) and the symmetric matrix-valued FC-�-
algebra (SMV-FC-�-A), and we investigate the superstability and minimum superstability
of this operator.

We assume that (Π, X, ΩM) is a probability measure space. Considering the measur-
able space (M, GM), we define the stochastic operator φ : Π×M→ M. In all of the proofs,
we consider the (σ1, σ2)-functional inequality which is as follows

ΩM

(
φ(z, u + v + w)− φ(z, u + w)− φ(z, u + v−w)− φ(z, u−w), η

)
� ΩM

(
σ1(φ(z, u + v−w) + φ(z, u−w)− φ(z, v)), η

)
~ ΩM

(
σ2(φ(z, u−w) + φ(z, u)− φ(z, w)), η

)
,

(1)

where σ1, σ2 ∈ C and |σ1|+ |σ2| > 2. The general structure of the article is as follows.
In the second section, all the required concepts including special functions and spaces

used to prove the desired results are given. In the third section, after stating the necessary
lemmas, the stability of the stochastic operator in SMVFB-A is investigated, and then the
minimum stability of this operator is proved. In the fourth section, the superstability of
stochastic ternary antiderivatives is proved by introducing stochastic ternary antideriva-
tives and considering T-SMVFB and T-SMVFC-�-A spaces. Also, in the form of an example,
minimum stability is investigated. In the last part, the superstability of continuous stochas-
tic ternary antiderivatives in the introduced spaces is proved.

2. Preliminaries

We denote the set of all p × p diagonal matrices by DH = diagH([0, 1]), and we
consider this set as follows

DH = diagH([0, 1]) =


h1

. . .
hp

 = diag[h1, · · · , hp], h1, . . . , hp∈[0, 1]

.

For the above set, we have

• If h, g ∈ DH, then h = diag[h1, · · · , hp] and g = diag[g1, · · · , gp];
• h � g means that hι ≤ gι for every ι = 1, . . . , m;
• h ≺ g denotes that hι < gι for every ι = 1, . . . , m;
• diag[1, . . . , 1] = 1 and diag[0, . . . , 0] = 0.

Definition 1 ([5,9]). A mapping ~ : DH×DH → DH is called a GTN (generalized t-norm) if the
boundary condition, commutativity condition, associativity condition and monotonicity condition
hold as follows:

(I) h~1 = h for all h∈DH;
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(II) h ~ g = g ~ h for all h, g ∈ DH;
(III) h ~ (g ~ k) = (h ~ g)~ k for all h, g, k ∈ DH;
(IV) h � g and k � s implies that h ~ k � g ~ s, for all h, k, g, s ∈ DH;

For convergent sequences {hp} and {gp} with convergence points h and g, if we have

(V) limm(hp ~ gp) = h ~ g,

then the GTN ~ is a continuous GTN (CGTN).

In the following, we define some examples of CGTN:

Definition 2. ~M : DH ×DH → DH is called minimum CGTN (MIN-CGTN), which is defined
as follows

h ~M g = diag[h1, · · · , hp]~M diag[g1, · · · , gp] = diag[min{h1, g1}, · · · , min{hp, hp}].

Definition 3. ~P : DH × DH → DH is called product CGTN (P-CGTN), which is defined
as follows

h ~P g = diag[h1, · · · , hp]~P diag[g1, · · · , gp] = diag[h1.g1, · · · , hm.gp].

Definition 4. ~L : DH ×DH → DH is called Lukasiewicz CGTN(L-CGTN), which is defined
as follows

h ~L g = diag[h1, · · · , hp]~L diag[g1, · · · , gp] = diag[max{h1 + g1 − 1, 0}, · · · , max{hp + gp − 1, 0}].

For MIN-CGTN, P-CGTN and L-CGTN introduced in the above examples, the follow-
ing inequality always holds (we have considered the dimension of the matrix as 3)

diag[h, g, k]~M diag[l, m, n] � diag[h, g, k]~P diag[l, m, n] � diag[h, g, k]~L diag[l, m, n].

We refer to [5,6,9] to see more numerical examples of the introduced CGTNs.

Definition 5 ([5]). We say Ψ is a matrix-valued fuzzy function (MVFF) if Ψ : [0, a]×(0,+∞)→
DH and

(MF1) Ψ is increasing and continuous;
(MF2) limη→+∞ Ψ(u, η) = 1 for any u ∈ [0, a] and η ∈ (0,+∞);
(MF3) If Z is another MVFF, the relationship of � for these functions is defined as Z - Ψ if and

only if Z(u, η) � Z(u, η), for all η ∈ (0,+∞) and u∈[0, a].

Definition 6 ([5,9]). Let ~ be a CGTN, M be a vector space and ΩM : X×(0,+∞) → DH be a
matrix valued fuzzy set (MVFS). The triple (M, ΩM,~) is called a symmetric matrix valued fuzzy
normed space (SMVFN-S) if

(NORM1) ΩM(u, η) = 1 if and only if u = 0 for η ∈ (0,+∞);
(NORM2) ΩM(γu, η) = ΩM(u, η

|γ| ) for all u ∈ M and γ 6= 0 ∈ C;

(NORM3) ΩM(u + v, η + α) � ΩM(u, η)~ ΩM(u, α) for all u ∈ M and any η, α ∈ (0,+∞);
(NORM4) limη→+∞ ΩM(u, η) = 1 for any η ∈ (0,+∞).

When an SMVFN-S is complete it is called an SMVFB-S [3,5–7].

Definition 7 ([21]). A symmetric matrix-valued fuzzy normed-algebra (SMVFN-A) (M, ΩM,~,
©? ) is an SMVFN-S (M, ΩM, ~) if the following condition holds

(NORM5) ΩM(uv, ηα) � ΩM(u, η)©? ΩM(v, α), for all u, v ∈ M and all η, α ∈ (0, ∞) in which
©? is a CGTN.
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A complete SMVFN-A is called an SMVFB-A.

Definition 8 ([21]). We consider an SMVFB-A (M, ΩM,~,©? ). We say that M is an SMVFB-�-
A if the mapping δ→ δ� on M has the following conditions

(1) δ�� = δ for any δ ∈ M;
(2) (β1δ + β2ω)� = β̄1δ� + β̄2ω�;
(3) (δω)� = ω�δ� for any δ, ω ∈ M.

Moreover, with the following condition

(4) ΩM(δ�δ, η) = ΩM(δ, η) for each δ ∈ M and η ∈ (0, 1),

we say that M is an SMVFC-�-algebra (SMVFC-�-A).

Definition 9 ([11–13]). We consider the complex SMVFB-S M (CSMVFB-S). If by using M,

we can define the C-linear ternary product (C-LTP) of ΩM

(
(x, y, z), t

)
−→ ΩM

(
[u, v, w], η

)
,

which is from M3 to M, such that it has the following properties

(TP1) ΩM

(
[u, v, [w, s, t]], η

)
= ΩM

(
[u, [s, w, v], t], η

)
= ΩM

(
[u, v, w], s, t

)
(associative);

(TP2) ΩM

(
[u, v, w], ηαγ

)
� ΩM(u, η)~ ΩM(v, α)~ ΩM(w, γ) for all u, v, w, s, t ∈ M;

then, we say that M is a ternary SMVFB-A (T-SMVFB-A).

We assume that (M, [., ., .]) is T-SMVFB-A. If M has an identity member say such that

ΩM(u, η) = ΩM

(
[u,E,E], η

)
= ΩM

(
[E,E, u], η

)
for all u ∈ M, then we have

ΩM

(
u ◦ v, η

)
= ΩM

(
[u,E, v], η

)
ΩM(u∗, η) = ΩM

(
[E, u,E], η

)
,

(2)

where u∗ is an unital algebra. If (M, ◦) is an unital algebra, then the relation

ΩM

(
[u, v, w], t

)
= ΩM

(
u ◦ v∗ ◦w, η

)
,

shows that M is a T-SMVFB-A. Also, M is an usual SMVFB-A (U-SMVFB-A) if for identity

member E ∈ M, we have ΩM

(
u ◦ v, η

)
= ΩM

(
[u,E, v], η

)
.

Definition 10 ([3,12,13]). We assume that M and N are SMVFB-As. A C-linear stochastic
mapping Y : Π×M −→ N, which satisfies

Y(z, [u, v, w]) = [Y(z, u),Y(z, v),Y(z, w)] for all u, v, w ∈ M,

is called a stochastic ternary homomorphism (STH).

Definition 11 ([12,13]). We assume that M is an SMVFB-A. A C-linear stochastic mapping
Q : Π×M −→M, which satisfies

Q(z, [u, v, w]) = [Q(z, u), v, w] + [u,Q(z, v), w] + [u,Q(z, v), w] for all u, v, w ∈ M,

is called a stochastic ternary derivation (STD).
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In the following, we introduce special functions that we need to select the optimal
control function. We have also performed the necessary calculations on these functions and
have shown a representation of these functions and calculations in the form of graphs.

Definition 12 ([7,9]). Let u be a real number and consider the generic parameters a, b, c > 0. We
define the GHF 2F1 : R3 × [0, a] −→ (0, ∞) by the infinite sum (that is convergent)

2F1(a, b, c; u) =
∞

∑
p=0

(a)p(b)p

(c)p

up

p!
=

Γ(c)
Γ(a)Γ(b)

∞

∑
p=0

Γ(a + p)Γ(b + p)
Γ(c + p)

up

p!
.

Definition 13 ([9]). One-parameter and two-parameter M-LF are defined as follows, respectively

Eκ(u) =
∞

∑
p=0

up

Γ(pκ + 1)
,

Eκ,µ(u) =
∞

∑
p=0

up

Γ(pκ + µ)
,

where κ, µ ∈ C, Re(κ), Re(µ) > 0 and Γ(.) used in the above functions is the gamma function.

Definition 14 ([9]). For 0 ≤ λ1 ≤ λ2, 1 ≤ λ3 ≤ λ4, {xι, yι} ∈ C, {uι, vι} ∈ R+, we define the
following functions

• L1(f) = ∏λ1
ι=1 Γ(yι − vιf),

• L2(f) = ∏λ3
ι=1 Γ(1− xι + uιf),

• L3(f) = ∏λ3
ι=λ3+1 Γ(1− yι + vιf),

• L4(f) = ∏λ2
ι=λ1+1 Γ(xι − uιf).

In the introduced functions λ1 = 0 if and only if L2(f) = 1, λ3 = λ4 if and only if L3(z) = 1
and λ1 = λ2 if and only if λ4(f) = 1. According to the introduced functions, we consider
H λ3,λ1

λ2,λ4
(f) = L1(f)L2(f)

L3(f)L4(f)
. The Mellin-Barnes integral (M-BI) representation of the H-Fox function

(H-FF) is shown below
Hλ3,λ1

λ2,λ4
(u) = 1

2πi
∫
AH λ3,λ1

λ2,λ4
(f)ufdf, (3)

where uf = exp{f(log |u| + i arg u)} and A ∈ C is a path that is deleted. Also, the symbol

Hλ3,λ1
λ2,λ4

(u) = Hλ3,λ1
λ2,λ4

[
u

∣∣∣∣∣(xι, ει)ι=1,··· ,λ2

(yι, ρι)ι=1,··· ,λ2

]
is considered for this integral.

Definition 15 ([6,8,9]). The generalized Bessel Maitland function (GBMF) or the Wright function
(WF) of order 1/(1 + σ) is represented by using the series

Wκ,µ(u) =
∞

∑
p=0

up

p!Γ(κp + µ)
,

for κ > −1, µ > 0, u ∈ R.

In the Figures 1–3 we can see the values of introduced special functions in this paper.
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(a) Graph of Gauss hypergeometric and H-Fox functions for u ∈ (−10, 10)

(b) Graph of Mittag-Leffler and Bessel Maitland functions for u ∈ (−50, 50)

Figure 1. Cont.
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(c) Graph of Gauss hypergeometric, H-Fox, Mittag-Leffler, Bessel Maitland and
exponential functions for u ∈ (−100, 10)

Figure 1. 3D graphs of special functions Gauss hypergeometric and H-Fox functions for η = 3 and
different values of u.

Definition 16 ([9]). An p-ary (p ∈ N) generalized aggregation function (p-AGAF) A(p) :
Rp −→ R has the following property

• uι ≤ vι =⇒ A(p)(u1, · · · , up) ≤ A(p)(v1, · · · , vp),

for all ι ∈ {1, · · · , p}, and for (u1, · · · , up), (v1, · · · , vp) ∈ Rp. For the sake of simplicity, we
can remove the m number, which represents the number of variables of the aggregation function,
and denote this function as A. Also, when p = 1, the aggregation function is shown as A(1)(u) = u
for all φ ∈ R.

Example 1. (AMF) AM : Rp −→ R is defined by

AM(u) =
1
u

p

∑
ι=1

uι.

Example 2. The geometric mean function (GMF) GM : Rp −→ R is defined by

GM(u) = (
p

∏
ι=1

uι)
1
p .

Example 3. The projection function (PF) Pβ : Rp −→ R for β ∈ [p] and βth argument is
defined by

Pβ(u) = uβ,

where u(β) is the βth lowest coordinate of u, i.e., u(1) ≤ · · · ≤ u(β) ≤ · · · u(p). Also, the following
functions show the PF in the first and last coordinates

PF(u) = P1(u) = u1,
PL(u) = Pp(u) = up.
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Example 4. The order statistic function (OSF) OSβ : Rp −→ R with the βth argument and βth
lowest coordinate is defined by

OSβ(u) = u(β),

for any β ∈ [p].

Example 5. The minimum function (MIN-F) and maximum function (MAX-F) are defined as
follows respectively

MIN(u) = OS1(u) = min{u1, · · · , up} =
∧p

ι=1 uι,
MAX(u) = OSp(u) = max{u1, · · · , up} =

∨p
ι=1 uι.

Example 6. The median function (MF) is defined as follows for odd and even values of
(u1, · · · , u2β−1) and (u1, · · · , u2β), respectively

MED(u1, · · · , u2β−1) = u(β),

MED(u1, · · · , u2β) = AM(u(β), u(β+1)) =
u(β)+u(β+1)

2 .

(a) AM and GM functions for u ∈ (−500, 500) (b) The aggregation AM function for
u ∈ (10, 200)

Figure 2. Two-dimensional graphs of aggregation functions for ω = 3 and different values u.

By referring to [9] and studying the information in the presented table, we choose the
minimum function as the control function. Also Figures 1–3 help us to choose this function.
Consider the function

Ψ(u, η) = diag
[

2F1(a, b, c, −‖u‖η ), Eκ,µ(
−‖u‖

η ), Wκ,µ(
−‖u‖

η ), Hλ3,λ1
λ2,λ4

(−‖u‖η ), exp(−‖u‖η )

]
, (4)

and we choose the following function as a control function

MIN
(

Ψ(u, η)

)
= diag

[∧(
Ψ(u, η)

)
,
∧(

Ψ(u, η)

)
,
∧(

Ψ(u, η)

)
,
∧(

Ψ(u, η)

)]
. (5)
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(a) The aggregation AM function for u ∈ (10, 200)

(b) AM and GM functions for u ∈ (1000, 200)

Figure 3. Cont.
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(c) AM and GM functions for u ∈ (−500, 500)

Figure 3. Three-dimensional graphs of aggregation functions for ω = 3 and different values of u.

If we assume that (M, TM) is a generalized complete metric space (GCMS), we define
a set as follows

CON (M) :=
{

J : M→ M|TM(Jv1, Jv2) ≤ εJTM(v1, v2), ∀v1, v2 ∈ M, εJ ∈ [0, 1)
}

. (6)

We call this set the set of all contraction mappings that is, every contractive function is
located in this set. Next, we present the Diaz-Margolis theorem (FTP) [5,6,8,9].

Theorem 1. We consider GCMS (M, TM) and assume that u, v ∈ M, and also J ∈ CON (M)
such that εJ < 1. With these assumptions, we assume that for every r, r0 ∈ N (r ≥ r0) and for
u ∈ M, TM

(
Jru, Jr+1v

)
< ∞,. If this condition holds, we have

(1) The fixed point j of J is the convergence point of the sequence {Jru};
(2) In the set K = {u ∈ M | TM(Jr0u, v) < ∞}, j is the unique fixed point of J;
(3) (1− εJ)TM(v, j) ≤ TM(v, Jv) for every v ∈ M.

Also, if the condition TM
(
Jrv, Jr+1v

)
< ∞ is not satisfied, we have TM

(
Jrv, Jr+1v

)
= ∞, for all

r ∈ N.

3. Minimum Stability of Stochastic Operator on SMVFB-A

Here, considering Theorem 1, we investigate the stability of a stochastic operator
according to the additive (σ1, σ2)-functional inequality (A-(σ1, σ2)-FI).
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Lemma 1. Assume that
(

M, ΩM,~,~
)

is an SMVFB-S. We consider the stochastic mapping

φ : Π×M→M in such a way that the following inequality holds

ΩM

(
φ(z, u + v + w)− φ(z, u + w)− φ(z, v− u + w)− φ(z, u−w), η

)
� ΩM

(
σ1(φ(z, u + v−w) + φ(z, u−w)− φ(z, v)), η

)
~ΩM

(
σ2(φ(z, u−w)− φ(z, u) + φ(z, w)), η

)
,

for all u, v, w ∈ M. Then the stochastic mapping φ : Π×M→M is additive.

Proof. As stated in the assumption of the theorem, φ : Π×M → M satisfies (7). Now,
if we put u = v = w = 0 in (7), we obtain

ΩM

(
2φ(z, 0), η

)
� ΩM

(
(|σ1|+ |σ2|)φ(z, 0), η

)
,

according to the assumption |σ1|+ |σ2| > 2, we have φ(z, 0) = 0. Once again, putting
w = u in (7), we have

ΩM

(
φ(z, 2u + v)− φ(z, 2u)− φ(z, v), η

)
� 1,

then, according to (NORM1), we get

φ(z, 2u + v) = φ(z, 2u) + φ(z, v),

for all u, v ∈ M. Hence φ is additive.

Theorem 2. In the SMVFB-S (M, ΩM,~,~), we consider the MVF function Ψ : M×M×M→
DH and the stochastic mapping of φ : Π×M→ M along with the constant θ < 1 in such a way
that we have the following conditions:

(S1) For all u, v, w ∈ M

Ψ
(

u, v, w, η

)
� Ψ

(
2u, 2v, 2w,

2
θ

η

)
, (7)

(S2) For all u, v, w ∈ M

ΩM

(
φ(z, u + v + w)− φ(z, u + w)− φ(z, v− u + w)− φ(z, u− v)

)
� ΩM

(
σ1(φ(z, u + v−w) + φ(z, u−w)− φ(u, v)), η

)
~ΩM

(
σ2(φ(z, u−w) + φ(z, u)− φ(z, w)), η

)
~ Ψ

(
u, v, w, η

)
.

Therefore, there exists a unique stochastic additive mapping (SAM) E : Π×M→ M such
that

ΩM

(
φ(z, u)− E(z, u), η

)
� Ψ

((u
2

, u,
u
2

)
,

2(1− θ)

θ
η

)
, (8)

for all u ∈ M.
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Proof. First, we assume that u = v = w = 0 and apply this assumption to condition (S2),
which is inequality (8). We get

ΩM

(
2φ(z, 0), η

)
� ΩM

(
(|σ1|+ |σ2|)φ(z, 0), η

)
~ Ψ

(
0, 0, 0, η

)
,

according to |σ1| + |σ2| > 2 and condition (S1) means (7) , we have φ(z, 0) = 0 and
Ψ(0, 0, 0, η) = 1. Now, let us assume u = w = ζ

2 and v = ζ. By placing the new assumption
in condition (S2), we have

ΩM

(
φ(z, 2ζ)− 2φ(z, ζ), η

)
� Ψ

(
ζ

2
, ζ,

ζ

2
, η

)
, (9)

for all ζ ∈ M. On the set Υ = {R : Π×M → M : R(z, 0) = 0}, we define the mapping
TM : Υ× Υ→ Υ as follows

TM(Q,R) = inf
{

ς ∈ R+ : ΩM

(
Q(z, u)−R(z, u), η

)
� Ψ

(
u
2

, u,
u
2

,
η

ς

)
, ∀u ∈ M

}
.

It is easy to see that TM is a complete generalized metric space (CGMS) [5,6,8]. In the
following, for all u ∈ M, we define a stochastic linear mapping S : Υ→ Υ as follows:

S(Q(z, u)) := 2Q
(

z,
u
2

)
.

For Q,R ∈ Υ, we assume TM(Q,R) = κ. As a result, for all u ∈ M, we have

ΩM

(
Q(z, u)−R(z, u), η

)
� Ψ

(u
2

, u,
u
2

,
η

κ

)
.

Then, for all u ∈ M, we get

ΩM

(
S(Q(z, u))− S(R(z, u)), η

)
= ΩM

(
2Q
(
z, u

2
)
− 2R

(
z, u

2
)
, η

)
� Ψ

(u
4 , u

2 , u
4 , η

2κ
)

� Ψ
(u

2 , u, u
2 , η

θκ
)
,

and this means TM(S(Q(z, u)),S(R(z, u))) ≤ θκ or TM(S(Q(z, u)),S(R (z, u))) ≤
θTM(Q,R). In the sequel, due to (9), for all u ∈ M, we get

ΩM

(
φ(z, u)− 2φ(z, u

2 )

)
� Ψ

(u
4 , u

2 , u
4 , η
)

� Ψ
(

u
2 , u, u

2 , 2η
θ

)
,

and this means TM(φ,Sφ) ≤ θ
2 . According to Theorem 1, there exists a unique fixed point

such as the stochastic mapping E : Υ×M→ M for S , which is defined as

E(z, u) = 2E
(

z,
u
2

)
.

Then, considering this fixed point, there is a ς ∈ (0, ∞) such that for all u ∈ M, we have

ΩM

(
φ(z, u)− E(z, u), η

)
� Ψ

(
u
2

, u,
u
2

,
η

ς

)
.

On the other hand, because limp→∞ ΩM

(
Spφ − E , η

)
= 1, then for all u ∈ M,

we have
lim

p→∞
2pφ

(
z,

u
2p

)
= E(z, u).
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Also, TM(φ, E) ≤ 1
1−θTM(φ,Sφ) which implies for all u ∈ M

ΩM

(
φ(z, u)− E(z, u), η

)
� Ψ

(
u
2

, u,
u
2

,
2(1− θ)η

θ

)
.

According to conditions (S1) and (S2), that is, inequalities (7) and (8), for all u, v, w ∈ A ,
we have

ΩM

(
E(z, u + v + w)− E(z, u + w)− E(z, v− u + w)− E(z, u−w) η

)
= ΩM

(
limp→∞ 2p(φ(z, u+v+w

2p
)
− φ

(
z, u+w

2p
)
− φ

(
z, v−u+w

2p
)
− φ

(
z, u−w

2p
))

, η

)
= limp→∞ 2pΩM

(
φ
(
z, u+v+w

2p
)
− φ

(
z, u+w

2p
)
− φ

(
z, v−u+w

2p
)
− φ

(
z, u−w

2p
)
, η

)
� limp→∞ 2pΩM

(
σ1
(
φ
(
z, u+v−w

2p
)
+ φ

(
z, u−w

2p
)
− φ

(
z, v

2p
))

, η

)
~ limp→∞ 2pΩM

(
β
(
φ
(
z, u−w

2p
)
+ φ

(
z, u

2p
)
− φ

(
z, w

2p
))

, η

)
~ limp→∞ 2pΨ

(
u
2p , v

2p , w
2p , η

)
= ΩM

(
σ1(∆(z, u + v−w) + E(z, v−w)− E(z, v)), η

)
~ ΩM

(
σ2(E(z, u−w) + E(z, u)− E(z, w)), η

)
.

Therefore, according to Lemma 1, E is a stochastic additive mapping (SAM).

Example 7. We consider the stochastic mapping φ : Π×M→ M such that for all u, v, w ∈ M
the following inequality holds

ΩM

(
φ(z, u + v + w)− φ(z, u + w)− φ(z, v− u + w)− φ(z, u−w), η

)
� ΩM

(
σ1(φ(z, u + v−w) + φ(z, u−w)− φ(z, v)), η

)
~ΩM

(
σ2(φ(z, u−w) + φ(z, u)− φ(z, w)), η

)
~ MIN

(
Φ([u, v, w]), η

)
.

Then, there exists a unique SAM E : Π×M→ M such that

ΩM

(
φ(z, u)− E(z, u), η

)
� MIN

(
Φ([u, u, u]), η

)
,

for all u ∈ M.

Proof. From the proof of Theorem 2, assuming θ = 1
100 and

MIN
(

Φ([u, v, w], η)

)
=

diag
[

MIN
(

Φ([u, u, u]), η

)
, MIN

(
Φ([u, u, u], η)

)
, MIN

(
Φ([u, u, u], η)

)
,

MIN
(

Φ([u, u, u], η)

)
, MIN

(
Φ([u, u, u], η)

)]
,

where for all u, v, w ∈M

Φ([u, v, w], η) = diag
[

Eκ,µ

(
‖[u,u,u]‖

η

)
, Wκ,µ

(
‖[u,u,u]‖

η

)
,2 F1

(
a, b, c, ‖[u,u,u]‖

η

)
,

Hλ3,λ1
λ2,λ4

(
‖[u,u,u]‖

η

)
, exp

(
‖[u,u,u]‖

η

)]
,

and the proof is complete.
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4. Stochastic Ternary Antiderivations in T-SMVFB-A and T-SMVFC-�-A
In this section, we first define the stochastic ternary antiderivatives in T-SMVFB-A and

T-SMVFC-�-A and we prove the minimum superstability. As we mentioned before, all the
results are proved by considering the (α, β)- functional inequality.

Definition 17. [12,13] Consider the T-SMVFB-S M. A stochastic ternary antiderivative is a
stochastic C-linear mapping ψ : Π×M→ M with

[ψ(z, u), ψ(z, v), ψ(z, w)] = ψ[ψ(z, u), v, w] + ψ[u, ψ(z, v), w] + ψ[z, v, ψ(z, w)],

for all u, v, w ∈ M.

Lemma 2. We consider a CSMVFB-A M and a stochastic additive mapping δ : Π×M → M
such that for all $ ∈ B1 := {ω ∈ C : |ω| = 1} and all u ∈ M, δ(z, ωu) = ωδ(z, u). Then δ is
C-linear.

Theorem 3. In the SMVFB-S (M, ΩM,~,~), we consider the MVF function Ψ : M×M×M→
DH and the stochastic mapping of φ : Π×M→ M along with the constant θ < 1 in such a way
that we have the following conditions:

(S3) For all ω ∈ B1 and all u, v, w ∈ M

Ψ
( u

ω
,

v
ω

,
w
ω

, η
)
� Ψ

(
2u, 2v, 2w,

8
θ

η

)
, (10)

(S4) For all ω ∈ T1 and all x, y, z ∈ A

ΩM

(
φ(z, ω(u + v + w))−ωφ(z, u + w)−ωφ(z, v− u + w)−ωφ(z, u−w), η

)
� ΩM

(
σ1(φ(z, u + v−w) + φ(z, u−w)− φ(z, v)), η

)
~ΩM

(
σ2(φ(z, u−w) + φ(z, u)− φ(z, w)), η

)
~ Ψ

(
u, v, w, η

)
,

(S5) For every ω ∈ B1 and all u, v, w ∈ M

ΩM

(
[φ(z, u), φ(z, v), φ(z, w)]− φ[φ(z, u), v, w] + φ[u, φ(z, v), w] + φ[u, v, φ(z, w)], η

)
� Ψ

(
u, v, w, η

)
.

If φ is continuous and φ(z, 2u) = 2φ(z, u) for all u ∈ M, then the stochastic mapping φ :
Π×M→ M is a stochastic ternary antiderivation.

Proof. First, we assume that u = v = w = 0 and ω = 1. Then, inequality (8) will be

ΩM

(
2φ(z, 0), η

)
� ΩM

(
(|σ1|+ |σ2|)φ(z, 0), η

)
~ Ψ

(
0, 0, 0, η

)
,

according to |σ1| + |σ2| > 2 and condition (S1) means (7) , we have φ(z, 0) = 0 and
Ψ(0, 0, 0, η) = 1. Now, let us assume u = w = ζ

2 and v = ζ. By placing the new assumption
in condition (S2), for all ω ∈ B1 and all η ∈ M, we have

ΩM

(
φ(z, 2ωζ)− 2ωφ(z, ζ), η

)
� Ψ

(
ζ

2
, ζ,

ζ

2
, η

)
. (11)

On the set Υ = {R : Π ×M → M : R(z, 0) = 0}, we define the mapping TM :
Υ× Υ→ Υ as follows
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TM(K,R) = inf
{

ς ∈ R≥0 : ΩM

(
K(z, u)−R(z, u), η

)
� Ψ

(
u
2

, u,
u
2

,
η

ς

)
, ∀u ∈ M

}
.

In the following, for all u ∈ M, we define a stochastic linear mapping S : Υ → Υ as
follows

S(K(z, u)) = 2ωK
(

z,
u

2ω

)
.

For K,R ∈ Υ, we assume TM(K,R) = κ. As a result, for all u ∈ M, we have

ΩM

(
K(z, u)−R(z, u), η

)
� Ψ

(u
2

, u,
u
2

,
η

κ

)
.

Then, for all u ∈M , we get

ΩM

(
S(K(z, u))− S(R(z, u)), η

)
= ΩM

(
2ωθ

(
z, u

2ω

)
− 2ωω

(
z, u

2ω

)
, η

)
� Ψ

( u
4ω , u

2ω , u
4ω , η

2κ
)

� Ψ
(

u
2 , u, u

2 , 4
θκη

)
,

and this means TM(S(K(z, u)),S(R(z, u))) ≤ θ
4κ or TM(S(K(z, u)),S(R(z, u))) ≤

θ
4TM (K,R). In the sequel, due to (11), for all u ∈ M, we get

ΩM

(
φ(z, x)− 2ωφ

(
z,

u
2ω

)
, η

)
� Ψ

( u
4ω

,
u

2ω
,

u
4ω

, η
)
� Ψ

(
x
u

, u,
u
2

,
8
θ

η

)
,

and this means TM(φ,Sφ) ≤ θ
8 . According to Theorem 1, there exists a unique fixed point

such as the stochastic mapping ψ : Π×M→ M for S , which is defined as

ψ(z, u) = 2ωψ
(

z,
u

2ω

)
.

Then, considering this fixed point, there is a ς ∈ (0, ∞) such that for all u ∈ M, we have

ΩM

(
φ(z, u)− ψ(z, u), η

)
� Ψ

(
u
2

, u,
u
2

,
η

ς

)
.

On the other hand, because limp→∞ ΩM

(
Spφ − ψ, η

)
= 1, then for all u ∈ M,

we have
lim

p→∞
2pωpφ

(
z,

u
2pωp

)
= ψ(z, u),

and in particular for all u ∈ M since φ(z, 2u) = 2φ(z, u), we have

ψ(z, u) = lim
p→∞

2pφ
(

z,
u
2p

)
= φ(z, u).

Also, TM(φ, ψ) ≤ 1
1− θ

4
TM(φ,Sφ) which implies for all u ∈ M

ΩM

(
φ(z, u)− ψ(z, u), η

)
� Ψ

(
u
2

, u,
u
2

,
2(4− θ)

θ
η

)
. (12)

According to conditions (S3) and (S4), that is, inequalities (10) and (11), for all u, v, w ∈
M, we have
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ΩM

(
ψ(z, u + v + w)− ψ(z, u + w)− ψ(z, v− u + w)− ψ(z, u−w), η

)
= ΩM

(
limp→∞

(
2pωp(φ(z, u+v+w

2pωp
)
− φ

(
z, u+w

2pωp
)
− φ

(
z, v−u+w

2pωp
)
− φ

(
z, u−w

2pωp
)))

, η

)
= limp→∞ ΩM

(
2pωp(φ(z, u+v+w

2pωp
)
− φ

(
z, u+w

2pωp
)
− φ

(
z, v−u+w

2pωp
)
− φ

(
z, u−w

2pωp
))

, η

)
� limp→∞ 2p|ω|pΩM

(
σ1
(
φ
(
z, u+v−w

2pωp
)
+ φ

(
z, u−w

2pωp
)
− φ

(
z, v

2pωp
))

, η

)
~ limp→∞ 2p|ω|pΩM

(
σ2
(
φ
(
z, u−w

2pωp
)
+ φ

(
z, u

2pωp
)
− φ

(
z, w

2pωp
))

, η

)
~ limp→∞ 2p|ω|pΨ

( u
2pωp , v

2pωp , w
2pωp , η

)
= ΩM

(
σ1(ψ(z, u + v−w) + ψ(z, u−w)− ψ(z, v)), η

)
~ ΩM

(
σ2(ψ(z, u−w) + ψ(z, u)− ψ(z, w)), η

)
.

Therefore, according to Lemma 1, ψ is a stochastic additive.
Let us once again assume u = w = ζ

2 and v = 0. Considering condition (S4), which
means inequality (11), and putting in these new assumptions, for all ω ∈ B1 and all ζ ∈ M,
we have

ΩM

(
φ(z, ωζ)−ωφ(z, ζ), η

)
� Ψ

(
ζ

2
, 0,

ζ

2
, η

)
.

Therefore

ΩM

(
ψ(z, ωu)−ωψ(z, u), η

)
= limp→∞ 2p|ω|pΩM

(
φ
(
z, ω u

2pωp
)
−ωφ

(
z, u

2pωp
)
, η

)
� limp→∞ 2pΨ

(
u

2p+1ωp , 0, u
2p+1ωp , η

)
� limp→∞ Ψ

(
u
2 , 0, u

2 ,
(

4
θ

)p
η
)

.

Since when p → ∞, it tends to 1, then with respect to (NORM1), we conclude
ψ(z, ωu) = ωψ(z, u), for all ω ∈ B1 and all u ∈ M. Therefore, by Lemma 2, ψ is stochastic
C-linear. Considering that ψ is continuous and stochastic C-linear and also considering
φ = ψ, from conditions (S3) and (S5), which are the same as inequalities (10) and (11),
we have

ΩM

(
[ψ(z, u), ψ(z, v), ψ(z, w)]− ψ[ψ(z, u), v, w]− ψ[u, ψ(z, v), w]− ψ[u, v, ψ(z, w)], η

)
= limp→∞ ΩM

(
23pω3p[φ(z, u

2pωp
)
, φ
(
z, v

2pωp
)
, φ
(
z, w

2pωp
)]
− 2pωpψ

[
φ
(
z, u

2pωp
)
, v, w

]
−2pωpψ

[
u, φ

(
z, v

2pωp
)
, w
]
− 2pωpψ

[
u, v, φ

(
z, w

2pωp
)]

, η

)
= limp→∞ 23pΩM

([
φ
(
z, u

2pωp
)
, φ
(
z, v

2pωp
)
, φ
(
z, w

2pωp
)]
− φ

[
φ
(
z, u

2pωp
)
, v

2pωp , w
2pωp

]
−φ
[ u

2pωp , φ
(
z, v

2pωp
)
, w

2pωp
]
− φ

[ u
2pωp , v

2pωp , φ
(
z, w

2pωp
)]

, η

)
� limp→∞ 23pΨ

( u
2pωp , v

2pωp , w
2pωp , η

)
� limp→∞ Ψ(u, v, w, η

θp ),

for all ω ∈ B1 and all u, v, w ∈ M. Since θ < 1, ψ is a stochastic ternary antiderivative
(STAD). Thus, φ is a STAD.

Example 8. We consider the stochastic mapping φ : Π×M→ M such that for all u, v, w ∈ M
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ΩM

(
φ(z, ω(u + v + w))−ωφ(z, u + w)−ωφ(v− u + w)−ωφ(z, u−w), η

)
� ΩM

(
σ1(φ(z, u + v−w) + φ(z, u−w)− φ(z, v)), η

)
~ ΩM

(
σ2(φ(z, u−w) + φ(z, u)− φ(z, w)), η

)
~MIN

(
Ψ

(
‖[[u, u, v], v, w]‖, η

))
,

and

ΩM

(
[φ(z, u), φ(z, v), φ(z, w)]− φ[φ(z, u), v, w] + φ[u, φ(z, v), w] + φ[u, v, φ(z, w)], η

)
� MIN

(
Ψ

(
‖[[u, u, v], v, w]‖, η

))
.

If φ is continuous and φ(z, 2u) = 2φ(z, u) for all u ∈ M, then φ is a stochastic ternary antideriva-
tion (STAD).

Proof. In the proof of Theorem 3, we set θ = 2
1000 and get

MIN
(

Ψ([u, v, w], η)

)
=

diag
[

MIN
(

Ψ([[u, u, v], v, w], η)

)
, MIN

(
Ψ([[u, u, v], v, w], η)

)
, MIN

(
Ψ([[u, u, v], v, w], η)

)
,

MIN
(

Ψ([[u, u, v], v, w], η)

)
, MIN

(
Ψ([[u, u, v], v, w], η)

)]
,

where

Ψ([u, v, w], η) = diag
[

Eκ,µ

(
‖[[u,u,v],v,w]‖

η

)
, Wκ,µ

(
‖[[u,u,v],v,w]‖

η

)
,2 F1

(
a, b, c, ‖[[u,u,v],v,w]‖

η

)
,

Hλ3,λ1
λ2,λ4

(
‖[[u,u,v],v,w]‖

η

)
, exp

(
‖[[u,u,v],v,w]‖

η

)]
,

for all u, v, w ∈ M, and the proof is complete.

Now, we consider the unital SMVFMC-�-A
(

M, ΩM,~,~
)

with unit E and the

unitary group I(M) = {δ ∈ M : δ�δ = δδ� = E}.

Theorem 4. We consider the SMVFC-�-A
(

M, ΩM,~,~
)

and the MVF function Ψ : M×M×

M× (0, ∞)→ DH such that Ψ satisfies (10). If we consider the stochastic operator φ : Π×M→
M such that for every u ∈ M and z ∈ Π, we have φ(z, 0) = 0 and φ(z, 2u) = 2φ(z, u) and it also
satisfies inequality (11), then φ : Π×M→ M is a stochastic ternary antiderivation (STAD).

Proof. According Theorem 3, we have a unique C-linear stochastic operator ψ : Π×M→
M that satisfies inequality (12) and is defined as follows:

ψ(z, u) = lim
p→∞

2pφ
(

z,
u
2p

)
, (13)

for all u ∈ M and also ψ(z, u) = φ(z, u). Again, considering Theorem 3, for all u ∈ I(M)
and z ∈ Π, we have

[ψ(z, u), ψ(z, v), ψ(z, w)] = ψ[ψ(z, u), v, w] + ψ[u, ψ(z, v), w] + ψ[u, v, ψ(z, w)]. (14)
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We assume that u = ∑
p
ι=1 miuι for all mi ∈ C, ui ∈ I(M) and u ∈ M. Since ψ in the

second variable is C-bilinear, for all u, v, w ∈ M, we get

[ψ(z, u), ψ(z, v), ψ(z, w)] = [ψ(z, ∑
p
ι=1 mιuι), ψ(z, ∑

p
ι=1 mιvι), ψ(z, ∑

p
ι=1 mιwι)]

= ∑
p
ι=1 mι[ψ(z, uι), ψ(z, vι), ψ(z, wι)]

= ∑
p
ι=1 mι

[
ψ[ψ(z, uι), vι, wι] + ψ[uι, ψ(z, vι), wι] + ψ[uι, vι, ψ(z, wι)]

]
= ψ[ψ(z, u), v, w] + ψ[u, ψ(z, v), w] + ψ[u, v, ψ(z, w)].

Then, ψ : Π×M→ M is a stochastic ternary antiderivation (STAD).

5. Superstability of Continuous Stochastic Ternary Antiderivations in T-SMVFB-A and
T-SMVFC-�-A

Here, we show the superstability of continuous ternary antiderivatives ternary SMVFB-
As and T-SMVFC-�-As.

Theorem 5. We consider the MVF function of Ψ : M×M×A → DH and the stochastic function
of φ : Π×M→ M such that

(S6) For every u, v, w ∈ M

Ψ
( u

ω
,

v
ω

,
w
ω

, η
)
� Ψ

(
2u, 2v, 2w,

8
θ

η

)
, (15)

(S7)

ΩM

(
φ(z, ω(u + v + w))−ωφ(z, u + w)−ωφ(z, v− u + w)−ωφ(z, u−w), η

)
� ΩM

(
σ1(φ(z, u + v−w) + φ(z, u−w)− φ(z, v)), η

)
~ΩM

(
σ2(φ(z, u−w) + φ(z, w)− φ(z, w)), η

)
~ Ψ

(
u, v, w, η

)
,

(S8)

ΩM

(
[φ(z, u), φ(z, v), φ(z, w)]− φ[φ(z, u), v, w] + ψ[u, φ(z, v), w] + φ[u, v, φ(z, w)], η

)
� Ψ

(
u, v, w, η

)
,

for each |ω| < 1 and constant θ < 1. If for all u ∈ M, φ is continuous and φ(z, 2u) = 2φ(z, u),
then the φ is a stochastic ternary antiderivation (STAD).

Proof. If we assume that Λ ∈ B1, then for |Λp| < 1 there is a sequence {Λp}∞
p=1 such

that limp→∞ Λp = µ. According to conditions (S6) and (S7), i.e., inequalities (15) and (16),
for every Λp with |Λp| < 1 and all u, v, w ∈M , we have

Ψ
(

u
Λp

,
v

Λp
,

w
Λp

, η

)
� Ψ(2u, 2v, 2w,

8
θ

η),

and for positive integers p

ΩM

(
φ(z, Λp(u + v + w))−Λpφ(z, u + w)−Λpφ(v− u + w)−Λpφ(z, u−w), η

)
� ΩM

(
σ1(φ(z, u + v−w) + φ(z, u−w)− φ(z, v)), η

)
~ΩM

(
σ2(φ(z, u−w) + φ(z, u)− φ(z, w)), η

)
~ Ψ

(
u, v, w, η

)
.
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Using the continuity Ψ, φ and ΩM(u, η) and considering the limit when p → ∞,
we have

Ψ
( u

Λ
,

v
Λ

,
w
Λ

, η
)
� Ψ

(
2u, 2v, 2w,

8
θ

η

)
,

and for Λ ∈ B1 and for every u, v, w ∈M

ΩM

(
φ(z, Λ(u + v + w))−Λφ(z, u + w)−Λφ(z, v− u + w)−Λφ(z, u−w), η

)
� ΩM

(
σ1(φ(z, u + v−w) + φ(z, u−w)− φ(z, v)), η

)
~ΩM

(
σ2(φ(z, u−w) + φ(z, u)− φ(z, w)), η

)
~ Ψ

(
u, v, w, η

)
.

Then, as stated in Theorem 3, the stochastic mapping φ : Π×M→ M is a stochastic
ternary antiderivation (STAD).

Theorem 6. We consider the SMVFC-�-A
(

M, ΩM,~,~
)

and the MVF function Ψ : M×M×

M× (0, ∞)→ DH such that Ψ satisfies (15). If we consider the stochastic operator φ : Π×M→
M such that for every u ∈ M and z ∈ Π, we have φ(z, 0) = 0 and φ(z, 2u) = 2φ(z, u) and it also
satisfies inequality (16), then φ : Π×M→ M is a stochastic ternary antiderivation (STAD).

Proof. The proof is similar to the proof of Theorem 4.

6. Conclusions

In this paper, we studied the concept of ternary antiderivatives in SMVFB-As and
their multi-super-stability. We introduced the aggregation function using special functions
such as the Mittag-Leffler function (MLF), the Wright function (WF), the H-Fox function
(HFF), the Gauss hypergeometric function (GHF), and the exponential function (EXP-F),
and we obtained the optimal control function by performing the necessary calculations.
First, we have checked the minimum stability of the stochastic operator on SMVFB-A.
Then, by introducing stochastic ternary antiderivatives, the superstability of stochastic
ternary antiderivatives and continuous stochastic ternary antiderivatives in T-SMVFB-A
and T-SMVFC-�-A spaces has been investigated.
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