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1. Introduction

The study of the stability problem for group homomorphisms started with the famous
Ulam question in 1940, and in 1941 Hyers established the stability of nonlinear functions in
a particular case.In 1978, Rassias extended this problem and now it is known as the Hyers-
Ulam-Rasias problem.Various aspects of the Hyers-Ulam stability for various functions and
mappings have been investigated and among these equations and mappings, we refer the
reader to Euler-Lagrange functional equations (E-L-FE), differential equations (DE), Navier-
Stokes equations (N-SE), as well as mappings such as Cauchy-Jensen mappings, k-additive
mappings, multiplicative mappings [1-4]. Most of the investigations have been carried
out in Banach spaces and now research is conducted in other spaces as well [5-8]. Also,
the stability of groups, Banach algebra, ternary Banach algebras, and C- ternary algebras
have attracted the attention of many researchers [9-11]. Among the various applications of
ternary algebras, we mention Nambu mechanics and quark in physics and mathematics
and we also point to different applications of the additive principle in physics in the field
of internal energy and the superposition principle. In addition, many physics problems can
be considered as a linear system and can be solved [12,13].

In 2003, Radu-Mihet proposed a new method to obtain the exact solution and er-
ror estimation, which was based on the alternative fixed-point method. Note that fixed
point theory arises in various fields such as dynamical systems, equilibrium problems,
and differential equations because this theory provides basic tools for examining these
problems [14,15].
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- O (al<¢<z,u+v—w> + oz u—w) —4><z,v>>,n) ® Oy (az<¢<z,u—w> + pzu) —4><z,w>>,n),

QM<¢(z,u+v+w) —P(zu+w)—¢(zu+v—-—w)—¢(zu—w),y

Specific functions can be used to establish stability and the selection of the control
function plays a special role. The Mittag-Leffler function (M-LF) is used in many fields of
science and engineering and certain areas of physical, biological, and earth sciences [16].
Another important function that is particularly important in solving partial differential
equations and fractional theory is the Wright function (WF) [17,18]. Two other types of
functions used in this article are the H-Fox function (H-FF) and the Gauss hypergeometric
function (GHF) [19,20]. We note that many special functions that we encounter in physics,
engineering, and probability theory are special cases of Gauss hypergeometric functions.
To determine the optimal control function, we introduce the aggregation functions (AF)
and aggregation functions are rooted in different fields. Application areas of aggregation
functions include applied mathematics, probability, statistics, decision theory, computer
science, artificial intelligence, operations research, as well as many applied fields, economics
and finance, pattern recognition and image processing, data fusion, multicriteria decision
aid, automated reasoning, etc. [8,20].

In this article, we define a stochastic ternary antiderivative operator and consider the
symmetric matrix-valued FB-algebra (SMV-FB-A) and the symmetric matrix-valued FC-o-
algebra (SMV-FC-¢-A), and we investigate the superstability and minimum superstability
of this operator.

We assume that (IT, X, Q) is a probability measure space. Considering the measur-
able space (M, Gyp), we define the stochastic operator ¢ : IT x M — M. In all of the proofs,
we consider the (0, 02 )-functional inequality which is as follows

M

where 01,07 € C and |07] + |02 > 2. The general structure of the article is as follows.

In the second section, all the required concepts including special functions and spaces
used to prove the desired results are given. In the third section, after stating the necessary
lemmas, the stability of the stochastic operator in SMVFB-A is investigated, and then the
minimum stability of this operator is proved. In the fourth section, the superstability of
stochastic ternary antiderivatives is proved by introducing stochastic ternary antideriva-
tives and considering T-SMVFB and T-SMVFC-¢-A spaces. Also, in the form of an example,
minimum stability is investigated. In the last part, the superstability of continuous stochas-
tic ternary antiderivatives in the introduced spaces is proved.

2. Preliminaries

We denote the set of all p x p diagonal matrices by Dy = diagH([0,1]), and we
consider this set as follows

hy
Dy = diagH([0,1]) = = diagfhy, - - - ,hp], hy,. ..,hpe[O,l]
hP
For the above set, we have
e Ifh,g € Dy, then h = diagfhy,--- ,hp] and g = diag[gy,- - -, gpl;
* h<Xgmeansthath, <g forevery:=1,..., m;

* h < gdenotesthath, < g forevery:=1,...,m;
e diagll,...,1] = 1and diag0,...,0] = 0.

Definition 1 ([5,9]). A mapping ® : Dy x Dy — Dy is called a GTN (generalized t-norm) if the
boundary condition, commutativity condition, associativity condition and monotonicity condition
hold as follows:

() h®1 = hforall heDy;
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h®p g = diaghy, - -

diag[h, g, k] ®ym

(I) heg=g®hforallh,gec Dy;
(II) h® (gok) = (h®g)®kforallh,g k € Dy;
(1IV) h < gand k =< s implies that h®k <X g®s, forallh,k,g,s € Dy;

For convergent sequences {hy, } and {gp} with convergence points h and g, if we have
(V) limm(hp®g,) =h@®g,
then the GTN ® is a continuous GTN (CGTN).

In the following, we define some examples of CGTN:

Definition 2. ®ys : Dy X Dy — Dy is called minimum CGTN (MIN-CGTN), which is defined
as follows

h®y g = diaglhy, - -, hp] ®y diag(gy, - - -, gp| = diag[min{hy, g}, -+, min{hy, hy}].

Definition 3. ®p : Dy X Dy — Dy is called product CGTN (P-CGTN), which is defined
as follows

h®p g = diaglhy, - - - ,hp] ®p diag[gy, - - -, gp| = diaglhy.g1,- -, hm.gp].

Definition 4. ®; : Dy X Dy — Dy is called Lukasiewicz CGTN(L-CGTN), which is defined
as follows

Jhyp] @ diag[gy, - - -, gp] = diag[max{h; +g; —1,0},--- ,max{hy, +gp —1,0}].

For MIN-CGTN, P-CGTN and L-CGTN introduced in the above examples, the follow-
ing inequality always holds (we have considered the dimension of the matrix as 3)

diag[l, m,n] > diag[h, g, k] ®p diag[l, m,n] > diagfh, g, k] ® diag[l, m,n].
We refer to [5,6,9] to see more numerical examples of the introduced CGTNss.

Definition 5 ([5]). We say ¥ is a matrix-valued fuzzy function (MVFF) if ¥ : [0,a] x (0, 4-00) —

Dy and

(MF1) Y is increasing and continuous;

(MF2) limy, yoo ¥ (u,17) = 1 forany u € [0,a] and n € (0, +o0);

(MF3) If Z is another MVFF, the relationship of < for these functions is defined as Z =¥ if and
only if Z(u,n) < Z(u,n), forall y € (0,+00) and ue|0, al.

Definition 6 ([5,9]). Let ® be a CGTN, M be a vector space and Qg : X% (0, +00) — Dy bea
matrix valued fuzzy set (MVFS). The triple (M, O\, ®) is called a symmetric matrix valued fuzzy
normed space (SMVFN-S) if

(NORM1) Op(u, 1) = 1ifand only if u = 0 for € (0, +00);
(NORM2) Op(yw,17) = Om(y, ﬁw)for allueMand v #0€ C;

(NORM3) Op(u+v, 11 +a) = Onm(u, ) ® Qv (u, ) forall u € Mand any i, a0 € (0, +00);
(NORM4) limy; 100 On(u, 17) = 1 for any i € (0, +00).

When an SMVEN-S is complete it is called an SMVFB-S [3,5-7].

Definition 7 ([21]). A symmetric matrix-valued fuzzy normed-algebra (SMVFN-A) (M, Oy, ®,

®) is an SMVFN-S (M, Oy, ®) if the following condition holds

(NORMS5) Op(uv, ) = Ov(u, 1) ® Qv (v, a), forallu, v € Mand all y,« € (0, c0) in which
® isa CGTN.
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A complete SMVEN-A is called an SMVEFB-A.

Definition 8 ([21]). We consider an SMVFB-A (M, Oy, ®, ®). We say that M is an SMVFB-o-
A if the mapping 6 — 6° on M has the following conditions

(1) 6% =éforanys e M;
(2) (,315 + ,32(41)0 = ,315Q + ,Bza)o;
(3) (bw)® = w6 forany b, w € M.

Moreover, with the following condition
(4) O\m(6°5,1) = Om(6,1) foreach 5 € Mand i € (0,1),
we say that M is an SMVFC-o-algebra (SMVFC-0-A).

Definition 9 ([11-13]). We consider the complex SMVFB-S M (CSMVEFEB-S). If by using M,
we can define the C-linear ternary product (C-LTP) of O ((x, v,2), t) — O <[u, v, wl, 11) ,
which is from M° to M, such that it has the following properties

(TP1) Oy <[u,v, [w, s, t]],;y) = Op <[u, [s, W, v],t},ﬂ) = Opm <[u,v,w],s, t> (associative);
(TP2) Oy ([u,v,w],qu) = Om(u, ) ® (v, ) ® Onv(w, y) forall u, v, w, s, t € M;
then, we say that M is a ternary SMVFB-A (T-SMVFB-A).

We assume that (M, [, .,.]) is T-SMVFB-A. If M has an identity member say such that
Om(u, ) = Qv ([u,IE,E],;y) = Opm ([E,E,u],;y) for all u € M, then we have

QM(UOV,U> :QM([u,E,V},n> o
Oulw,n) = Ou([EwELy),

where u* is an unital algebra. If (M, o) is an unital algebra, then the relation

QM<[u,V,w},t) = O (uov* ow,;y),

shows that M is a T-SMVFB-A. Also, M is an usual SMVFB-A (U-SMVFB-A) if for identity
member E € M, we have Oy (u ov, 17) = Om ([u, E,v], 17) .

Definition 10 ([3,12,13]). We assume that M and N are SMVFB-As. A C-linear stochastic
mapping Y : I1 x M — N, which satisfies

V(z, [u,v,w]) = [VY(z,u),V(z,v),V(z,w)| forall u,vyw €M,
is called a stochastic ternary homomorphism (STH).

Definition 11 ([12,13]). We assume that M is an SMVFB-A. A C-linear stochastic mapping
Q : II x M — M, which satisfies

9(z, [u,v,w]) =[Q(z,u),v,w|+ [u, Q(z,v), W] + [u, Q(z,v),w]| forall u,v,w €M,

is called a stochastic ternary derivation (STD).
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In the following, we introduce special functions that we need to select the optimal
control function. We have also performed the necessary calculations on these functions and
have shown a representation of these functions and calculations in the form of graphs.

Definition 12 ([7,9]). Let u be a real number and consider the generic parameters a,b,c > 0. We
define the GHF 5F; : R x [0,a] — (0, 00) by the infinite sum (that is convergent)
& uP I'(c) & T(a+p)(b+p)uP
»Fi(a,b,c;u) p p —.
1 ; ©p P T@I®) & Tle+p)  p

Definition 13 ([9]). One-parameter and two-parameter M-LF are defined as follows, respectively

pzz)l" pK+1

[e9)

Eqpu(u) = Z

— pK—i-,u

where k, u € C, Re(x), Re(p) > 0and I'(.) used in the above functions is the gamma function.

Definition 14 ([9]). For0 < Ay < Ay, 1 < A3 < Ay, {x,y.} € C, {u,v,} € RT, we define the
following functions

© L) =TI (v - vif),

o Lo(f) =T12,T(1—x +uf),

o L3(f) = ?;MH r(1—y, +vi),

o Ly(f) =TI2, . T —uf),

In the introduced functions Ay = 0 if and only if L,(f) = 1, A3 = Ay if and only if L3(z) =1
and Ay = Ay if and only if Ay(f) = 1. According to the introduced functions, we consider
MM (f) = £ 1L “The Mellin-Barnes integral (M-BI) representation of the H-Fox function

A2 Ay L3(f) Ly(f)
(H-FF) is shown below

Az A A
HyZns () = i Ja iy 1(f)ufdf, ©)
where uf = exp{f(log|u| +iargu)} and A € C is a path that is deleted. Also, the symbol

is considered for this integral.
A2y M (Yz/ Pt)t:l,m Ao :|

Definition 15 ([6,8,9]). The generalized Bessel Maitland function (GBMF) or the Wright function
(WEF) of order 1/ (1 + o) is represented by using the series

=) uP
W)=Y —
() p;)p!f(xpw)

fork>—-1,u>0,uekR

In the Figures 1-3 we can see the values of introduced special functions in this paper.
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(@) Graph of Gauss hypergeometric and H-Fox functions for u € (—10,10)

(b) Graph of Mittag-Leffler and Bessel Maitland functions for u € (—50,50)

Figure 1. Cont.
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(C) Graph of Gauss hypergeometric, H-Fox, Mittag-Leffler, Bessel Maitland and
exponential functions for u € (—100, 10)

Figure 1. 3D graphs of special functions Gauss hypergeometric and H-Fox functions for # = 3 and
different values of u.

Definition 16 ([9]). An p-ary (p € N) generalized aggregation function (p-AGAF) A®) :
RP — R has the following property

o u<v,= AP(uy,--- ,Up) < AP (vy, - /Vp),

forallv € {1,---,p}, andfor (uy,---,up), (vi,---,vp) € RP. For the sake of simplicity, we
can remove the m number, which represents the number of variables of the aggregation function,
and denote this function as A. Also, when p = 1, the aggregation function is shown as A1V (u) = u
forall ¢ € R.

Example 1. (AMF) AM : RP — R is defined by

gl

AM(u) = % u,.
=1

Example 2. The geometric mean function (GMF) GM : RP — R is defined by

o=

-

GM(u) = (] Ju)>r.

=1

Example 3. The projection function (PF) Pg : RP — R for B € [p| and Bth argument is
defined by

7)/3 (u) = uﬁ,
where u(g) is the Bth lowest coordinate of u, i.e., ug) <. < ug) <.. “U(p).- Also, the following
functions show the PF in the first and last coordinates
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Example 4. The order statistic function (OSF) OSg : RP — R with the Bth argument and Bth

lowest coordinate is defined by
OSp(u) = up),

forany B € [p].

Example 5. The minimum function (MIN-F) and maximum function (MAX-F) are defined as
follows respectively

MIN(u) =081(u) =min{uy,--- ,up} = /\F:1 u,,
MAX(u) = O0Sp(u) =max{uy, -, up} =V u.

Example 6. The median function (MF) is defined as follows for odd and even values of
(ug, -, ugp_1) and (uy, - -+, uzp), respectively

MED(ul, e /UZ,Bfl) = U(‘B),

ug)tu
MED(ull' .. IUZ,B) = AM(u(,B)’u(,B+1)) — w

ox 107
Sox 10

21
4x 107
ooooo

AMGM e
3010

2% 107

200000

- /o
R SR

o 100 120 140 160 180 200

1x 1024

-300 -200 -100 0 100 200 300 400 500

(a) AM and GM functions for u € (—500,500) (b) The aggregation AM function for
u € (10,200)

Figure 2. Two-dimensional graphs of aggregation functions for w = 3 and different values u.
By referring to [9] and studying the information in the presented table, we choose the

minimum function as the control function. Also Figures 1-3 help us to choose this function.
Consider the function

¥(u,7) = diag [2F1 (b, =), By (), Wiy (), E 3 (<), exp( = >] @

Ul

and we choose the following function as a control function

MIN (¥ ) =ding | A (¥t ) A (¥ ) a (e ) A ()| ©)
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(@) The aggregation AM function for u € (10,200)

LGM

(7

1600 1400

1800
2000 I

(b) AM and GM functions for u € (1000,200)

Figure 3. Cont.
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CONM) :

5. % 10"

4.x 107

3.% 10"

AM.GM

2.x 167

200

400

i

(c) AM and GM functions for u € (—500,500)
Figure 3. Three-dimensional graphs of aggregation functions for w = 3 and different values of u.

If we assume that (M, Tp) is a generalized complete metric space (GCMS), we define
a set as follows

= {] M — MlTM(]Vl,]Vz) < GJTM(Vl,Vz), Yvi, vy €M, €] € [0,1)}. (6)

We call this set the set of all contraction mappings that is, every contractive function is
located in this set. Next, we present the Diaz-Margolis theorem (FTP) [5,6,8,9].

Theorem 1. We consider GCMS (M, Tyy) and assume that u,v € M, and also ] € CON (M)
such that ey < 1. With these assumptions, we assume that for every r,xy € N (r > o) and for
ueM, Tu (]ru, ]r+1V) < oo,. If this condition holds, we have

(1) The fixed point j of ] is the convergence point of the sequence {J*u};

(2) Intheset K ={ue M| Ty(J%u,v) < oo},jis the unique fixed point of J;

(3) (1 —¢€)Tm(v,j) < Tm(v,]v) for every v € M.

Also, if the condition Ty (J',J*"1v) < oo is not satisfied, we have Ty (J*v, J*1v) = oo, for all
re N

3. Minimum Stability of Stochastic Operator on SMVFB-A

Here, considering Theorem 1, we investigate the stability of a stochastic operator
according to the additive (o, 02 )-functional inequality (A-(o7, 02)-FI).
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Lemma 1. Assume that (M, On, ®, @) is an SMVFB-S. We consider the stochastic mapping
¢ : 11 x M — M in such a way that the following inequality holds
Oum (gb(z,u +v+w)—¢(zu+w)—¢(z,v—u+w)—¢(z,u— w),17>
= O (01§ v =)+ 9l =) = 0z v) 1
w0 (e2(9(z 0~ w) = gz, + 9z w11,
forallu,v,w € M. Then the stochastic mapping ¢ : I1 x M — M is additive.

Proof. As stated in the assumption of the theorem, ¢ : II x M — M satisfies (7). Now,
if we putu = v =w = 0in (7), we obtain

O (20(2,0)1) = O (1] + )z 001,

according to the assumption |0y | + |02 > 2, we have ¢(z,0) = 0. Once again, putting
w = uin (7), we have

Om <(p(z, 2u+v) — ¢(z,2u) — (P(Z,V),i’]) =1,
then, according to (NORM1), we get
$(z,2u+v) = ¢(z,2u) + ¢(z,v),
for all u,v € M. Hence ¢ is additive. [

Theorem 2. [n the SMVFB-S (M, Oy, ®, ®), we consider the MVF function'¥ : M x M x M —
Dy and the stochastic mapping of ¢ : I1 x M — M along with the constant < 1 in such a way
that we have the following conditions:

(§1) Forallu,vyw € M
‘I’<u,v,w,17> - Y(Zu,Zv,Zw,zq), @)
(§2) Forallu,vvw e M
Om <<p(z,u+v+w) —p(z,u+w)—¢p(z,v—u+w) —¢(z,u —v)>
= O (1 (plau-+ v = w) - plau W)~ pluv)) )
B0y (02(4>(z,u —w) + plzu) gb(z,w)),iy) @‘Y(u,v,w,n).

Therefore, there exists a unique stochastic additive mapping (SAM) £ : T1 x M — M such

that u uy 2(1-9)
O (9t0) — £z ) = v ( (S0, 5), 20 20), ®

forallu € M.
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Proof. First, we assume that u = v = w = 0 and apply this assumption to condition (S2),
which is inequality (8). We get

O (20(2,0)1) = Ot (1] + o2z, 00,1) ¥ (0,0,0,1),

according to |o1| + |02| > 2 and condition (S1) means (7) , we have ¢(z,0) = 0 and

¥(0,0,0,17) = 1. Now, let us assume u = w = % and v = (. By placing the new assumption
in condition (S2), we have

O (0(2,20) 20,0 ) =¥ (5,05m), ©)

forall € M. OnthesetY = {R : II xM — M : R(z,0) = 0}, we define the mapping
Tv Y XY = Y as follows

TM(Q,R) = inf{g eRy: QM<Q(z,u) — R(z,u),;y) > ‘Y(lzl,u, ;,Z),‘v’u € M}

It is easy to see that Ty is a complete generalized metric space (CGMS) [5,6,8]. In the
following, for all u € M, we define a stochastic linear mapping S : Y — Y as follows:

S(Q(z,u)) := 2Q<Z, %)

For Q,R € Y, we assume Tp(Q,R) = 3. Asaresult, for allu € M, we have

QM(Q(Z,u) — R(Z,u),?]) = ‘P(g,u, %, %)

Then, for all u € M, we get

O (S0 - SREW) 1) =0 (20(8) ~ 2R (1)1

and this means 7y (S(Q(z,u)),S(R(z,u))) < 0 or Tu(S(Q(z
07m(Q, R). In the sequel, due to (9), for allu € M, we get

£
@
b}
~
£
A

)
)

and this means Ty (¢, S¢) < g. According to Theorem 1, there exists a unique fixed point
such as the stochastic mapping £ : Y x M — M for S, which is defined as

=

(0w -2@1) =rELY

=¥(3uy,

m‘g’

E(z,u) =2¢& (Z, %)

Then, considering this fixed point, thereisa ¢ € (0, c0) such that for allu € M, we have
Ou <¢(z,u) — &(zu), 17> - ‘F(‘Zl,u, > Z)

On the other hand, because limp e Oy (SP¢ - &, 77> = 1, then for allu € M,
we have

lim 2p4)<z, 2%) =&(z,u).

p—c
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Also, Tm(¢, &) < 11TQTM(4" S¢) which implies for allu € M

Oum ((P(Z,u) - S(Z,u),17> - T(;u % 2(1;9)17)

According to conditions (S1) and (S2), that is, inequalities (7) and (8), forallu, v, w € <7,
we have

QM<5(z,u+v+w)—E(Z,u+w)—5(z,v—u+w)—S(Z,u—w)17>
= O (Himp s 20 2, 2552) = pla, ) 9o 5%) — (s, 5.1
= timp 2200 (92, 25 — 9(2 552) ~ (2, ) — p(z, 521
=ty s 2000 (01 (92 2572) + 902, 55) — 92, )1

®hmp_>002pQM<lB(¢( , 2p )+¢( /2p /17) ®llmp%002pllj<2p/ 2})/ 2P/77

= QM(Ul(A(Z,u+V —w)+E&(z,v—w)—E(z,v)), ) ® Om <02(5(z u—w)+&(z,u) — S(Z,W)),T]).
Therefore, according to Lemma 1, £ is a stochastic additive mapping (SAM). O

Example 7. We consider the stochastic mapping ¢ : I1 x M — M such that for all u,v,w € M
the following inequality holds

Oz -+v W) = glau ) = 9l v — -+ w) ~ plzu—w)y
= O (01§ v =)+ 9z, =) = 0z v)) 1
® <02(<p(z,u —w) +¢(z,u) — 4>(z,w)),17> ® MIN <<I>([u,v,w]),11>.
Then, there exists a unique SAM £ : 11 x M — M such that
Om <4>(z,u) - S(Z,u),iy) > MIN <<I>([u,u,u]),11),
forallu € M.
Proof. From the proof of Theorem 2, assuming 6 = 11W and
MIN(¢([u,v,w],11)> =

diag [MIN(CI)([u,u,u]),iy),MIN (@([u,u,u],q)),MIN (@([u,u,u],n)),

MIN (CD([u uu ],n)),MIN(CD([u, u,u],n))],

where forall u,vvw € #
(v wl ) = ding By (L0 ) i (Lol ) oy (o, Lol ),

b < B ) Jexp ( IR ) ] ,

and the proof is complete. [
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4. Stochastic Ternary Antiderivations in T-SMVFB-A and T-SMVFC-o-A

In this section, we first define the stochastic ternary antiderivatives in T-SMVFB-A and
T-SMVEFC-¢-A and we prove the minimum superstability. As we mentioned before, all the
results are proved by considering the (&, §)- functional inequality.

Definition 17. [12,13] Consider the T-SMVFB-S M. A stochastic ternary antiderivative is a
stochastic C-linear mapping i : I1 x M — M with

[Y(z ), 9(z,v), (2, w)] = Ppl(z,u), v, W]+ Plu, (z,v), W] + Pz, v, (2, w)],

forallu,v,w € M.

Lemma 2. We consider a CSMVVFB-A M and a stochastic additive mapping 6 : II1 xM — M
such that forall 0 € B! := {w € C: |w| = 1} and allu € M, 6(z, wu) = wd(z,u). Then J is
C-linear.

Theorem 3. In the SMVFB-S (M, O\, ®, ®), we consider the MVF function ¥ : M x M x M —
Dy and the stochastic mapping of ¢ : I1 x M — M along with the constant 6 < 1 in such a way
that we have the following conditions:

(S3) Forall w € Bl and all u,v,w € M

u v w 8
- — e
‘I’(w,w,w,q> _‘Y(Zu,ZV,Zw,eﬂ), (10)

(S4) Forall w € T and all xyzeA

Opm (gb(z,a)(u+v +w)) —wp(z,u+w) —w(z,v—u+w) —wd(z,u— w),;y)

= O (1ot v W)+ plzu = w) ~ 9z, )
@0 (02(9za =) + 9(z,0) ~ plzw)) 1) @ ¥ (wv i),

(55) For every w € B! and all u,v,w € M

O ([¢<z,u>,¢<z,v>,¢<z,w>1 — plp(z ), v W] + Pl plz V), w] + q>[u,v,¢<z,w>1,n)

> ‘I’(u,v,w,iy).

If ¢ is continuous and ¢(z,2u) = 2¢(z,u) for all u € M, then the stochastic mapping ¢ :
IT x M — M is a stochastic ternary antiderivation.

Proof. First, we assume that u = v = w = 0 and w = 1. Then, inequality (8) will be

O (202,00,1) = Ot (el + ealot 0),7) = (0,0,0,1),

according to |oq| + |02 > 2 and condition (S1) means (7) , we have ¢(z,0) = 0 and
¥(0,0,0,17) = 1. Now, let us assume u = w = % and v = (. By placing the new assumption
in condition (S2), for all w € B! and all 7 € M, we have

O (02,200 ~ 2090, 00n) =¥ (5,8 5), an

OnthesetY = {R: IIxM — M : R(z,0) = 0}, we define the mapping Ty :
Y x Y = Y as follows
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TMIK,R) = inf{g € R>p: Op (lC(z,u) - R(z,u),;y) - ‘Y(;,u, ;,Z),‘v’u S M}

In the following, for all u € M, we define a stochastic linear mapping S : Y — Y as
follows

S(K(z,u)) = 2wk (z, %)

For K, R € Y, we assume Ty (K, R) = ». As a result, for allu € M, we have

Oum (IC(Z,u) - R(Z,u),iy> = T(%,ul %,%)

Then, for allu € .#, we get

O S(E(z,w) = SRz w) 1) = O (208 (2, 55) ~ 2000 (2,351 )
E‘T( u u u U)

4w’ 2w’ 4w’ 2x
4
t ‘Y(%/u/ %/ g%”]),

and this means Ty (S(K(z,u)), S(R(z,u))) < gz or TM(S(K(z,u)),S(R(z,u))) <
%TM (K, R). In the sequel, due to (11), for allu € M, we get

u u u u X u 8
_ - — Z 4= =
QM((P(Z’X) 2w<p(z, 2w>’17> _T(4w'2w'4w'”> _T<u'u'2’677)'

and this means Ty (¢, S¢) < %. According to Theorem 1, there exists a unique fixed point
such as the stochastic mapping ¢ : Il x M — M for S, which is defined as

P(z,u) = 2wy (Z, %)

Then, considering this fixed point, thereisa ¢ € (0, o) such that for allu € M, we have

Om (cp(z,u) — 1p(z,u),77> - ‘I’(;,u, ;,Z)

On the other hand, because limp 0 O (SP4) — ¢,77) = 1, then for allu € M,

we have

im 2PwP Ll
Jim 22 (2, 355 ) = viz v)
and in particular for all u € M since ¢(z,2u) = 2¢(z,u), we have
u
— 1 P Fr— frng
P(zw) = lim Pp(z,55) = p(z,u).

Also, Tm(g, p) < 1%7’1\/[(4>, S¢) which implies for allu € M

[4
1

Om <4)(Z,u) — 1p(z,u),17> > ‘P(;,u, g, 2(49_ 0) ;7). (12)

According to conditions (S3) and (54), that is, inequalities (10) and (11), for allu,v,w €
M, we have
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QM(¢(z,u+v+w)w(z,u+w)1p(z,vu+w)1p(z,uw),17>
= Oy Timpco (2P (p 2, S555) — (2 32) — 92, 2285%) — 02 38)) 1 )
= timpo O (2P (02, 5552) — 92, 328) — 02, 5
1 (ple 355) + (2 $2¥) — (e tw)) 1)

® limp_00 2P| POy (Uz (¢(z 3pap) +¢(2 pep) — (2 Z;C{ﬂ,)),n)
®limp o 2P |w[PY (2pgom s 2piom » 9w 1)

oW (a1<¢<z,u+v—w> +P(zu—w) —¢<z,v>>,n) ® Oy (o-zw»(z,u—w) +p(zu) —¢<z,w>>,n).

S—
[
<
—~
N
Kl
o
~
~
=

= limp 00 2P |w [Py

/N

Therefore, according to Lemma 1, ¢ is a stochastic additive.

Let us once again assume u = w = % and v = 0. Considering condition (54), which
means inequality (11), and putting in these new assumptions, for all w € B! and all { € M,
we have

O (9l 0) - w0z 0)n) = ¥(5,0.51).

Therefore

O (o) — (o)1) = limpes 2ol O 020 3) — 09 ) 1
= lil’np~>oo ZPT(m/ 0, ﬁl 77)
. p

Since when p — oo, it tends to 1, then with respect to (NORM1), we conclude
¥(z,wu) = w(z,u), for all w € B! and all u € M. Therefore, by Lemma 2, ) is stochastic
C-linear. Considering that ¢ is continuous and stochastic C-linear and also considering
¢ = ¢, from conditions (53) and (S5), which are the same as inequalities (10) and (11),
we have

O ([92), 92 ¥), (2, 6)] = 9l Ca0), v w] =l (), w] = o o))
g Ot (PP (2, 30), 92 ) 90 )] = PPl 2 ), v
~2aPy [ 9( i) W)~ 2Pl ple )] 1)
— timg e 220 ([0 2) 9 ) 91 )] — 910 2 ), i, ]

~¢ [ em, (2 wer ) er) — Plovers wor ¢(2, 2p‘2;p)},17)

= limp 00 2 pl}’(zpwpf wep s weps 1)

= limp e ¥ (1, v, W, 35 ),

forall w € B! and all u,v,w € M. Since § < 1, 1 is a stochastic ternary antiderivative
(STAD). Thus, ¢ is a STAD. O

Example 8. We consider the stochastic mapping ¢ : I1 x M — M such that for all u,v,w € M
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Om <¢(Z,w(u+v+w)) —wP(z,u+w) —wP(v—u+w) —we(z,u w),17>

- O (al<¢<z,u+v—w> + ¢z, —w) —¢<z,v>>,n) ® Oy (az<¢<z,u—w> + plzu) —¢<z,w>>,n)

omiN (¥ (lww ¥l vl ).
and
O ([902,0), 02, ), 92, )] = 9lp(z0), 6]+ gl (), W]+ gl gz, w1 )
= MiN (¥ (11w u v v wlll ) ).

If ¢ is continuous and ¢(z,2u) = 2¢(z,u) for all u € M, then ¢ is a stochastic ternary antideriva-
tion (STAD).

Proof. In the proof of Theorem 3, we set § = 725 and get

MIN(Y([u,v,w],,,)) _

diag [MIN (‘I’([[u,u,v],v,w],iy)),MIN (‘Y([[u,u,v],v,w],iy)),MIN (‘I’(Hu,u,v],v,w],n)),

F([w,v,w],7)

MIN (‘Y([[u,u,v],v,w],ry)),MIN (‘I’(Hu,u,v],v,W],U)ﬂ,

where

— diag {Ew < e v > Wi ( o] ] ) SF; <a, b, Mlzelonl] )

Az, A u,u,v|,v,w u,u,v|,vyw
HA§/A1<IH J n),exp(m J H)}

for all u,v,w € M, and the proof is complete. [

Now, we consider the unital SMVFMC-¢-A (M, Oy, ®, @) with unit E and the
unitary group IM) = {§ € M : §°5 = 66° = E}.

Theorem 4. We consider the SMVFC-o-A <M, Om, ®, ®> and the MVF function ¥ : M x M x

M x (0, 00) — Dy such that ¥ satisfies (10). If we consider the stochastic operator ¢ : TT x M —
M such that for every u € M and z € T1, we have ¢(z,0) = 0 and ¢(z,2u) = 2¢(z, u) and it also
satisfies inequality (11), then ¢ : I1 x M — M is a stochastic ternary antiderivation (STAD).

Proof. According Theorem 3, we have a unique C-linear stochastic operator ¢ : IT x M —
M that satisfies inequality (12) and is defined as follows:

¥(z,u) = lim 2P¢(z,23p), (13)

p—

for all u € M and also ¥(z,u) = ¢(z,u). Again, considering Theorem 3, for all u € I(M)
and z € I1, we have

[p(z0), 9(2,v), (2, w)] = Pp[p(z,u), v, W]+ Plu, §(z,v), W] + Pplu, v, p(z,w)]. - (14)
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We assume that u = Zf;l m;u, for allm; € C, u; € I(M) and u € M. Since ¢ in the
second variable is C-bilinear, for all u, v, w € M, we get

[l/J(Z, u)/ l/J(Z/ V), IP(Z/ W)] = [IP(Z/ 2?21 mlul)/ 1IJ(Z, Xf:l m;V[), l/J(Z, le:l m,wl)]
=P mu[p(zw), $(z,v), p(z,w,)]

= EF:1 m, |:1/J[1/J(Zz ul)r \27 Wl] + ¢[utr lP(Z/ V[), Wl] + #)[ulr vy, lp(Z, Wl)]:l
= P[(z,u),v,wl+ Pl ¢(z,v), Wl + P[u, v, Pz, w)].
Then, ¢ : IT x M — M is a stochastic ternary antiderivation (STAD). O

5. Superstability of Continuous Stochastic Ternary Antiderivations in T-SMVFB-A and
T-SMVEC-0-A

Here, we show the superstability of continuous ternary antiderivatives ternary SMVFB-
As and T-SMVFC-¢-As.

Theorem 5. We consider the MVF function of ¥ : M x M x A — Dy and the stochastic function
of ¢ : 11 x M — M such that

(S6) Foreveryu,v,w € M
qf(% 5 gq> - ‘I’(Zu,ZV,ZW,Sﬂ), (15)
(57)
O (9wl v +0)) — wpla, W) — w0z — -t w) —wplz,u—w) )
= O (a4 v = w) + 9l 0= w) ~ 9z, )
90 (02(0za =) + 9z, w) = pla )1 ) ¥ (wv ),

(S8)

o ([¢<z, W), 0(z,v), ¢z, w)] — Plp(zw), v, w] + plu, @z, v), w] + 4>[u,v,4><z,w>],n)

t‘I’<u,v,w,17>,

for each |w| < 1 and constant 6 < 1. If for all u € M, ¢ is continuous and ¢(z,2u) = 2¢(z, u),
then the ¢ is a stochastic ternary antiderivation (STAD).

Proof. If we assume that A € B!, then for [Ap| < 1 there is a sequence {Ap}g’:l such

that limp 00 Ap = p. According to conditions (S6) and (S7), i.e., inequalities (15) and (16),
for every A, with |[Ap| < 1and allu,v,w € .#, we have

u v ow 8
—_ - e
‘I’(AP,APIAP,U> = ‘I’(Zu,Zv,Zw,g;y),
and for positive integers p
Om <¢>(z, Ap(U+V+W)) = App(z,u+w) = App(v —u+w) — App(z,u— w),q)
= Om <U1(4>(Z/u +v—w)+o(zu—w) - 4’(Z/V))r77)

90 (e2(9z 0~ w) + 9z, ~ 9z ) ) ¥ (v )
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Using the continuity ¥, ¢ and Oy(u, ) and considering the limit when p — oo,
we have

uv w 8
el - °
‘I’(A,A,A,;y) _‘f<2u,2v,2w,9;7>,

and for A € B! and for every u,v,w € A4

Opm <4>(Z,A(u+v+w)) —AP(z,u+w) — Ap(z,v—u+w) — A¢p(z,u— w),iy)
= Om| o1(¢(zutv—w) +¢(z,u—w) —¢(zv)),7

90 (02(9z0 =) + 9lz,0) = 9z )1 ) % (w ).

Then, as stated in Theorem 3, the stochastic mapping ¢ : IT x M — M is a stochastic
ternary antiderivation (STAD). O

Theorem 6. We consider the SMVFC-o-A <M, O, ®, ®> and the MVF function ¥ : M x M x

M x (0,00) — Dy such that ¥ satisfies (15). If we consider the stochastic operator ¢ : IT x M —
M such that for every u € M and z € 11, we have ¢(z,0) = 0 and ¢(z,2u) = 2¢(z,u) and it also
satisfies inequality (16), then ¢ : I1 x M — M is a stochastic ternary antiderivation (STAD).

Proof. The proof is similar to the proof of Theorem 4. [J

6. Conclusions

In this paper, we studied the concept of ternary antiderivatives in SMVFB-As and
their multi-super-stability. We introduced the aggregation function using special functions
such as the Mittag-Leffler function (MLF), the Wright function (WEF), the H-Fox function
(HFF), the Gauss hypergeometric function (GHF), and the exponential function (EXP-F),
and we obtained the optimal control function by performing the necessary calculations.
First, we have checked the minimum stability of the stochastic operator on SMVFB-A.
Then, by introducing stochastic ternary antiderivatives, the superstability of stochastic
ternary antiderivatives and continuous stochastic ternary antiderivatives in T-SMVFB-A
and T-SMVFC-¢-A spaces has been investigated.
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