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Abstract: We assess the degree of quantumness of the P, Q, and W quantum optics’ approximations
in a thermal context governed by the canonical ensemble treatment. First, we remint the reader
of the bridge connecting quantum optics with statistical mechanics using the abovementioned
approximations at the temperature T. With the ensuing materials, we explore with some detail some
features of the above bridge, related to the entropy and to thermal uncertainties. Some new relations
concerning the degree of quantumness of the P, Q, and W are obtained by comparison between them
and the exact and classical treatments.

Keywords: quantum optics; statistical mechanics; Gibbs ensemble; entropy; uncertainty relations

1. Introduction

There exists in quantum optics a family of distinct so-called representations for phase
space distributions (or quasi-probabilities), each connected to a different ordering of the
underlying creation and destruction operators â and â†. They are as follows.

• From a historic viewpoint, the first is the Wigner quasi-probability distribution W [1],
related to a symmetric operator ordering.

• Since in quantum optics the particle number operator is naturally expressed in normal
order, another representation ensues: the Glauber–Sudarshan P one [2].

• Lastly, we confront an alternative representations [3] called the Husimi Q one [4–7],
used when operators stand in anti-normal order.

It is important to note that the quasi probability distributions became a standard tool
for analyzing quantum effects in theory and experiment, see Ref. [8].

Our main idea here is to use the above representations in a Gibbs’ ensemble scenario
at the temperature T, discussing and comparing the three representations.

The present article is designed as follows. The long Section 2 is a review. We discuss
the simple harmonic oscillator (HO) and continue with comments on its coherent states.
Then, assuming that this HO is in equilibrium with a thermal bath at the temperature T,
we proceed to develop a Gibbs’ ensemble description involving the three representations
mentioned in the Introduction. Section 3 studies mean energies, Section 4 entropies, and
Section 5 uncertainty relations. Finally, some conclusions are drawn regarding the degree
of quantumness of the P, Q, and W treatments in Section 6.

2. Background Review
2.1. Simple Harmonic Oscillator

The quantized free electromagnetic field is usually regarded as an infinite collection of
uncoupled HO of angular frequency ω. Each HO has a Hamiltonian [9]
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Ĥ = h̄ω

(
n̂ +

1
2

)
, (1)

where h̄ is the Planck’s constant, and n̂ = â† â is the particle-number Hermitian operator,
with â† and â standing for creation and annihilation operators, respectively. As n̂ and Ĥ
commute, we have [Ĥ, n̂] = 0. Thus, Ĥ and n̂ have the same eigenvectors that completely
specify the state of the system [9]. The pertinent set of eigenvectors of the number operator n̂
is {|n〉}. They constitute a basis in Hilbert’s spaceH, so that one has [9]

〈n|n′〉 = δn,n′ , (2)

with δn,n′ the Kronecker delta, and the closure relation being

∑
n
|n〉〈n| = 1̂. (3)

Therefore, the eigenvalue equation of the Hamiltonian is

Ĥ|n〉 = En|n〉, (4)

where En = h̄ω(n + 1/2) is the energy-eigenvalue labeled by n, with n = 0, 1, 2, . . . [9]. In
addition, the following commutation relations hold

[â, â†] =1̂, (5a)

[n̂, â] =− â, (5b)

[n̂, a†] =a†. (5c)

2.2. Gibbs-Ensemble

At temperature T, the density operator in the canonical ensemble reads

ρ̂ =
e−βĤ

Z(β)
, (6)

being β = 1/kBT, with kB the Boltzmann constant [10]. It is well known that the partition
function per oscillator Z(β) has the form [10]

Z(β) = Tr e−βĤ =
∞

∑
n=0

e−βEn , (7)

that is [10]

Z(β) = e−βh̄ω/2
(

1− e−βh̄ω
)−1

. (8)

For the system’s mean energy, one writes [10]

〈Ĥ〉 = −∂ ln Z(β)

∂β
, (9)

that, taking into account Equation (8), leads to [10]

〈Ĥ〉 = h̄ω

(
1
2
+

1
eβh̄ω − 1

)
≡ h̄ω

2 tanh(βh̄ω/2)
. (10)

Later, we will connect this quantity with their counterparts in alternative quasi-
probability representations.

Further, from Equations (6) and (8), plus the definition (1), we can write [11,12]

ρ̂ = (1− e−βh̄ω) e−βh̄ωâ† â. (11)
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This special aspect of ρ̂ in terms of the creation and annihilation operators is rather
convenient, as we will see below.

2.3. Coherent States

As most people know, the standard coherent states |α〉 of the HO are eigenstates of the
annihilation operator â, with complex eigenvalues α, which verify [2]

â|α〉 = α|α〉. (12)

A coherent state |α〉 is a peculiar quantum state, the one that most resembles a classical
one. It displays a maximal type of coherence and a classical sort of behavior. The states
|α〉 are normalized, i.e., 〈α|α〉 = 1, and form an overcomplete basis resolution of the
identity operator ∫ d2α

π
|α〉〈α| = 1̂, (13)

which is a completeness relation states, with d2α = dxdp/2h̄ and x, p being the coordinates
in phase space [2]. In terms of coherent states, the classical Hamiltonian is expressed as
H = h̄ω|α|2. It deserves remembering that the phase space variables are related to the
creation operator as â = (mω/2h̄)1/2 x̂ + i(1/2h̄mω)1/2 p̂. Accordingly, the eigenvalue α is
written as

α =
x

2σx
+ i

p
2σp

, (14)

with σx = (h̄/2mω)1/2 and σp = (h̄mω/2)1/2, so that σxσp = h̄/2 [9].

2.4. P-Representation

In this scenario, the most general density operator is a superposition of projection
operators, known as the Glauber-Sudarshan P−representation [13]. One has

ρ̂ =
∫ d2α

π
P(α, α∗) |α〉〈α|, (15)

where the P−function P(α, α∗) plays the role of a probability density for the distribution of
α values over the complex plane. Moreover, P is a quasi-probability distribution function
because it can display both negative values and strong singularities, especially when the
density operator corresponds to a nonclassical state with sub-Poisson photon statistics (see
Ref. [14] and references therein). When this function tends to vary little over large ranges
of the parameter α, the nonorthogonality of the coherent states will make little difference,
and P can be interpreted as a probability distribution [2]. The normalization property of
the density operator requires that the P−function obey the normalization condition [2]

Tr ρ̂ =
∫ d2α

π
P(α, α∗) = 1. (16)

Accordingly, the expectation value of an observable Â is given by [14]

〈Â〉 = Tr(ρ̂Â) =
∫ d2α

π
P(α, α∗) 〈α|Â|α〉. (17)

In this context, the average particle-number acquires a simple form that, according to
Equation (17) with Â = n̂ = â† â, can be cast in the fashion [2]

〈n̂〉 = Tr(ρ̂â† â) = 〈â† â〉 =
∫ d2α

π
P(α, α∗) |α|2 = 〈|α|2〉P, (18)
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indicating that the average photon number is the mean squared absolute value of the amplitude α. Note
that 〈. . .〉P is the average with respect to P(α, α∗). Clearly, one has 〈α|n̂|α〉 = 〈α|â† â|α〉 =
αα∗ = |α|2.

For a thermal canonical ensemble state P is given by Equation (11) and it becomes [11]

P(α, α∗) =
1
〈n̂〉 exp

(
−|α|

2

〈n̂〉

)
, (19)

while the average particle-number is given by [2]

〈n̂〉 = 〈|α|2〉P =
e−βh̄ω

1− e−βh̄ω
=

1
eβh̄ω − 1

. (20)

We can reach the same conclusion in another way. As explained in Refs. [11,12], for all
normal-ordered operator-averages, we have

〈â†r âs〉P =
∫ d2α

π
P(α, α∗) α∗rαs, (21)

so that for r = s = 1 one finds that

〈â† â〉P = 〈|α|2〉P, (22)

where
〈|α|2〉P = 2

∫ ∞

0
dα P(α, α∗) |α|2+1 =

1
eβh̄ω − 1

, (23)

totally in agreement with Equation (20).
Finally, according with Equation (20), the P−mean value for the of energy is

U = 〈Ĥ〉 = h̄ω

(
〈n̂〉+ 1

2

)
= h̄ω

(
〈|α|2〉P +

1
2

)
= h̄ω

(
1

eβh̄ω − 1
+

1
2

)
≡ h̄ω

2 tanh(βh̄ω/2)
, (24)

a temperature dependent expression, where the statistical average UP = h̄ω〈|α|2〉P, is
regarded as the P−semi classical contribution to the mean energy U.

2.5. Q−Function

Alternatively, we can take the diagonal matrix element of the density operator ρ̂

Q(α, α∗) = 〈α|ρ̂|α〉, (25)

an expression possessing all the properties of a classical probability distribution [11]. For a
thermal state, the Q−function is the Gaussian quantity [11]

Q(α, α∗) =
1

1 + 〈n̂〉 exp
(
− |α|2

1 + 〈n̂〉

)
. (26)

The Q−representation yields operator averages in antinormal order, so that

〈âs â†r〉Q =
∫ d2α

π
Q(α, α∗) α∗rαs, (27)

where 〈. . .〉Q denotes the average with respect to Q(α, α∗) [11]. Taking s = r = 1,
Equation (27) reduces to

〈|α|2〉Q = 〈ââ†〉Q =
∫ d2α

π
Q(α, α∗) |α|2 = 〈|α|2〉Q, (28)

and we have
〈n̂〉 = 〈(ââ† − 1)〉 = 〈|α|2〉Q − 1. (29)

Finally, from Equation (29) the mean energy in terms of the averages of Q turns out
to be
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U = 〈Ĥ〉 = h̄ω

(
〈n̂〉+ 1

2

)
= h̄ω

(
〈|α|2〉Q −

1
2

)
= h̄ω

(
1

1− e−βh̄ω
− 1

2

)
≡ h̄ω

2 tanh(βh̄ω/2)
. (30)

It coincides with the pertinent expression obtained via the P-representation. Here, the
mean value UQ = h̄ω〈|α|2〉Q, which is considered as the Q−semi classical contribution to
the energy U, was calculated using

〈|α|2〉Q = 2
∫ ∞

0
dα Q(α, α∗) |α|3 =

1
1− e−βh̄ω

, (31)

with Q(α, α∗) given by Equation (26).

2.6. Wigner Function W

The Wigner function W can be obtained from the P−function from the relation [15]

W(α, α∗) = 2
∫ d2z

π
P
(

α, α∗) exp(−2|α− z|2
)

, (32)

such that for a thermal state one has

W(α, α∗) =
1

〈n̂〉+ 1/2
exp

(
− |α|2
〈n̂〉+ 1/2

)
, (33)

with 1/(〈n̂〉+ 1/2) = 2 tanh(βh̄ω/2). The symmetric ordered operator used in this Wigner
representation is, in this case

〈(â†r âs)S〉W =
∫ d2α

π
W(α, α∗) α∗rαs, (34)

where (â†r âs)S denotes the symmetric product of the creation and destruction operators
and 〈. . .〉W indicates the average with respect to W(α, α∗) [11]. For r = s = 1 we find (the
sub-index S means symmetrical)

〈(â† â)S〉W =
∫ d2α

π
W(α, α∗) |α|2 =

1
2

(
〈âa†〉+ 〈â† â〉

)
, (35)

yielding

〈n̂〉 = 〈|α|2〉W −
1
2

. (36)

From Equation (36) we encounter the mean energy in the fashion

U = 〈Ĥ〉 = h̄ω

(
〈n̂〉+ 1

2

)
= h̄ω〈|α|2〉W =

h̄ω

2 tanh(βh̄ω/2)
, (37)

where we have expressed the mean value of |α|2W according to

〈|α|2〉W = 2
∫ ∞

0
dα W(α, α∗) |α|3 =

1
2 tanh(βh̄ω/2)

, (38)

with W(α, α∗) a statistical wight function given by Equation (33). Thus, in this case we
name UW = h̄ω〈|α|2〉W .

Not surprisingly, the mean value of energy U for a thermal state is the same in our
three representations and equals that obtained from −Trρ̂ ln ρ̂ (harmonic oscillator in the
canonical ensemble). However, UP and UQ do not coincide with U, as UW does.

3. Three Semiclassical Ways of Expressing the Temperature Dependent Mean
Energy U

As stated above, it is interesting to inspect Equations (24), (30) and (37), because they
tell us about the three possible ways of semi classically expressing the temperature depen-
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dent mean energy U(T) of the quantum harmonic oscillator. The three ways correspond to
the chosen representation. In the P−representation, we have to express the mean energy U
in the form UP, which reads

UP = h̄ω 〈|α|2〉P =
h̄ω

eβh̄ω − 1
. (39)

Using the Q−representation, we express U(T) one as

UQ = h̄ω 〈|α|2〉Q =
h̄ω

1− e−βh̄ω
, (40)

and, finally, the W way of expressing U(T) is

UW = h̄ω 〈|α|2〉W =
h̄ω

2 tanh(βh̄ω/2)
. (41)

We will now compare these three semi classical mean energies to the classical one
and ask how close each of the three is to the classical mean energy. We might then think
that graphical closeness yields a kind of “degree of classicality”. Alternatively, of lack
of “quantumness”. To repeat, we may associate graphical closeness with some degree of
quantumness. This is just a suggestion, nor a firm commitment. A more tangible way of
speaking of the classicality degree is to introduce the ratio between the semi classical mean
value and the classical one

ηP ≡ η(P) =
UP

Uclass
, ηQ ≡ η(Q) =

UQ

Uclass
, ηW ≡ η(W) =

UW
Uclass

, (42)

which we plot in Figure 1.

ηP

ηQ

ηW

ηclass

0 1 2 3 4 5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

kBT/ℏω

de
gr
ee
of
qu
an
tu
m
ne
ss

Figure 1. Ratio with Uclass of the mean energies UP, UQ, UW . At high T, the ratios tend to converge
to the classical case ηclass = 1. They are instead quite different at very low T. One observes a clear
qualitative difference between the P-case, on the one hand, and the other two, on the other one.

Summarizing, we state that we have found the temperature-dependent relation

U = UW = UQ −
h̄ω

2
= UP +

h̄ω

2
. (43)

We plot our three representation of the mean energy in Figure 2 together with the
well-known classical energy Uclass = kBT [10].
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UP

UQ
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Uclass
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Figure 2. Temperature dependent mean energies UP, UQ, UW , and Uclass in h̄ω−units versus kBT/h̄ω.

From the right equality in Equation (43), we obtain the T = 0 energy of the vacuum
state as follows

h̄ω

2
=

UQ −UP

2
, (44)

an identity that we can also cast as

h̄ω = UQ −UP. (45)

Replacing Equation (44) into equality (43), allows us to find

U = UW =
UQ + UP

2
, (46)

which is an expression that allows us to relate the three mean energies UW , UQ, and UP.

4. Comparing the Three Associated Entropies

In this Section, we start comparing the Boltzmann-Gibbs’ information measures (en-
tropies) for our three quasi-distribution probabilities in phase space with the purpose to
compare them and to ascertain their information content. In addition, we will incorporate
their classical and quantum counterparts. First, for the P−function, we have

SP = −
∫ d2α

π
P(α, α∗) ln P(α, α∗), (47)

that in view of Equation (19), after performing the integral it becomes

SP = 1 + ln〈n̂〉. (48)

We take the Boltzmann constant kB equal to unity, hereafter. Considering the average-
particle number 〈n̂〉 given by Equation (20), we have that [16]

SP = 1− ln
(

eβh̄ω − 1
)

. (49)



Symmetry 2022, 14, 2052 8 of 12

Second, for the Q−function we define the entropy

SQ = −
∫ d2α

π
Q(α, α∗) ln Q(α, α∗). (50)

Introducing Equation (26) we obtain

SQ = 1 + ln(1 + 〈n̂〉), (51)

so that taking into account Equation (20), we obtain [16]

SQ = 1− ln(1− e−βh̄ω). (52)

Note this entropy SQ is the Wehrl entropy, i.e., the entropy of the Husimi distribution [17,18].
Third, for the Wigner function, we have

SW = −
∫ d2α

π
W(α, α∗) ln W(α, α∗), (53)

that considering Equation (33), becomes

SW = 1 + ln(1/2 + 〈n̂〉). (54)

From Equation (20), by means of algebraic manipulation, we obtain [16]

SW = 1− ln(2 tanh(βh̄ω/2)). (55)

In addition, the Shannon entropy is

S = −Tr(ρ̂ ln ρ̂), (56)

that from Equation (11) adopts the appearance [10]

S =
βh̄ω

eβh̄ω − 1
− ln

(
1− e−βh̄ω

)
. (57)

Now, from Equation (20) we obtain

βh̄ω = ln
(

1 + 〈n̂〉
〈n̂〉

)
, (58)

and we can replace this in S, given by Equation (57). Thus, one finds

S = (1 + 〈n̂〉) ln(1 + 〈n̂〉)− 〈n̂〉 ln〈n̂〉. (59)

Finally, the classical entropy, or Boltzmann-Gibbs entropy is [10]

Sclass = 1− ln(βh̄ω). (60)

We compare the behaviors of all entropies in Figure 3. We observe that, while S,
SQ, and SW are positive definite, SP and Sclass can take negative values. Negative values
indicate a failure of a classical entropy due to quantum effects. Q−and W− entropies
are not affected in this way. In particular, SP > 0 if kBT/h̄ω > 1/(ln(1 + e)) = 0.76, and
Sclass > 0 if kBT/h̄ω > 1/e = 0.36 [16].



Symmetry 2022, 14, 2052 9 of 12

SP

SQ

SW

S

Sclass

0 1 2 3 4 5 6

0.0

0.5

1.0

1.5

2.0

2.5

3.0

kBT/ℏω

E
nt
ro
pi
es

Figure 3. Entropies SP, SQ, SW , S, and Sclass versus kBT/h̄ω.

Figure 4 compares the entropic differences Sexact − SR (R = P, Q, W, classic) to ascer-
tain the type of information-content associated to each representation.

S-SP

S-SQ

S-SW

S-Sclass

0 1 2 3 4 5 6

-1

0

1

2

3

kBT/ℏω

Δ
S

Figure 4. Entropic differences S minus, respectively, SP, SQ, SW , and Sclass, in terms of kBT/h̄ω.

Remember that entropies measure ignorance or a lack of information [19]. Thus, the W
and Q distributions contain less information than the exact one. This is expected. Instead,
the P and the classical distributions appear to contain more information. This is expected
for the classical entropy (no uncertainties involved) and we here discover that the same
applies to the P−instance, due to the classical contamination detected above.

5. Thermal Uncertainty Relations
5.1. P−Representation

We explore here interesting connections that involve the thermal uncertainty relations.
Some details can be found in Ref. [20]. First, let us consider the P− representation. Since
〈x〉P = 〈p〉P = 〈α〉P = 0, we calculate

(∆P x)2 = 〈x2〉P = 2σ2
x 〈|α2|〉P, (61)

that for Equation (23) we obtain
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(∆P x)2 =
2σ2

x

eβh̄ω − 1
. (62)

Similarly,

(∆P p)2 = 〈p2〉P = 2σ2
p 〈|α2|〉P, (63)

and Equation (23) yields

(∆P p)2 =
2σ2

p

eβh̄ω − 1
. (64)

From Equations (62) and (64) we find the semi classical thermal uncertainty relation

∆P ≡ ∆P x∆P p =
h̄

eβh̄ω − 1
. (65)

Notice that, taking into account Equations (23) and (39), we can establish the follow-
ing relation

∆P

(
1

〈|α2|〉P

)
= ∆P

(
1

uP

)
= h̄, (66)

where uP = UP/h̄ω. The connection (66) shows that 1/〈|α2|〉P and 1/uP are the canonically
conjugate variables of ∆P in a semiclassical context. It is the thermal uncertainty relation in
the P− representation.

5.2. Q−Representation

We employ a similar procedure using the Q− representation. We start from 〈x〉Q =
〈p〉Q = 〈α〉Q = 0 and equations

(∆Q x)2 = 〈x2〉Q = 2σ2
x 〈|α2|〉Q, (67)

and
(∆Q p)2 = 〈p2〉Q = 2σ2

p 〈|α2|〉Q, (68)

Using now Equation (26) we immediately find the semiclassical thermal uncer-
tainty relation

∆Q ≡ ∆Q x∆Q p =
h̄

1− e−βh̄ω
. (69)

Considering subsequently Equations (26) and (40), we arrive at

∆Q

(
1

〈|α2|〉Q

)
= ∆Q

(
1

uQ

)
= h̄, (70)

with uQ = UQ/h̄ω. The semiclassical connection (70) shows that 1/〈|α2|〉Q and 1/uQ are
the canonically conjugate variables of ∆Q.

5.3. W−Representation

For the W− representation, we have 〈x〉W = 〈p〉W = 〈α〉W = 0 together with

(∆W x)2 = 〈x2〉W = 2σ2
x 〈|α2|〉W , (71)

and
(∆W p)2 = 〈p2〉W = 2σ2

p 〈|α2|〉W . (72)

Employing now Equation (26), we obtain the semiclassical thermal uncertainty relation
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∆W ≡ ∆W x∆W p =
h̄

2 tanh(βh̄ω/2)
. (73)

Considering Equations (33) and (41) we arrive to

∆W

(
1

〈|α2|〉W

)
= ∆W

(
1

uW

)
= h̄, (74)

with uW = UW/h̄ω. The semiclassical connection (74) shows that 1/〈|α2|〉W and 1/uW are
the canonically conjugate variables of ∆W .

5.4. Joining Things

We conclude that

∆{P,Q,W}

(
1

〈|α2|〉{P,Q,W}

)
= ∆{P,Q,W}

(
1

u{P,Q,W}

)
= h̄. (75)

Accordingly, the three representations are associated to an amount of uncertainty that
is two times the minimum quantum one.

6. Conclusions

We have studied in some detail the three usual quantum optics’ distribution-representations
W, P, and Q. We discover that the W and Q distributions contain less information than the exact
one, which is to be expected, since they are approximations. Instead, the P and the classical
distributions appear to contain more information, which is again to be expected for the classical
entropy (no uncertainties involved). In addition, we here find that the same applies to the P−
instance, due to its classical contamination detected in the preceding section. One might assert
that the P distribution is a better approximation to the classical entropy than to the quantum
one. Finally, the three representations are characterized by uncertainties that are two times the
minimum quantum one.

Our main conclusion is that some of them have either larger, or surprisingly smaller,
entropies than the exact one. However, the three lead to uncertainties greater, by a factor
two, than the minimum quantum one. Comparison of the mean energy teaches us that,
looking at very low temperatures, the Q−representation increasingly differs from the P one.
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