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Abstract: This paper is concerned with the oscillation and asymptotic behavior of certain third-order
nonlinear delay differential equations with distributed deviating arguments. By establishing sufficient
conditions for the nonexistence of Kneser solutions and existing oscillation results for the studied
equation, we obtain new criteria which ensure that every solution oscillates by using the theory
of comparison with first-order delay equations and the technique of Riccati transformation. Some
examples are presented to illustrate the importance of main results.
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1. Introduction

Since the beginning of the eighteenth century, scientists began to focus light on the
study and development of the oscillation theory and with this rapid development, many
results appeared related to the asymptotic behavior of first- and second-order differential
equations, see [1–4]; while few results appeared for third-order equations. It is worth noting
that fixed point theory and fractional calculus emerged as two indispensable and inter-
related tools in the mathematical modelling of various experiments in nonlinear sciences
and engineering over the last few decades, for example [5–9].

In recent years, the oscillation theory of different classes of third-order functional
differential equations and dynamical functional equations on time scales has received great
attention from researchers in various fields because they have wide applications in natural
sciences and engineering, see [10–15]. In particular, the oscillation property for solutions of
these equations plays an important role in explaining the various phenomena of life, which
encouraged researchers to make greater efforts to achieve better results. We refer the reader
to [16–22]. However, interest in third-order neutral differential equations has remained
somewhat limited, for instance [23–43].

In this recent study, we focus on the oscillation of the third-order neutral differential
equation of the following form:(

Ψ
(
Ω′′
)α
)′
(ι) +

∫ b

a
ϕ(ι, s)F(θ(ν(ι, s)))ds = 0, for ι ≥ ι0, (1)
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where
Ω(ι) = θ(ι) + m(ι)θ(σ(ι)),

F ∈ C(R,R), |F(θ)| ≥ κ
∣∣θβ
∣∣, θ 6= 0, κ > 0 and α and β are ratios of non-negative and

non-zero odd and natural numbers. We consider the below assumptions:

(I1) m, Ψ ∈ C([ι0, ∞)), m(ι) ≤ m0 < ∞ and Ψ > 0 such that∫ ∞
Ψ−1/α(s)ds = ∞; (2)

(I2) ϕ ∈ C([ι0, ∞)× (a, b),R), ϕ(ι, s) > 0 does not vanish identically;
(I3) σ ∈ C([ι0, ∞), (0, ∞)), σ(ι) < ι, σ′(ι) ≥ σ0 > 0 and limι→∞ σ(ι) = ∞;
(I4) ν ∈ C([ι0, ∞)× (a, b),R), ν(ι, s) < ι, limι→∞ ν(ι, s) = ∞. Furthermore σ ◦ ν = ν ◦ σ;
(I4a) σ(ι) = ι− δ0 for δ0 ≥ 0, m(ι) = m0 6= 1.

By a solution to (1), we mean a nontrivial function θ ∈ C([ι0, ∞), [0, ∞)) with ιθ ≥ ι0,
which has the property Ψ(Ω′′)α ∈ C([ιa, ∞), [0, ∞)) and satisfies (1) on [ιb, ∞). We only
consider those solutions of (1) which exist on some half-line [ιc, ∞) such that it holds
the property sup{|θ(ι)| : ιc ≤ ι < ∞} > 0 for any ιc ≥ ιb. Furthermore, if a solution θ
of (1) is neither eventually positive nor eventually negative, then it is said to be oscillatory.
Otherwise, it is said to be nonoscillatory. The equation itself is termed oscillatory if all its
solutions oscillate.

Definition 1. Let θ is positive solution and corresponding function Ω(ι) and its second derivative
are positive functions. If
(i) Ω′(ι) > 0, then we call the set of all solutions θ of (1) class C1;
(ii) Ω′(ι) < 0, then we call the set of all solutions θ of (1) class C2.

Below, some motivation and some previous studies are provided. Grace et al. [21]
considered a nonlinear differential equation(

Ψ2(ι)
(
Ψ1(ι)θ

′(ι)
)′)′

+ ϕ(ι)θ(ν(ι)) = 0, for ι ≥ ι0, (3)

under condition ∫ ∞

t0

Ψ−1
1 (t)ds =

∫ ∞

t0

Ψ−1
2 (t)ds = ∞. (4)

Saker et al. [44] studied nonlinear differential equation(
Ψ(ι)

(
θ′′(ι)

)α
)′

+ ϕ(ι)θα(ν(ι)) = 0, for ι ≥ ι0,

and established some sufficient conditions which guarantee that every solution of (1) oscil-
lates or converges to zero under condition (2). By comparison with first order oscillatory
differential equations, Elabbasy et al. [19] established oscillation criteria for third-order
nonlinear differential equation(

Ψ1(ι)
((

Ψ2(ι)θ
′((ι))α1

)′)α2
)′

+ ϕ(ι) f (θ(ν(ι))) = 0.

Furthermore, Li et al. [34] extended some of their results to neutral differential equation
where α1 = α2 = 0. Thandapani and Li [20] considered the oscillation of equation(

Ψ(ι)
(
(θ(ι) + m(ι)θ(σ(ι)))′′

)α)′
+ ϕ(ι)θα(ν(ι)) = 0,

and assumed that
∫ ∞ Ψ−1/α(t)ds = ∞ and m(ι) ≥ 1. For the same equation, Dzurina

et al. [33] obtained different results under condition 0 ≤ m(ι) ≤ m0 < ∞.
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Li et al. [36] extended the oscillation results in [21] for Equation (3) to be in the form(
Ψ1(ι)

(
Ψ2(ι)(θ(ι) + m(ι)θ(σ(ι)))′

)′)′
+ ϕ(ι)θ(ν(ι)) = 0, for ι ≥ ι0, (5)

they established some sufficient condition for the nonexistence of a positive decreasing
solution under the assumption

0 ≤ m(ι) ≤ m0 < 1, (6)

with three cases for Ψ1 and Ψ2 as follows:

case
∫ ∞

t0

Ψ−1
1 (t)ds < ∞ and

∫ ∞

t0

Ψ−1
2 (t)ds = ∞

and
case

∫ ∞

t0

Ψ−1
1 (t)ds < ∞ and

∫ ∞

t0

Ψ−1
2 (t)ds < ∞

in addition to the case (4).
Moreover, Baculikova and Dzurina [25] obtained new oscillation criteria and covered

both cases when the term in neutrality is positive or negative and (6) holds. Furthermore,
Candan in [26,27] examined the oscillation behavior of (5) under the condition (6).

Contrary to [19–21,33] which include conditions that guarantee that the solutions of
the Equation (1) are almost oscillatory, we aim in this paper to establish two different con-
ditions which ensure the oscillation of all solutions of Equation (1) by using the technique
of comparison with first order delay differential equations and the technique of Riccati
transformation. These results extend, simplify, and improve the results in [28–30].

2. Some Lemmas

In this section, we provide several lemmas that we will intensively use in the main re-
sults.

Lemma 1 ([3]). Suppose that d1, d2 ∈ [0, ∞). Then

(d1 + d2)
γ ≤ µ

(
dγ

1 + dγ
2
)
, (7)

where µ = 1 if γ ∈ (0, 1] and µ = 2γ−1 if γ ∈ (1, ∞).

Lemma 2 ([38], Lemma 2.2). Suppose that θ(ι) > 0 and Ω(ι) is a nonincreasing positive solution
of (1), eventually. Then

Ωβ−α(ι) ≥ ς(ι) :=


1 if α = β
a1 if α > β

a2πβ−α(ι) if α < β

, where a1, a2 are positive constants.

Lemma 3 ([16]). Assume that θ ∈ Cy([ι0, ∞), (0, ∞)), θ(y)(ι) is not identically zero on [ι0, ∞)
and fixed sign as well as θ(y)(ι) not a value of zero on [ι0, ∞) in a way that

θ(y−1)(ι)θ(y)(ι) ≤ 0, ∀ι ≥ ι1.

If limι→∞ θ(ι) 6= 0, then

θ(ι) ≥ µ

(y− 1)!
ιy−1

∣∣∣θ(y−1)(ι)
∣∣∣ ∀µ ∈ (0, 1) and ι ≥ ιµ ≥ ι1.
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Lemma 4 ([11]). Let ũ, ṽ ∈ C([ι0, ∞),R), ũ(ι) = ṽ(ι) + Dṽ(ι− B) for ι ≥ ι0 + max{C, 0},
and D 6= 1 as well as B are fixed values. Assume that ∃ l ∈ R such that limι→∞ ũ = l

(a) I f lim inf
ι→∞

ṽ(ι) = ṽ∗ ∈ R, then ṽ∗ = l/(1 + D);

(b) I f lim sup
ι→∞

ṽ(ι) = ṽ∗ ∈ R, then ṽ∗ = l/(1 + D).

Now, for the sake of brevity, we will define the following operators:

£Ω := Ψ
(
Ω′′
)α and £̂Ω := £Ω(ι) +

(m0)
β

σ0
£Ω(σ(ι)).

Furthermore, throughout this paper, we use the following notations for sufficiently large ι1
with ι1 ≥ ι0:

η(ι, u) : =
∫ ι

u

1

Ψ
1
α (H)

dH, η̃(ι, u) =
∫ ι

u

(∫ H

u

1

Ψ
1
α (u)

du

)
dH; for ι ≥ ι0;

ϕ̃(ι) : = min{ϕ(ι, H), ϕ(σ(ι, H))};

ϕ(ι, H) : =
∫ b

a
ϕ̃(ι, H)dH, ϕ̂(ι, H) :=

1
Ψ(u)

∫ ∞

u
ϕ(ι, H)dH

and

Õ(ι, H) =
∫ b

a
ϕ̃(ι, H)(η̃(σ, H))βdH.

Lemma 5. Let θ ∈ C2. Then
Ω(u) ≥ η̃(v, u)£1/αΩ(v), (8)

for v ≥ u, and (
£̂Ω
)′
≤ − κ

µ

∫ b

a
ϕ̃(ι, H)Ωβ(ν(ι, H))dH. (9)

Proof. Let θ be solution of (1) and θ > 0. Then, θ(σ(ι)) and θ(ν(ι, H)) are positive functions
for ι1 ≤ ι. By Lemma 1, (1) and (I2), we obtain

Ωβ(ι) ≤ µ
(

θβ(ι) + mβ
0 θβ(σ(ι))

)
. (10)

Since £Ω(ι) is nonincreasing, we have

−Ω′(u) ≥
∫ v

u

1
Ψ1/α(H)

£1/αΩ(H)dH ≥ £1/αΩ(v)
∫ v

u

1
Ψ1/α(H)

dH, for u ≤ v. (11)

Integrating (from u to v), we get

Ω(u)−Ω(v) ≥ £1/αΩ(v)
∫ v

u

(∫ ρ

u

1
Ψ1/α(H)

dH
)

dρ.

Thus,
Ω(u) ≥ η̃(v, u)£1/αΩ(v). (12)

Now, from (1) and (I3), we obtain

(£Ω(σ(ι)))′
1

σ′(ι)
+ κ

∫ b

a
ϕ(σ(ι, H))θβ(ν(σ(ι, H)))dH ≤ 0. (13)
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Combining (10) and (13) then combining the resulting inequality with (1), we get

0 ≥ (£Ω(ι))′ + κ
∫ b

a
ϕ(ι, H)θβ(ν(ι, H))dH +

mβ
0

σ0
(£Ω(σ(ι)))′

+mβ
0 κ
∫ b

a
ϕ(σ(ι, H))θβ(ν(σ(ι, H)))dH

≥ (£Ω(ι))′ +
mβ

0
σ0

(£Ω(σ(ι)))′

+κ
∫ b

a
ϕ̃(ι, H)

(
θβ(ν(ι, H)) + mβ

0 θβ(ν(σ(ι, H)))
)

dH.

Thus, (
£̂Ω
)′

+
κ

µ

∫ b

a
ϕ̃(ι, H)Ωβ(ν(ι, H))dH ≤ 0. (14)

The proof of the lemma is complete.

3. Main Results

The following theorems contain conditions that guarantee nonexistence of positive
decreasing solutions and nonexistence of positive increasing solutions.

Theorem 1. Suppose that ∃= ∈ C([ι0, ∞), (0, ∞)), σ(ι) ≤ =(ι), ν−1(=(ι)) < ι and=′(ι, H) > 0.
If one of the following statements is true:
(b1) β = α and condition

lim
ι→∞

inf
∫ ι

σ−1(=(ι))
Õ(ι, H)dH >

µ
(

σ0 + mβ
0

)
kσ0e

. (15)

is hold.
(b2) β > α, there exists a function ξ(ι) ∈ C1([ι0, ∞)) such that ξ ′(ι) > 0, limι→∞ ξ(ι) = ∞,

lim sup
ι→∞

βξ ′
(
σ−1(=(ι))

)(
σ−1(=(ι))

)′
αξ ′(ι)

< 1 (16)

and

lim inf
ι→∞

 κ

µξ ′(ι)

(
σ0

σ0 + mβ
0

)β/α

Õ(ι,=)e−ξ(ι)

 > 0. (17)

Then C2 = ∅.

Proof. Assume that the solution of (1) is θ > 0 and the case (ii) holds. Then, θ(ν(ι, H)) and
θ(σ(ι)) are positive functions for ι1 ≤ ι, ι1 sufficiently large. Thus, from (1), we see that(

Ψ
(
Ω′′
)α
)′
(ι) ≤ 0 for ι ≥ ι1.

Using Lemma 5, we arrive at (8) and (9). Combining (9) and (8) with replacing u and v with
σ(ι) and =(ι), respectively, we find(

£̂Ω
)′

+
κ

µ

∫ b

a
ϕ̃(ι, H)(η̃(σ,=))β£β/αΩ(=(ι, H))dH ≤ 0. (18)

Since =(ι, H) is nonincreasing with respect to H, we get(
£̂Ω
)′

+
κ

µ
£β/αΩ(=(ι, a))Õ(ι, H) ≤ 0.
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Using £Ω(ι) is nonincreasing, we find that £Ω(ι) ≤ £Ω(σ(ι)), hence

£̂Ω ≤
(

1 +
1
σ0

mβ
0

)
£Ω(σ(ι)). (19)

From (18) along with (19), we note that υ(ι) := £̂Ω is a positive solution of inequality

υ′(ι) +
κ

µ
Õ(ι, H)

(
σ0

σ0 + mβ
0

)β/α

υβ/α
(

ν−1(=(ι, a))
)
≤ 0.

That is by ([13] Theorem 1), we note that the associated delay equation

υ′(ι) +
κ

µ
Õ(ι, H)

(
σ0

σ0 + mβ
0

)β/α

υβ/α
(

ν−1(=(ι, a))
)
= 0, (20)

also has a positive solution. Hence, it is well-known from [1,18] that conditions (15)–(17)
imply oscillation of (20), which is a contradiction. The proof is complete.

Theorem 2. Let β ≥ α. If ∃ ℵ ∈ C([ι0, ∞), (0, ∞)) and ℵ(ι) ≤ ι, σ(ι) ≤ ν(ℵ(ι)) and

lim sup
ι→∞

klβ−αηα(σ, ν(ℵ))
∫ ι

ℵ(ι)
ϕ̃(ι, H)dH > µ

(
1 +

1
σ0

mβ
0

)
, M > 0, (21)

then C2 = ∅.

Proof. As in the proof of Theorem 1, we get (19). By Lemma 5, we have (8) and (9). By
integrating (9) from ℵ(ι) to ι, we find that

0 < £Ω(ι) +
1
σ0

mβ
0 £Ω(ν(ι)) ≤ £Ω(ℵ(ι)) + 1

σ0
mβ

0 £Ω(ν(ℵ(ι)))

− κ

µ

∫ ι

ℵ(ι)
ϕ̃(ι, H)Ωβ(σ(ι, H))dH,

which with (19) gives(
1 +

1
σ0

mβ
0

)
£Ω(ν(ℵ(ι))) ≥ κ

µ
Ωβ(σ(ι, H))

∫ ι

ℵ(ι)
ϕ̃(ι, H)dH. (22)

Since Ω′(ι) < 0, there exists a positive constant l > 0 such that Ω(ι) ≥ l for ι ≥ ι2, that is,
(22) becomes (

1 +
1
σ0

mβ
0

)
£Ω(ν(ℵ(ι))) ≥ klβ−α

µ
Ωα(σ(ι))

∫ ι

ℵ(ι)
ϕ̃(ι, H)dH.

From (8) [u = σ(ι) and v = ν(ℵ(ι))], we find(
1 +

1
σ0

mβ
0

)
≥ klβ−α

µ
ηα(σ, ν(ℵ))

∫ ι

ℵ(ι)
ϕ̃(ι, H)dH. (23)

Taking the lim sup of (23), we obtain a contradiction to (21). The proof is complete.

Theorem 3. Suppose that σ(ι) ≤ ν(ι) and ν′(ι, a) > 0. If ∃ (ι) ∈ C1([ι0, ∞), (0, ∞)) and
ι1 ≥ ι0 such that

lim sup
ι→∞

∫ ι

ι1

[
(ι)

ς(ν(ι, a))κ
µ

ϕ(ι, H)−
σ0 + mβ

0

(α + 1)α+1σ0

(′(ι))α+1

((ι)η(ν(ι), ι1)ν′(ι))
α

]
dH = ∞, (24)
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then C1 = ∅.

Proof. Let θ > 0 is a solution of (1) and satisfy case (i). Define a positive function by

ω(ι) =
(ι)£Ω(ι)

Ωα(ν(ι))
. (25)

Hence, by differentiating (25), we get

ω′(ι) = ′(ι)
£Ω(ι)

Ωα(ν(ι))
+ (ι)

(£Ω(ι))′

Ωα(ν(ι))
− αρ(ι)£Ω(ι)Ωα−1(ν(ι))Ω′(ν(ι))ν′(ι)

Ω2α(ν(ι))
. (26)

Substituting (25) into (26) implies

ω′(ι) = (ι)
(£Ω(ι))′

Ωα(ν(ι))
+

′(ι)

(ι)
ω(ι)− αη(ν(ι), ι1)ν

′(ι)


1
α (ι)

ω
α+1

α (ι). (27)

Now, define function v by

v(ι) = (ι)
£Ω(σ(ι))

Ωα(ν(σ(ι)))
. (28)

By differentiating (28), we get

v′(ι) = ′(ι)
£Ω(σ(ι))

Ωα(ν(ι))
+ (ι)

(£Ω(σ(ι)))′

Ωα(ν(ι))
− αρ(ι)£Ω(σ(ι))Ωα−1(ν(ι))Ω′(ν(ι))ν′(ι)

Ω2α(ν(ι))
. (29)

Substituting (28) into (29) implies

v′(ι) = (ι)
(£Ω(σ(ι)))′

Ωα(ν(ι))
+

′(ι)

(ι)
v(ι)− αη(ν(ι), ι1)ν

′(ι)


1
α (ι)

v
α+1

α (ι). (30)

From (27) and (30), we have

ω′(ι) +
mβ

0
σ0

v′(ι) ≤
(ι)

(
(£Ω(ι))′ +

mβ
0

σ0
(£Ω(σ(ι)))′

)
Ωα(ν(ι))

+
′(ι)

(ι)
ω(ι)− αη(ν(ι), ι1)ν

′(ι)


1
α (ι)

ω
α+1

α (ι)

+
mβ

0
σ0

(
′(ι)

(ι)
v(ι)− αη(ν(ι), ι1)ν

′(ι)


1
α (ι)

v
α+1

α (ι)

)
. (31)

From Lemma 2 and ν(ι, a) is increasing, and (9) becomes(
£̂Ω
)′
≤ − κ

µ
Ωβ(ν(ι, a))ϕ(ι, H)

≤ − ς(ν(ι, a))κ
µ

Ωα(ν(ι, a))ϕ(ι, H). (32)
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Take into account Lemma 1, (32) and (31), we obtain

ω′(ι) +
mβ

0
σ0

v′(ι) ≤ −(ι)
ς(ν(ι, a))κ

µ
ϕ(ι, H)

+
′(ι)ω(ι)

(ι)
− αη(ν(ι), ι1)ν

′(ι)ω
α+1

α (ι)


1
α (ι)

+
mβ

0
σ0

(
′(ι)v(ι)

(ι)
− αη(ν(ι), ι1)ν

′(ι)v
α+1

α (ι)


1
α (ι)

)
.

Applying the following inequality

Bu− Au
α+1

α ≤ ααBα+1

(α + 1)α+1 Aα
, A > 0,

with

A =
αη(ν(ι), ι1)ν

′(ι)


1
α (ι)

and B =
1

(ι)
′(ι),

we get

ω′(ι) +
mβ

0
σ0

v′(ι) ≤ −(ι)κ
ς(ν(ι, a))

µ
ϕ(ι, H) +

(′(ι))α+1

(α + 1)α+1((ι)η(ν(ι), ι1)ν′(ι))
α

+

mβ
0

σ0
(′(ι))α+1

(α + 1)α+1((ι)η(ν(ι), ι1)ν′(ι))
α

.

Integrating (from ι1 to ι), we see that

∫ ι

ι1

[
(ι)ς(ν(ι, a))κ

µ
ϕ(ι, H)−

σ0 + mβ
0

(α + 1)α+1σ0

(′(ι))α+1

((ι)η(ν(ι), ι1)ν′(ι))
α

]
dH ≤ ω(ι2) +

mβ
0

σ0
v(ι2).

The proof is complete.

Oscillation criteria

The following theorem provides some criteria that guarantee all solutions of Equation (1)
oscillate.

Theorem 4. If all assumptions of Theorem 1 or Theorem 2 and assumptions of Theorem (3) and are
satisfied, then Equation (1) is oscillatory.

Remark 1. It is clear that the results we obtained under the condition

m(ι) ≤ m0 < ∞.

So, our results are an improvement of results in [21,25,34].

For a special case of the Equation (1), we present the following results under condition
(I4a), and for the sake of brevity, we define

ϕ̃1(ι, H) =
∫ b

a
ϕ(ι, H)(η̃(ι, H))βdH

and

ϕ̂1(ι, H) =
∫ b

a
ϕ̃(ι, H)ν2β(ι, H)dH.
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Lemma 6. Let θ(ι) > 0 is a solution of equation (1) the corresponding function belongs to class
C2. If ∫ ∞

ι0

∫ ∞

υ
(ϕ̃(ι, H))1/αdudυ = ∞, (33)

then
lim
ι→∞

θ(ι) = 0. (34)

Proof. Since Ω(ι) is nonincreasing positive function, there exists a constant Ω0 ≥ 0 such
that limι→∞ g(ι) = Ω0 ≥ 0. We claim that Ω0 = 0. Otherwise, using Lemma, we conclude
that limι→∞ θ(ι) = Ω0/(1 + m0) > 0. Therefore, there exists a ι2 ≥ ι0 such that, for all
ι ≥ ι2

θ(ν(ι)) >
Ω0

2(1 + m0)
> 0. (35)

From (1) and (35), we see that

(£Ω((ι)))′ ≤ −κ
∫ b

a
ϕ(ι, H)

(
Ω0

2(1 + m0)

)β

dH.

Integrating the above inequality from ι to ∞, we have

£Ω((ι)) ≥ κ

(
Ω0

2(1 + m0)

)β ∫ ∞

ι
ϕ(u, H)du.

It follows that

Ω′′(ι) ≥ κ

(
Ω0

2(1 + m0)

) β
α
(

1
Ψ(ι)

∫ ∞

ι
ϕ(u, H)du

) 1
α

. (36)

Integrating (36) from ι to ∞, yields

−Ω′(ι) ≥ κ

(
Ω0

2(1 + m0)

) β
α
∫ ∞

ι

(
1

Ψ(ϑ)

∫ ∞

ϑ
ϕ(u, H)du

)1/α

dϑ.

Integrating again from ι2 to ∞, we obtain

Ω(ι2) ≥ κ

(
Ω0

2(1 + m0)

) β
α
∫ ∞

ι2

∫ ∞

υ

(
1

Ψ(ϑ)

∫ ∞

ι
ϕ(u, H)du

)1/α

dϑdυ,

which contradicts (33). Therefore, limι→∞ Ω(ι) = 0, that is 0 < θ(ι) ≤ Ω(ι). Thus we have
property (34). The proof of the lemma is complete.

Theorem 5. Assume (33) hold, ∃ W ∈ C(I,R) such that W(ι) ≤ σ(ι), W(ι) < ι and
limι→∞ W(ι) = ∞. If one of the first-order delay differential equations

y′(ι) +
ϕ̃1(ι, H)

(1 + m0)
β

y
β

α (W(ι, a)) = 0

or

w′(ι) +
kλβ

2βµ

(
σ0

σ0 + mβ
0

)
ϕ̂1(ι, H) wβ/α(σ(ι, a)) = 0

is oscillatory, then every solution θ(ι) of (1) is almost oscillatory.
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Proof. Let θ(ι) > 0 be a solution of (1), eventually. Then, ∃ ι1 ≥ ιo such that (i) or (ii) hold
∀ ι ≥ ι1. Let (ii) hold. By Lemma 6, we see that (34) satisfies it. Now, if (i) holds, since
Ω′′(ι) ≥ 0 and Ω(ι) > 0, ∃ a constant c0 such that

lim
ι→∞

Ω′(ι) = c0 > 0 (or c0 = ∞).

By Lemma 4, we have
lim
ι→∞

θ′(ι) = c0/(1 + m0) > 0,

this implies that θ(ι) ≥ 0 and, taking into account δ0 ≥ 0, we get

Ω(ι) = θ(ι) + m0θ(ι− δ0) ≤ (1 + m0)θ(ι),

that is
θ(ι) ≥ 1

1 + m0
Ω(ι).

We conclude that

θ(σ(ι)) ≥ θ(W(ι)) ≥ 1
1 + m0

Ω(W(ι)), for W(ι) ≤ σ(ι).

Substituting into (1), we have

(£Ω(ι))
′
+

κ
∫ b

a ϕ(ι, H)Ωβ(W(ι, H))dH

(1 + m0)
β

≤ 0. (37)

Using (8) and (37), we arrive at

0 ≥ (£Ω(ι))
′
+

(£Ω(W(ι, a)))
β

α

(1 + m0)
β

∫ b

a
ϕ(ι, H)(η̃(v, u))β

= (£Ω(ι))
′
+

1

(1 + m0)
β
(£Ω(W(ι, a)))

β

α ϕ̃1(ι, H).

Hence, one could have that y = £Ω(ι) is a non-zero and non-negative solution of

y′(ι) +
ϕ̃1(ι, H)

(1 + m0)
β

y
β

α (W(ι, a)) ≤ 0.

Using the same approach of Lemma 1, as well as from (1), (10) and (13), one could get that
(14) holds. Similarly, using the result of Lemma 3, one could get that

Ω(ι) >
λ

2
ι2Ω′′(ι). (38)

Since d
dι £Ω(ι) ≤ 0 and σ(ι) ≤ ι, we obtain £Ω(σ(ι)) ≥ £Ω(ι), and so

£Ω(ι) +
1
σ0

mβ
0 £Ω(σ(ι)) ≤

(
1 +

1
σ0

mβ
0

)
£Ω(ι),

which with (14) gives

(£Ω(ι))′ +
κ

µ

(
σ0

σ0 + mβ
0

) ∫ b

a
ϕ̃(ι, H)Ωβ(σ(ι, H))dH ≤ 0.
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Thus, from (38) and σ(ι, H) is increasing with respect to H, we find

(£Ω(ι))′ +
kλβ

2βµ

(
σ0

σ0 + mβ
0

)(
Ω′′(σ(ι, a))

)β
∫ b

a
ϕ̃(ι, H)σ2β(ι, H)dH ≤ 0.

If we set w := £Ω(ι) = Ψ(Ω′′)α, then one could get that w > 0 is one of the solutions to the
following delay inequality

w′(ι) +
kλβ

2βµ

(
σ0

σ0 + mβ
0

)
ϕ̂1(ι, H) wβ/α(σ(ι, a)) ≤ 0.

The proof is complete.

By choosing α = β, we obtain the following corollary:

Corollary 1. Let (33), ∫ ι+σ

ι
ϕ̂1(ι, H)dζ >

2βµ
(

σ0 + mβ
0

)
kλβσ0

(39)

and

kλβσ0

2βµ
(

σ0 + mβ
0

) ∫ ∞

ι0
Õ(ι, H) ln

e
∫ ι+σ

ι

kλβσ0

2βµ
(

σ0 + mβ
0

) ϕ̂1(ζ, H)dζ

dι = ∞. (40)

Then every solution θ(ι) of (1) is either oscillatory or satisfies (34).

Proof. In view of [2], conditions (39) and (40) imply oscillation of the delay differential
Equation (20).

Corollary 2. Let (33) be satisfied. Assume ∃W ∈ C(I,R) such that W(ι) ≤ σ(ι), W(ι) < ι and
limι→∞ W(ι) = ∞. If

(1 + m0)
∫ ι

W(ι,a)
lim inf ϕ̃1(ι, H)du >

1
e

.

Then every solution y(ι) of

y′(ι) +
ϕ̃1(ι, H)

(1 + m0)
y(W(ι, a)) = 0

is oscillatory. Therefore, every solution θ(ι) of (1) is either oscillatory or satisfies (34).

Example 1. Take into consideration the following third-order delay differential equation[(
[θ(ι) + pθ(λt)]′′

)α]′
+

ϕ0

ια(m−1)+1
θα(γt) = 0, such that γ, λ ∈ (0, 1). (41)

Setting (ι) = ι2, ζ(ι) = 0.5(γ + λ)ι, we see condition (24) is satisfied if

ϕ0 >
1

21−βγ2α

(
2α

α + 1

)α+1
(

σ0 + 
β
0

σ0

)
.

Moreover, when α = 1, condition (15) is satisfied if

ϕ0(γ− λ)2

8
ln
(

2γ

λ + γ

)
>

σ0 + m0

σ0e
.
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By Theorem 4, if

ϕ0 > max

 1
γ2

(
σ0 + 0

σ0

)
,

8
σ0e

(σ0 + m0)

(γ− λ)2 ln
(

2γ
λ+γ

)
,

then Equation (41) is oscillatory.

Example 2. Take into consideration the following third-order delay differential equation[(
[θ(ι) + pθ(0.5t)]′′

)]′
+

ϕ0

t3 θ(0.75t) = 0, t ≥ 1. (42)

Set (ι) = ι2, ζ(ι) = 3/8ι. By Theorem 4, we see that Equation (42) is oscillatory if

ϕ0 > 16
(

σ0 + 0
σ0

)
and

ϕ0 >
128

e ln(2/3)
(σ0 + m0)

σ0
.

That is, (42) is oscillatory if

ϕ0 > max
{

16
(

σ0 + 0
σ0

)
,

128
e ln(2/3)

(σ0 + m0)

σ0

}
.

Example 3. By choosing W(t) = t− 1 in 2, it follows that every solution to a third-order neutral
differential equation

[θ(ι) + p0θ(t− 1)]′′′ + ϕ0(t)θ(t + 2) = 0, (43)

where
ϕ0(t) =

(
e2 + p0e3

)
is either oscillatory or satisfies (34). (It is worth noting that x(t) = e−t is an exact solution
satisfying (43)).

4. Conclusions

In the present work, we focus on filling the gap by establishing various sufficient
criteria for eliminating positive decreasing solutions of (1) under the above conditions.
Therefore, the criteria contained in this paper ensure that all the solutions of the Equation (1)
oscillate, while the conditions in [19,20,33] and [44] provide conditions that guarantee that
solutions of the Equation (1) are either oscillatory or converge to zero. As an extension
of the results of [25,36], we create a new criterion for oscillation by combining the newly
obtained results with the results obtained in the literature, which in turn is a simplification
of the previous results in [28–30].

For further research, another interesting problem is to obtain new criteria for nonexis-
tence of decreasing positive solutions of (1) without requiring

σ ◦ ν = ν ◦ σ or
(

σ−1(ι)
)′
≥ σ.

Moreover,
σ′(ι) ≥ σ0 > 0.
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