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Abstract: The optimization of collaborative service scheduling is the main bottleneck restricting the
efficiency and cost of collaborative service execution. It is helpful to reduce the cost and improve
the efficiency to deal with the scheduling problem correctly and effectively. The traditional genetic
algorithm can solve the multi-objective problem more comprehensively than the optimization algo-
rithm, such as stochastic greedy algorithm. But in the actual situation, the traditional algorithm is
still one-sided. The intelligent genetic scheme (IGS) proposed in this paper enhances the expansibility
and diversity of the algorithm on the basis of traditional genetic algorithm. In the process of initial
population selection, the initial population generation strategy is changed, a part of the population is
randomly generated and the selection process is iteratively optimized, which is a selection method
based on population asymmetric exchange to realize selection. Mutation factors enhance the diversity
of the population in the adaptive selection based on individual innate quality. The proposed IGS can
not only maintain individual diversity, increase the probability of excellent individuals, accelerate
the convergence rate, but also will not lead to the ultimate result of the local optimal solution. It has
certain advantages in solving the optimization problem, and provides a new idea and method for
solving the collaborative service optimization scheduling problem, which can save manpower and
significantly reduce costs on the premise of ensuring the quality. The experimental results show that
Intelligent Genetic algorithm (IGS) not only has better scalability and diversity, but also can increase
the probability of excellent individuals and accelerate the convergence speed.

Keywords: genetic algorithm; multi-objective optimization; collaboration services scheduling; self-
adaptation; symmetry and asymmetry; collaborative computing

1. Introduction

With the rapid development of Web service technology and the popularity of collabo-
rative services within and between enterprises, traditional intelligent applications transfer
big data to the cloud for computing, which causes pressure on network bandwidth, large
transmission delay, and reduced service quality. Considering time, cost and service, a coop-
erative optimization model is established to achieve a reasonable matching of supply and
demand production tasks, which requires efficient cooperative service scheduling scheme.
An efficient scheme in collaboration service execution needs to be obtained according to
the current available resources, so that the execution efficiency and cost of collaboration
services can satisfy the needs of users [1–3]. And with the development of microservices
and Docker technology, service providers can flexibly and dynamically cache microservices
at the edge, so as to respond efficiently with limited resources. Therefore, in the process
of collaboration service execution, it is necessary to schedule the collaborative service ac-
cording to the user’s quality of service (QoS) requirements to obtain the optimal execution
scheme [4–7].

Through the analysis of the above application deployment problem, it is not difficult
to conclude that the problem belongs to the category of the Nondeterministic Polynomially
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(NP) problem [8,9], because it is similar to knapsack problem, that is, no algorithm can solve
the problem in polynomial time. NP problems are usually solved by dynamic programming
algorithm [10], simulated annealing algorithm [11], neural network algorithm [12], particle
swarm algorithm [13], genetic algorithm [14–16]. The genetic algorithm is an algorithm
that draws on global evolution to obtain the optimal solution to the global search. It is
very effective in solving random and nonlinear problems, and widely used in various
fields, especially for NP problems. However, the genetic algorithm does not have many
mathematical requirements for the optimization problem to be solved. By using the concept
of evolution, we can get a better solution. Because of its evolutionary characteristics, the
solution process does not need to understand the inherent properties of the problem. Since
it can deal with any form of objective function and constraint, it is more suitable for solving
this kind of optimal combination problem [17–19].

Therefore, genetic algorithm is a suitable algorithm for solving this kind of optimal
combination problem. However, one of the main disadvantages of this method is that the
implementation of traditional genetic algorithm is very time-consuming. The main reason is
that the initial population generation time is too long and the convergence speed is too slow.
Moreover, the treatment of low-complexity individuals in traditional genetic algorithms
leads to the loss of superior genes in the population. This in turn leads to the reduction of
the optimization degree of the final solution and the decrease of the convergence speed.
In addition, the fixed mutation rate in traditional genetic algorithm keeps the evolution
rate unchanged, that is, it evolves at a fixed rate regardless of the current population status,
and it has the same probability variation regardless of the quality of the gene. As a result,
the superior and inferior genes show a symmetrical pattern; in other words, the mutation
probabalities of the superior and inferior genes are the same. In addition, the more superior
genes exist in the population, the more difficult it is to optimize [20–22].

In view of the above limitations, this paper proposes an intelligent genetic scheme
(IGS)-based application deployment algorithm, which improves the genetic algorithm on
the basis of the traditional genetic algorithm as follows:

• The initial population generation strategy has changed. The proposed IGS reduces the
generation time of the initial population by generating all the population randomly
to generate a part of the population randomly, and then generating the remaining
population in the way of approximately randomly generated chromosomes.

• In order to ensure the diversity of the population, the selection method was changed
from one based on symmetric exchange to one based on asymmetric exchange.

• Some individuals with lower physical fitness are retained. Individuals may have low
adaptability due to one or two inferior genes. However, these genes may have better
gene fragments.

• Adaptive mutation rate is used. In this way, the mutation rate of newly generated
individuals is dynamically determined according to the fitness of their parents.

The IGS can maintain the diversity among individuals, increase the probability of
excellent individuals, speed up the convergence rate, and does not cause the final results
to tend towards the local optimum. This approach has certain advantages in solving such
optimization problems. Optimizing the execution of business processes within the service
architecture can significantly [23] reduce costs while maintaining quality of service.

The remainder of this paper is organized as follows. Section 2 of this paper briefly
introduces the related work on this subject. Section 3 discusses the proposed genetic scheme
in detail, including the coding mode, cost model, cross-selection method, individual selec-
tion method, mutation strategy and fitness function. Section 4 introduces the simulation
experiment and discusses the simulation results. Finally, Section 5 presents the conclusions
and points out some directions for future work.
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2. Related Work

To obtain the optimal execution plan for the QoS-aware deployment of IoT applica-
tions [24–27], the ant colony algorithm, particle swarm optimization algorithm and genetic
algorithm can be used to solve multi-objective optimization problems of this kind.

Solnon et al. [28] used the ant colony algorithm to solve multi-objective optimization
problems. On this basis, Stutzle et al. [29] proposed the MAX-MIN ant system algorithm to
limit the amount of pheromone on the path. These authors set MAX and MIN to update
the pheromone on the path, only updated the path of the optimal solution at any time, and
set the pheromone reduction of other paths. Therefore, the pheromone of the quality path
increases rapidly and the inferior path decreases slowly, which overcomes the problem of
easy stagnation. Xia et al. [30] proposed a multi-pheromone, dynamically updating ant
colony optimizing algorithm (MPDACO). By altering the dynamic transition probability
and pheromone change rules in the ant colony algorithm, MPDACO implements the
dynamic selection optimal scheme under multiple constraints. However, these algorithms
incorporate only one pheromone, which means that they cannot solve the problem of
finding the optimal solution under multiple constraints.

Coello et al. [31] proposed a multi-objective particle swarm optimization (MOPSO)
algorithm, which introduced Pareto dominance into particle swarm optimization (PSO).
This algorithm uses an external repository of particles, which is then used by other particles
to guide their own flight. Furthermore, these authors also incorporate a special mutation
operator that enriches the algorithm’s exploratory capabilities. Through the verification
of the standard method used in the field of evolutionary multi-objective optimization, it
is proved that the method has strong competitiveness and can be regarded as a feasible
method to solve multi-objective optimization problems. What should be noted here is that
due to the inherent correlation between variables, the decomposition of fixed variables leads
to the loss of a large part of the internal correlation information. The CCMOPSO algorithm
proposes a random decomposition method of variables. The purpose of this method is to
mine the internal association information among variables, and put the associated variables
into the same group as much as possible, so as to avoid the problem of inline data loss
caused by the decomposition of fixed variables. However, large-scale variables can give rise
to procedural disasters and cannot solve our current multivariate optimization problems.
At the same time, when the objective function is multi-modal, the traditional particle swarm
optimization algorithm is still prone to fall into the local optimization.

Yang et al. [32] proposed a compressed-encoding PSO with fuzzy learning (CEPSO-FL)
algorithm to solve the problem of poor search performance when PSO was processing large-
scale features. Experiments proved that this method could solve the large-scale feature
selection problem well. The solutions obtained by CEPSO-FL contain small feature subsets
and have an excellent performance in classification problems. However, it is difficult to
reduce the computational cost of evaluation effectively.

Guo et al. [33] proposed a self-adapted task scheduling strategy for wireless sensor
networks (WSNs). First, a multi-agent-based architecture for WSN is proposed and a
mathematical model of dynamic alliance is constructed for the task allocation problem.
Next, an effective discrete particle swarm optimization algorithm for the dynamic alliance is
proposed, featuring a well-designed particle position code and fitness function. A mutation
operator that can effectively improve the algorithm’s ability to conduct global search and
improve population diversity is also introduced in this algorithm.

Wang et al. [34] proposed a collaboration differential evolution algorithm with multi-
ple populations for multi-objective optimization [14]. This algorithm has M single-objective
optimization subpopulations and an archive population to solve the M-objective optimiza-
tion problems. An adaptive differential evolution algorithm is applied to each subpopula-
tion in order to optimize the corresponding objectives of the multi-objective optimization
problem. The proposed algorithm handles multiple targets using multiple subpopulations;
each of these subpopulations only processes one target, and the subpopulations then co-
operate to approximate the overall optimal solution. Antonio et al. [35] also proposed
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applying scalable decision variables to multi-objective optimization problems, which is
both an effective and efficient means of solving large-scale multi-objective optimization
problems. However, the issue here is that the services must be executed in sequence,
meaning that, these methods are not able to solve such problems well.

In brief, the adaptation function is optimized on the basis of the basic genetic algorithm.
Not only is the completion time of the total task included in the adaptation function, but
the average time taken to complete the task is also included in the adaptation function;
this helps to improve the convergence speed of the algorithm and decrease the time
taken to find the optimal solution. The roulette strategy is used as a selection operator
when screening individuals, while the probability is selected according to the individual’s
fitness when performing crossover and mutation. Although the algorithm has some
advantages when compared with the basic genetic algorithm, the roulette strategy for
screening individuals will cause the convergence speed of the algorithm to slow down,
meaning that the probability of getting the local optimal solution will increase accordingly.

Kuo et al. [36] proposed a novel selection method based on the issue of poor individual
diversity in the evolution of traditional genetic algorithms, referred to as the disruptive
genetic algorithm (DGA). This method uses a non-monotonic fitness function that differs
completely from the traditional monotonic fitness function, and is beneficial to both superior
and inferior individuals. DGA effectively alleviates this problem by first demonstrating that
DGA can be used to solve non-stationary search problems, i.e. those in which the goal is to
track time-varying optima. DGA tracks the best values immediately after environmental
changes occur. DGA immediately tracks the optimum after the change of environment,
and it has an advantage in solving spike functions; however, it is not applicable to the
multi-objective optimization problem studied in this paper.

Li et al. [37] optimized the traditional genetic algorithm by defining a local search
operator to detect community structure within a network. However, while this method has
obvious advantages for solving network problems, it is not suitable for solving optimization
problems.

Pereira et al. [38] studied and explored the adaptive mutation rate, proved its validity,
and verified it via experiments. However, the mutation rate only changes with the number
of iterations and does not consider the characteristics of the individual; thus, it may tend to
be a local optimal solution under the multiple constraints described in this paper.

Zhang et al. [39] proposed a synergistic adaptive genetic algorithm (SAGA). It is
proved that SAGA has better global optimal solution search ability. Although the proposed
algorithm improves the traditional genetic algorithm and maintains the diversity of the
population to a certain extent by adjusting the range of fitness values, the probability of
obtaining excellent individuals needs to be verified.

To sum up, the existing methods mentioned above have certain limitations in solving
the business process optimization problem described in this paper. When these methods
are used to solve multi-objective sequential optimization problems, they will fall into local
optimal solutions and fail to solve multivariable [40]. Therefore, the above multi-objective
optimization scheduling method is not suitable for our purpose.

3. Our Proposed Intelligent Genetic Scheme
3.1. Problem Formulation

Definition 1. Application S. The application S consists of a set of web services W and a set of
partial order relations R on the set of web services, where: W = {si|i = 1, 2, ..., n}, R = {<
si, sj > |1 <= i <= n, 1 <= j <= n}.

Definition 2. Available resource set R. The available resource set R consists of available resources
N and constraint set C for each of the available resources, where N = {ni|i = 1, 2, ..., m}, C =
{(ni, sj)|1 <= i <= m, 1 <= j <= n} ∪ {max(ni) <= k}, and max(ni) represents the
maximum number of services that resource i can process.
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Definition 3. User QoS requirements. User QoS requirements Q = {T, C, A} for application
execution, where T is the time required for application execution, C is the cost required for application
execution, and A is the usability of application execution. Here, usability is used to measure whether
the solution satisfies the constraints of the problem and can thus be used for practical implementation.
In the following sections, the usability of application S will be measured by the quality of service.

Definition 4. QoS results for an application applying Qs = {Ts, Cs, As} and user QoS require-
ments Q = {T, C, A}. If T >= Ts, C >= Cs, and A <= As, then this is recorded as Q <= Qs,
which is referred to as a case where Qs satisfies Q.

Definition 5. The usability D = {(si, nj)|i = 1, 2, ..., n, j = 1, 2, ..., m}; i.e., for any web service
si in an application S, there is always a resource nj responsible for the execution of the web service and
that satisfies the constraints of the resource nj. Thus, D is referred as applicable for the application S
on the available resource set R.

3.1.1. Representation of Application Deployment

Assumption: the number of web services in an application is n, and there is a partial
order relationship between services; the number of available resources is m; the number
of web services that can be executed by each available resource is different from the
maximum number of executable web services; the time, cost and availability of each
available resource executing the same web service are different; the feasible solution to
the application deployment problem is a one-dimensional array of n elements, called
application array X. Then, i can be defined as the number of resources required to execute
the j-th web service so that any element Xj of the application array can be represented as:

Xj = i. (1)

For each application array, X has the following restrictions:

Condition 1. The maximum number of web services that can be executed by the available resources
is represented as a set M, where Mi represents the maximum number of services able to be processed
by the available resources i. Moreover, the set S is used to represent the number of services processed
by each available resource in the current application array X, where Si represents the total number
of services able to be carried out using the available resources i. Furthermore, the number of web
services executed by i must satisfy the following condition:

Si < Mi. (2)

Condition 2. Since the application array X is a linear structure, there is only one element per
location, which directly satisfies the constraint that each service is executed by only one available
resource. Therefore, the constraint of this condition on the results will not be considered below.

Condition 3. The quality of the web service executed by the available resources is expressed as
a matrix T, where Tij represents the QoS for service j when executed by available resource i.
Users’ minimum requirements for service quality are expressed as set Y, where Yj represents users’
minimum service quality for service j. To define service j as executed by i in the application array X,
the following conditions need to be met to successfully execute the service from available resources:

Yj <= Tij. (3)

3.1.2. Chromosome Coding

In this paper, an improved genetic scheme is used to optimize the application-deploying
problem.

• Each available resource needs to be chromosomally encoded.
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If N is defined as the number of available resources, the number of gene positions c
for each available resource on the chromosome is determined as follows:

c = dlog2Ne. (4)

In the traditional expression, the above chromosomes require N bits to represent
each available resource. By contrast, using Eq. (4) can compress the length of the
chromosome based on the traditional expression, reduce the memory consumption
required by the experiment, and improve the speed of the evolution.

• Chromosomal encoding for each application array X.
After encoding the available resources, the chromosomes are encoded according to
the assignment of each element in X. If M is defined as the number of web services in
the application, the length L of the chromosome is as follows:

L = M× c = M× dlog2Ne. (5)

For example, if the number of available resources is N = 6, then the number of gene
bits per available resource on the chromosome is determined according to Eq. (4),
C = 3, and the coding for the available resources is shown in Table 1.

Table 1. An example of available resources coding.

Available
resources 1 2 3 4 5 6

Coding 000 001 010 011 100 101

If the number of web services in the application is defined as M = 9, then the overall
chromosome length is 27, and the chromosome coding is as follows: 0001010000110100
01000101100.
In the process of application deployment, users need to comprehensively evaluate
the composite scheme based on the three aspects of cost, time and service quality.
Therefore, this section includes three parts of the application deployment model: the
cost model, time model and service quality model.

• Cost model
The total cost of application execution is the sum of the cost of executing each web
service. In turn, the cost of executing each web service on all available resources can
be represented as a matrix Quote, where Quoteij represents the cost of executing a web
service j on the available resource i. If the cost of executing web service is defined as
j on the available resource i in the synergistic service array X, the final total cost of
application execution Cost can be obtained as follows:

Cost =
M

∑
j=1

Quoteij, Xj = i. (6)

When an application array X is generated and the above operation is performed,
the total cost of executing the application can be obtained. According to the Cost
obtained from each synergy service array X, the minimum cost and the optimal
application-deploying scheme corresponding to the minimum cost can be determined.

• Time model
The start execution time Ts of the first web service in the application is defined as
0. According to the application array X and the partial order relationship between
web services, along with the length of time required by the available resources to
execute different web services Tij, the completion time of the last web service Tf can be
obtained. Matrix T stores the time cost of each web service executed by each available
resource; this is an N ×M matrix, where Tij is the time cost of web service j being
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executed by available resource i; moreover, the M column of the matrix corresponds
to M web services, and these M web services have a temporal topology sequence.
Therefore, the total time (defined as Time) required to execute the entire application
can be obtained as follows:

Time = Tf − Ts. (7)

• Service usability model
Given the widespread differences in computing power, memory, network bandwidth,
and many other aspects of available resources, the QoS for each available resource is
different when the same web service is being performed. The QoS of the available
resources when performing web services is expressed as matrix A, where Aij repre-
sents the QoS of the available resources i when executing web services j. The QoS
corresponding to the synergetic service array X can thus be expressed as follows:

Usability =
M

∑
j=1

Aij, Xj = i. (8)

• Target of model
The aim of deploying these applications is a) to reduce the cost as much as possible
and b) to reduce the execution time of the application with the goal of ensuring service
usability. Therefore, the objective function can be established as follows:

Fitness = min(a ∗ norm_Cost + b ∗ norm_Time+

(1− a− b) ∗ norm_Usability).
(9)

norm_X =
X−min(X)

max(X)−min(X)
. (10)

The norm_Cost, norm_Time and norm_Usability in Eq. (9) is the normalized value of
Cost, Time and Usability which are calculated using Eq. (10). Eq. (9) needs to satisfy
Eqs. (2) and (3). Thus, the term constraint described below refers to Eqs. (2) and (3).
The parameters a and b of Fitness in Eq. (9) are formulated according to the emphasis
placed by the user on each factor.

3.2. Intelligent Genetic Scheme

The traditional genetic algorithm (GA) generates the initial population and converges
slowly to solve the application-deploying problem. As a result, the traditional genetic
algorithm becomes time-consuming and inefficient in the late evolutionary stage. In
addition, in the application of traditional genetic algorithm, it has always been a difficult
problem which selection method can be used to maintain both the superior individuals and
the diversity of the population, so that the good genes can be preserved.

Therefore, a new intelligent genetic scheme is proposed to solve the above-mentioned
problems. IGS is not only applicable to collaborative service scheduling scenarios, but also
to other application scenarios.

The IGS consists of four parts: (1) The initial ratio of the initial point is specified in
order to generate the initial population, which is changed from random to the generated
proportion of the specified individuals; the remainder are close to the randomly generated
individuals. (2) The proposed scheme retains individuals with low fitness and reuses
their superior genes. (3) Based on the selection of cross-population, the populations are
divided into multiple sub-populations, which are selected and crossed in different ways.
(4) Individual mutation is carried out with an adaptive mutation rate, and the mutation
rate of newly produced individuals is determined dynamically according to the fitness of
their parents.
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3.2.1. Generation of Initial Populations

The number of initial populations is set to population_Size. Firstly, random initial
points are generated according to the percentage M of random initial points (random initial
points refer to the individuals randomly generated under initial conditions that satisfy
the constraints), that is, the number of random initial points is population_Size ∗M. For
each random initial point, entity_size individuals are randomly generated. From these
individuals, the individuals satisfying the constraints remain in the initial population,
while the others are close to the generated individuals until the constraints are satisfied and
remain in the initial population. This process continues until the number of individuals
generated is population_Size. The way to bring an individual that does not satisfy all
constraints closer to an individual that satisfies all constraints is to take the midpoint of
both as the new value of the individual; subsequently, if all constraints are still not satisfied,
the midpoint of both is taken as the new value again, and this process is repeated until all
constraints are met. Although initializing the population by randomly generating some
initial points and ensuring that other nodes approach them will reduce the diversity of
the initial population to a certain extent, the influence of this initialization mode on the
diversity of the population can be modified by adjusting proportion of random initialization
points, which will not reduce the diversity of the initial population, and greatly improve
the initialization time of the population.

A midpoint operation is adopted in this scheme. When taking the midpoint of two
individuals to form a new individual, it is necessary to count the number of services
provided by each service provider among the two individuals, then take the midpoint
operation for the number of services provided by each service provider. For example, the
service provider numbered 1 in the initial individual A provides a total of 5 services, while
the service provider numbered 1 in the individual B approaching the initial individual
A provides a total of 3 services; the service provider numbered 1 in the newly formed
individual B provides a total of 4 services, and the numbers of these 4 services are randomly
generated. Finally, for the unassigned tasks, the service provider is generated by randomly
generating a service provider number.

Algorithm 1 greatly reduces the complexity of initial population generation by ran-
domly generating initial interior points in a certain proportion. By generating a specified
number of random points for each interior point and approaching the initial interior point,
more individuals can be obtained, thus ensuring the diversity of the initial population.
Algorithm 2 can ensure that the diversity of the initial population is more ideal based on
the complexity of O(n), where n refers to the number of individuals in the population.

Algorithm 1 IGS algorithm
Input: initial population number population
Output: individual fitness f itness
1: Calculating individual fitness f itness;
2: while f itness does not meet the convergence condition do
3: if f itness Satisfies all constraints then
4: Keep excellent individuals;
5: else Keep a small number of individuals with low fitness;
6: end if
7: Cross progeny generated based on the inter population;
8: Variability using adaptive mutation rate;
9: end while

10: return f itness ;
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Algorithm 2 Initialize the population algorithm
Input: initial population number population_Size, percentage of initial inner point M,

number of randomly generated individuals entity_Size
Output: initial population population
1: i = 0, j = 0;
2: for i < population_Size ∗M do
3: Generate an individual initial_Entity that satisfies all constraints;
4: Put initial_Entity into the population;
5: i ++;
6: for j < entity_Size do
7: Randomly generate a new individual Entity;
8: while entity does not satisfy all constraints do
9: Perform the midpoint operation of initial_Entity and Entity to become the

new Entity;
10: end while
11: Entity is retained in the population;
12: end for
13: end for
14: return population;

3.2.2. Selection Based on Crossing between Populations

The selection method based on inter-population crossing involves dividing the original
population into sub-populations and making different types of selection and crossing oper-
ations according to the population, shown in Algorithm 3. The generated initial population
is divided into two groups on average: population A and population B. Population A is
then divided into population A1 and population A2 on average, while population B is di-
vided into population B1 and population B2 on average. Population A1 and B1 then select
individuals a1 and b1 by roulette strategy, respectively, and remove the selected individuals
from the population. Individuals a1 and b1 cross to generate an offspring , which is stored
in the offspring population new_population. According to the above method, individuals
are selected from populations A1 and B1 to be crossed in order to generate offspring until
all individuals in the population are selected. Populations A2 and B2 respectively select
individuals a2 and b2 using the tournament method and remove the selected individuals
from their populations. Individuals a2 and b2 then cross to produce an offspring, which is
stored in the offspring population new_population.

3.2.3. Adaptive Mutation Rate

The traditional genetic algorithm has a fixed mutation rate in the generation of progeny,
which limits the diversity of its population. In the IGS proposed by us, the adaptive
mutation rate method dynamically determines the mutation rate of individuals and further
improves the diversity and evolution rate of populations. In order to determine the
mutation rate of an individual, the individual’s father and mother (i.e. the two individuals
who cross-produce the individual) are searched first, and then the mutation rate of the
individual is determined according to the fitness of the parents.

For example, for any individual Entity in a population, if the initial mutation rate is
defined as S, while the father and mother are F_Entity and M_Entity, then the mutation
rate of Entity obtained according to the adaptive mutation rate method.

The fixed mutation rate adopted in the traditional genetic algorithm has another
defect. If the value of the mutation rate is set too small, the evolution rate will be extremely
low, resulting in a lengthy process. Moreover, if the value of the mutation rate is set too
high, an individual with high fitness can easily proceed in a bad direction; this will make
the direction of the evolution difficult to control, and the resulting length of the result
cannot be determined. The mutation rate is dynamically determined by means of the
adaptive mutation rate, and the mutation rate can also be determined according to the
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actual situation of different individuals. Individuals with high fitness can retain good
genes to the greatest extent and evolve faster. Low-adaptation individuals can increase
the probability of gene mutation into good gene, and the evolution can be accelerated by
increasing the mutation rate.

Algorithm 3 Inter-population cross-method individual selection algorithm
Inter-population cross-method individual selection algorithm
Input: initial population and its size population_Size
Output: child generation new_population
1: The population is divided into populations A1_population, A2_population,

B1_population, B2_population;
2: for z = 0; z < A1_population_Size; z ++ do
3: Remove an individual a1 from the A1_population using the roulette strategy;
4: Remove an individual b1 from the B1_population using the roulette strategy;
5: a1 and b1 cross-generate the individual a1′;
6: while a1′ does not satisfy all constraints do
7: a1 and b1 cross-generate the individual a1′;
8: end while
9: Save a1′ to the population new_population;

10: end for
11: for t = 0; t < A2_population_Size; t ++ do
12: Remove an individual a2 from the A2_population using the tournament method;
13: Remove an individual b2 from the B2_population using the tournament method;
14: a2 and b2 cross-generate the individual a2′;
15: while a2′ does not satisfy all constraints do
16: a2 and b2 cross-generate the individual a2′;
17: end while
18: Save a2′ to the population new_population;
19: end for
20: return new_population;

While the traditional genetic algorithm eliminates individuals with low fitness, some
of them may have low overall fitness because of one or two bad genes, although they
may also have good genes. In order to maintain the population diversity and continue
the transmission of good genes, we retained them and determined the mutation rate by
determining the adaptive mutation rate. According to the adaptive mutation rate method,
individuals with low fitness have higher mutation rates, which increases the probability of
improving the fitness of individual offspring, shown in Algorithm 4.

Algorithm 4 Preserving low fitness individual algorithms
Input: initial population and its size population_Size, retained low fitness individual ratio

Entity_rate
Output: selected population New_population
1: Initialize a low fitness individual set Entities;
2: for i = 0; i < population_Size ∗ (1− Entity_rate); i ++ do
3: Use uniform sorting selection to select Entity;
4: Put Entity into New_population;
5: end for
6: for j = 0; j < population_Size ∗ Entity_rate; j ++ do
7: Randomly select individual L_Entity from Entities and put it into New_population;
8: end for
9: return New_population;
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By retaining some of the low-complexity individuals, the excellent genes contained
in the low-compatibility individuals can be retained to some extent, thus accelerating the
evolution speed.

Through the above optimization, the optimization of the initial population running
time will be analyzed, as well as the influence of evolution algebra and fitness in the
following chapters.

4. Simulation Experiments and Results Analysis
4.1. Experimental Setup Instructions

This section will compare the IGS algorithm proposed in this paper with traditional
genetic algorithms. The experimental environment is Intel(R) Core(TM) i7-12700 4.90 GHz,
RAM 16 GB, hard disk 500 GB, 1000 MB network bandwidth. Each comparative experiment
was run 20 times and the results were. The time marked in the figure is measured in
seconds. Since the unit of fitness cannot be expressed by an actual cost unit, the unit of cost
indicated in the experiment is expressed in analog units. Moreover, the value of fitness is
negatively correlated, that is, the smaller the fitness data, the better the algorithm.

• GA: Genetic algorithm, implemented using the classical genetic algorithm; genetic
operator adopts crossover and mutation evolution [14].

• IGS: The improved intelligent genetic scheme proposed in this paper.
• GA+1: Based on the genetic algorithm GA, the algorithm is optimized for the initial

population in Section 3.2.1 [20].
• GA+2: Based on the genetic algorithm GA, the algorithm is optimized for the crossover

between populations in Section 3.2.2 [21].
• GA+3: Based on the genetic algorithm GA, the algorithm optimizes the adaptive

mutation rate in Section 3.2.3 [22].
• CGA: The genetic algorithm that uses the adaptive mutation rate in [24].

In the optimization of the initial population, the percentage of initial interior points is
set to 0.2, while the number of individuals in the population is 100. The maximum number
of services performed by each available resource within a resource constraint is an integer
between 5 and 7; moreover, the quality of service is an integer between 1 and 7, and the
available resources of each task is an integer between 25 and 60. For individuals with low
fitness, the retention rate is 0.1.

This is an example of a quote.

4.2. Experimental Parameter Determination

In this section, three experimental parameters are set for mutation rate, crossover
rate and number of variant genes. In the IGS, different values are set for experimental
comparison. First, a crossover rate of 0.8, a variant gene number of 1, and mutation rates of
0.03, 0.05, 0.07 and 0.09 for the comparison experiments are chosen. The results are shown
in Figure 1.

From Figure 1 , it can be clearly seen that the Fitness value reduces as the evolution
time increases. At the same time, it can be seen that the Fitness value is optimal when
the mutation rate is 0.07. Subsequent experiments in this paper were carried out in an
environment with a mutation rate of 0.07.

In the next step, a mutation rate of 0.07 is chosen. The number of variant genes was
1, and the crossover rates were 0.6, 0.7, 0.8 and 0.9 for the comparison experiments. The
results are shown in Figure 2.
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Figure 1. The effect of different mutation rates on Fitness under IGS.
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Figure 2. The effect of different crossover rates on Fitness under IGS.

As shown in Figure 2, the Fitness value decreases with the increase of evolution time.
At the same time, it can be seen that the Fitness value is optimal when the crossover rate
is 0.8. Subsequent experiments in this paper were carried out in an environment with a
crossover rate of 0.8.

In the next step, mutation rate of 0.07, crossover rate of 0.8, and some mutation genes
with values of 1, 2, and 3 for comparative experiment are selected. The results are shown in
Figure 3.
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Figure 3. The effect of the number of different variant genes under IGS.

Figure 3 clearly shows that the Fitness value decreases with the increase of evolution
time. It is also evident that when the number of mutant genes is 1, the Fitness value is
optimal. Subsequent experiments in this paper were carried out in an environment where
the crossover rate was set to 1.

Following comparison of the above experimental results, it can be concluded that IGS
achieves the best performance when the mutation rate is 0.07, the crossover rate is 0.8, and
the number of variant genes is 1. Therefore, for the subsequent experiments, the above
values will be taken as the default values.

4.3. Performance Analysis: Comparison with Existing Main Schemes

This section uses five algorithms for comparative experiments: GA, IGS, GA+1, GA+2
and GA+3. These experiments compare the number of services that need to be coordinated
as 15, 30, 45 and 60.

When comparing the evolution time lengths of different numbers of services, it is
necessary to select the target Fitness value separately according to the number of services,
and then obtain the evolution time of different algorithms according to the experiment to
achieve the target Fitness value. The service times of this experiment were 15, 30, 45 and
60, and the specified fitness were 500, 650, 1150 and 1500. The evolution time of different
algorithms under different service numbers is shown in Figure 4.

It can be clearly seen from Table 2 that as the number of applications continues to
increase, the evolutionary duration of each algorithm also increases. Under the same target
Fitness value, the IGS is significantly superior to other algorithms in terms of the evolution
time for different numbers of coordinated services. Moreover, in the comparison between
IGS and GA, IGS reduced the evolution time by 43%.
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Table 2. Running time of different algorithms when the number of collaborative applications changes.

name
Fitness Number of tasks(a)

60 45 30 15

IGSIGSIGS 251.43251.43251.43 20.6220.6220.62 6.616.616.61 1.211.211.21
GA 439.10 54.98 23.81 5.61
GA+1 273.98 31.43 10.48 1.68
GA+2 420.26 47.21 24.49 4.58
GA+3 430.08 42.20 23.74 4.15

Due to the different numbers of applications, the evolutionary duration of each gener-
ation is different. It needs to determine the evolution time value of the target, specify it
according to the evolution time of each application, and then determine the fitness of differ-
ent algorithms after reaching the target evolution time. When the number of coordinated
services is 15, 30, 45 and 60, the corresponding target evolution times are 1, 3, 6 and 50,
respectively. In addition, actual experiments are carried out according to these conditions.
The Fitness values obtained are shown in Figure 5.
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Figure 4. The Fitness value of different algorithms when the number of collaborative applications
changes.

It can be clearly seen from Figure 4 that under the same evolutionary time, the IGS
achieves better fitness than other algorithms for different numbers of applications, while
the Fitness value is 10% higher than that of GA. The number of applications is set to
60. Experiments are carried out on the above five algorithms to analyze the influence
of evolution time changes on the Fitness value under different algorithms, as shown in
Figure 5.
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Figure 5. The Fitness value of IGS and GA,GA+1,GA+2,GA+3 as the evolutionary duration changes.

As can be seen from Figure 5, the Fitness values of IGS algorithm and GA [20,40],
GA+1 [20,40], GA+2 [21,38], GA+3 [22,37] algorithm are optimized for the initial population,
and the evolution starts in 200s and ends in 350s. Moreover, although the other three
algorithms started to evolve after 350s, there are great differences in the evolution time.
As is shown in the experiments, under the same evolution time, the Fitness value of the
GA+1 is much smaller than the GA, GA+2 and GA+3. In summary, the IGS achieves best
Fitness value.

It can be seen from the above comparison experiments that the IGS achieves obvious
improvement effects relative to the other algorithms, and both the evolution time and
Fitness value are significantly improved. Compared with the traditional genetic algorithm
using the method based on population symmetric exchange, which has the disadvantage
of time-consuming, IGS using the method based on population asymmetric exchange can
reduce the cost under the premise of ensuring the quality, and has higher probability of
excellent individuals and faster convergence speed, IGS outperforms other algorithms.

5. Discussion and Limitations

Although the genetic algorithm IGS based on population asymmetric switching has
lower cost, faster convergence speed, and can find the optimal solution. At the same
time, IGS has improved over traditional genetic algorithms, but the overall speed of IGS
is still unavoidable and the running time of IGS increases when the population is large.
Experimental results show that the IGS algorithm has a clear advantage in cooperative
service scheduling, which also implies that the IGS algorithm can be used to solve the
problem of optimizing the continuous deployment of applications. Donca et al. [41]
proposed to optimize deployment through an automated pipeline generator based on agile
practices, which shed light on the application direction of IGS algorithms in continuous
deployment.
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6. Conclusions and Future Work

The optimization problem of collaborative service scheduling is an important factor
that restricts the efficiency and cost of collaborative service execution. It is helpful to
reduce the cost and improve the efficiency of collaborative service execution to deal with
the scheduling problem correctly and effectively. In order to solve this multi-objective
optimization problem, an intelligent genetic scheme (IGS) is proposed based on traditional
genetic algorithm, which improves the expansibility and diversity of the algorithm. On the
basis of the traditional genetic algorithm, the initial population selection, adaptive selection
of the mutation factor and individual population selection are improved. IGS can not only
maintain the diversity of individuals, increase the probability of excellent individuals and
accelerate the convergence speed, but also does not lead to the final result tending to a local
optimal solution. It has some advantages in solving such optimization problems. When
solving the problem of collaborative service scheduling, the cost can be reduced and the
execution efficiency of collaborative services can be improved on the premise of ensuring
service quality.

In future work, we need to further consider the case that the running time of the
algorithm increases with the increase of the population, and make further optimization
of the algorithm speed. At the same time, further research is made on how to apply IGS
algorithm in continuous program deployment.
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