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Abstract: The quality of operation of neural networks in solving application problems is determined 
by the success of the stage of their training. The task of learning neural networks is a complex 
optimization task. Traditional learning algorithms have a number of disadvantages, such as 
«sticking» in local minimums and a low convergence rate. Modern approaches are based on solving 
the problems of adjusting the weights of neural networks using metaheuristic algorithms. 
Therefore, the problem of selecting the optimal set of values of algorithm parameters is important 
for solving application problems with symmetry properties. This paper studies the application of a 
new metaheuristic optimization algorithm for weights adjustment—the algorithm of the spiders-
cycle, developed by the authors of this article. The approbation of the proposed approach is carried 
out to adjust the weights of recurrent neural networks used to solve the time series forecasting 
problem on the example of three different datasets. The results are compared with the results of 
neural networks trained by the algorithm of the reverse propagation of the error, as well as three 
other metaheuristic algorithms: particle swarm optimization, bats, and differential evolution. As 
performance criteria for the comparison of algorithms of global optimization, in this work, 
descriptive statistics for metrics of the estimation of quality of predictive models, as well as the 
number of calculations of the target function, are used. The values of the MSE and MAE metrics on 
the studied datasets were obtained by adjusting the weights of the neural networks using the 
cycling spider algorithm at 1.32, 25.48, 8.34 and 0.38, 2.18, 1.36, respectively. Compared to the 
inverse error propagation algorithm, the cycling spider algorithm reduced the value of the error 
metrics. According to the results of the study, it is concluded that the developed algorithm showed 
high results and, in the assessment of performance, was not inferior to the existing algorithm. 

Keywords: artificial intelligence; development and information communication technology; global 
optimization problem; meta-European algorithms; neural network weighting adjustment; recurrent 
neural networks; resource-use efficiency; spider-cycle algorithm 
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1. Introduction 
Today artificial intelligence is a powerful tool for solving problems in various fields. 

Artificial Neural Networks (ANN) are one of the most promising areas for the 
development of artificial intelligence. They are used in the field of cybernetics, pattern 
recognition [1], prediction and forecasting [2], decision making [3], etc. Despite the fact 
that neural networks are used in a wide range of tasks, the task of increasing an ANN 
productivity increase is still urgent. One of the approaches to improve productivity is the 
optimal selection of the neural network hyperparameters, i.e., parameters that do not 
change during the neural network training (the number of hidden layers and neurons in 
each; the speed of the neural network training; the batch size for training; layer type; 
activation function; regularization parameters, etc.) [4]. 

The complexity of the neural networks hyperparameters settings is due to the fact 
that it is necessary to find a compromise between the high accuracy of solving the problem 
and the speed of the neural network training. When setting ANN models for solving 
specific problems and improving their quality during experiments, expert estimates and 
manual hyperparameters settings are used [5,6]. In the manual setting method, the 
researcher sets hyperparameters based on his own experience and, after training, 
evaluates the productivity. 

Another approach to ANN hyperparameters settings is based on the use of automatic 
methods. One of the methods of automatic setting is based on the use of evolutionary 
algorithms [7,8]. 

Additionally, there are some approaches to solve the problem of adjusting the 
weights in the ANN model. One of these is to improve the quality of the designed ANN 
models considered in this work based on the development of new approaches to adjusting 
the weight coefficients based on the use of global optimization algorithms [9]. 

Currently, ANN are trained using various gradient algorithms and their 
modifications [10,11]. The algorithms have advantages, such as the purposefulness of the 
search and proven convergence, which make it possible to successfully apply them in 
solving the problems of ANN training. The algorithm converges to global (for the case of 
convex functions) or local minima (for the case of non-convex functions) [12]. However, 
gradient algorithms also have a number of disadvantages that make their application in 
specific tasks either problematic or completely impossible. As a rule, this is due to the fact 
that these algorithms are unable to get out of the local minima for the case of non-convex 
optimized functions [13,14]. Modern approaches to the problem of ANN parameter 
updating, as discussed in this paper, are based on the use of metaheuristic optimization 
algorithms [15] and do not require knowledge of the structure of the optimized function 
and calculation of the gradient. Another class is the non-iterative approach to learning 
neural networks [16–18]. 

Although metaheuristic algorithms vary widely, they do not always provide the 
required accuracy when setting neural network weights. This is due to the fact that 
optimization algorithms often focus on a certain class of problems, that is “there is no 
universal optimizer that could solve all classes of problems”. Thus, the problem of 
adjusting neural network weights using optimization techniques involves the problem of 
choosing the most efficient algorithm, which involves experimenting with existing 
metaheuristic algorithms, improving them, as well as developing new approaches. 

The main contributions of this article are as follows. First, the paper proposes a new 
algorithm for solving the global optimization problem based on the behavior of orb-weave 
spiders [19]. Second, the applicability of the developed algorithm is studied for solving 
the problem of setting the weights of neural networks. 

To study the proposed algorithm, the task of setting the weights of the recurrent 
neural network used to predict the values of the time series was chosen, since it represents 
a complex multi-parameter optimization problem with many local optima. 

The development and research of optimization algorithms are relevant, both for 
solving various applied problems, and for the science of artificial intelligence in general. 
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The practical value of the presented work for other researchers lies in the possibility of 
using proposed algorithm to solve a wide range of applied problems in various fields: 
industry, medicine, urban economy, etc. 

In addition, the results are compared with the results obtained by other metaheuristic 
algorithms of global optimization [20–22]: particle swarm optimization [23], bats [24], and 
differential evolution [25–28]. The results obtained by applying the global optimization 
algorithm under consideration are also compared with the results of the classical 
algorithm of back error propagation [29]. Therefore, the rest of the article is organized as 
follows. Section two presents the task of time series forecasting and the literature review 
of metaheuristic algorithms. Section three describes the parameters of the studied 
optimization algorithms, the initial data, as well as the obtained results of adjustment of 
the neural network weights with the help of the studied algorithms. The program is 
available at https://github.com/digger32/Spider-Algorithm.git (accessed on 14 July 2022). 

2. Materials and Methods 
2.1. Problem Statement of the Time Series Forecasting 

Recurrent neural networks are used to process time series events or sequential spatial 
circuits. The present study focuses on the time series forecasting problem, respectively; all 
the conclusions and results of experiments are valid for this application of recurrent ANN. 
The test of the effectiveness of the proposed approach in solving the problem of analysis 
of successive spatial chains is the subject of future research. 

The problem of a time series forecasting has the following formulation. Let the values 
of the time series be given in discrete moments of time 𝑇𝑇 = {1, 2, … ,𝑁𝑁} [30,31]: 

𝑋𝑋 = {𝑥𝑥(𝑡𝑡), 𝑡𝑡 ∈ 𝑇𝑇, 𝑥𝑥(𝑡𝑡) ∈ 𝑅𝑅𝑛𝑛} (1) 

where x(t) is the value of the analyzed indicator registered at the t-th moment of time. 
It is necessary, on the basis of the values of the analyzed indicator at the previous 

points in time x(t), x(t − 1), x(t − 2), …, x(t − k + 1), k ≤ N, to predict (most accurately evaluate) 
the values of the analyzed indicator at moments t + 1, t + 2, …, t + l, i.e., and build a 
sequence of predicted values: 

𝑋𝑋� = {𝑥𝑥�(𝑡𝑡 + 1), 𝑥𝑥�(𝑡𝑡 + 2), … , 𝑥𝑥�(𝑡𝑡 + 𝑙𝑙) } (2) 

To calculate the values of the time series at future points in time, it is required to 
determine a functional relationship 𝑓𝑓 that reflects the relationship between the past and 
future values of this time: 

𝑥𝑥�(𝑡𝑡 + 𝜏𝜏) = 𝑓𝑓�𝑥𝑥(𝑡𝑡 − 𝑘𝑘 + 1), 𝑥𝑥(𝑡𝑡 − 𝑘𝑘 + 2), … , 𝑥𝑥(𝑡𝑡 + 𝜏𝜏 − 1)� (3) 

The presented functional dependence (3) is called the forecasting model. 
Thus, the solution to the problem of a time series forecasting is to create a forecasting 

model that will meet the relevant criteria for the forecasting quality evaluation. 
In this paper, we will consider the case of short-term forecasting, i.e., at τ = 1. 

2.2. Problem Statement of the Adjusting the Weight Coefficients of a Neural Network 
The optimization approach to the problem of adjusting the neural network weights 

is to present this problem as a problem of minimizing the error function of the neural 
network. In general, this optimization problem is formulated as follows: 

min
𝑊𝑊

𝐸𝐸(𝑊𝑊) = min
𝑊𝑊

� 𝐿𝐿�𝑊𝑊,𝑋𝑋(𝑖𝑖),𝑌𝑌(𝑖𝑖)�
𝑛𝑛

𝑖𝑖=1
, (4) 

𝐿𝐿�𝑊𝑊,𝑋𝑋(𝑖𝑖),𝑌𝑌(𝑖𝑖)� = �ℎ�𝑊𝑊,𝑋𝑋(𝑖𝑖)� − 𝑌𝑌(𝑖𝑖)�2. (5) 
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where L—weighting error function, W is a matrix of neural network weights, �𝑋𝑋(𝑖𝑖),𝑌𝑌(𝑖𝑖)�—
elements of the training sample, and ℎ�𝑊𝑊,𝑋𝑋(𝑖𝑖)�—the value of the output signal of the 
neural network. 

As a result of solving this problem, values of the weighting coefficients of the neural 
network should be found, where the neural network provides the minimum work error 
on the training sample. 

2.3. Literature Review 
The class of heuristic algorithms using patterns and principles borrowed from nature 

has proven itself especially well for solving global optimization problems. These include 
algorithms for evolutionary optimization [7] and swarm intelligence algorithms [32,33]. 
These algorithms belong to the class of population algorithms, which are based on 
modeling the collective behavior of self-organizing systems, the interacting elements 
which are called agents. Despite the lack of evidence on the convergence of these 
algorithms, they are often used in practice to solve complex optimization problems. 

Evolutionary algorithms are based on a collective training process within an agent’s 
population. The population is randomly initialized and then, at each step, the algorithm 
simulates the process of natural selection, when the stronger agents from the population 
outlive the weaker ones and produce the next generation [7]. 

A prominent representative of the evolutionary algorithm is the genetic algorithm 
(GA). It is a heuristic optimization algorithm originally based on the Darwinian principle 
of evolution through genetic selection. GA uses a very abstract version of evolutionary 
processes to develop solutions to given problems. Each GA handles a population of 
artificial chromosomes—these are strings in a finite alphabet (usually binary). Each 
chromosome represents a solution to a problem and has a fitness parameter—a real 
number, which is a measure of how well the solution fits a particular problem [34]. 

There is also an imperialist competition algorithm based on human social evolution 
modeling. However, unlike the traditionally used evolutionary algorithms, it is based on 
the social evolution of a person in society, and not on the biological evolution of species 
in nature [35]. 

Swarm intelligence optimization algorithms originate from nature. Unlike 
evolutionary algorithms, it is no longer required to create a new population at each step 
of the algorithm. Typical representatives of swarm intelligence algorithms are the ant 
algorithm (ACO) [36] and the particle swarm optimization algorithm (PSO) [23]. 

The use of metaheuristic algorithms in various applications is used in the scientific 
literature to adjust the weights of recurrent neural networks. The article [37,38] deals with 
the problem of adjusting neural network weights with long-term short-term memory for 
the task of predicting the vibration of the aircraft engine using the ant colony algorithm. 
Articles [39,40] discuss the application of the ant-lion algorithm for health and energy 
management problems. To solve practical problems in various applied fields (healthcare, 
ecology, mechanical engineering, energy, and stock market), the use of metaheuristic 
optimization algorithms are also found in the literature, such as: the gray wolf flock 
algorithm [40–42], whale optimization algorithm [43,44], cuckoo algorithm [45], etc. These 
articles show that that the application of metaheuristic optimization algorithms to adjust 
the weights of recurrent neural networks for each specific task leads to better performance 
and accurate results. In this regard, further study of the applicability of other 
metaheuristic optimization algorithms for adjusting the weights of recurrent neural 
networks remains relevant. 

The algorithm proposed by the authors of the article is completely different from 
these algorithms in its biological roots, motivations, implementations, and search 
behavior. It is based on the peculiarities of the construction of the web and the competitive 
behavior of the orb weaving spiders. In this case, many spiders cannot be considered in 
the context of a “swarm”, since each spider acts in its own interests. This, in turn, eases 
the rigidity of specimen selection, which is very difficult for other swarm algorithms. 
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For a comparative analysis, the following will be considered: 
• Backpropagation algorithm (BP)—a classic algorithm for adjusting the weights of 

neural networks [46]. 
• Metaheuristic algorithms: particle swarm optimization algorithm (PSO) [26], differential 

evolution algorithm (DE) [20,22], bat algorithm (BI)—typical representatives of this class 
of algorithms, often used to solve a wide range of optimization problems [10,47]. 

• Orb-weaving spider algorithm (AA), proposed by the authors. 

2.4. Description of Algorithms 
2.4.1. Backpropagation Algorithm 

Error backpropagation algorithm (BP) is a widely used neural network training 
algorithm for supervised training [29]. This algorithm is iterative and uses the principle 
of training “step by step” when the weights of the neurons of the network are corrected 
after submitting one training example to its input. 

There are two network passes at each iteration—forward and backward. With a 
forward pass, the input vector propagates from the inputs of the network to its outputs 
and forms some output vector corresponding to the current (actual) state of the weight 
coefficients. The neural network error is then calculated as the difference between the 
actual and objective values. On the backward pass, this error propagates from the network 
output to its inputs, and the neuron weight coefficients are corrected. 

The task of training a neural network is the task of minimizing the loss function in 
the space of weight coefficients. To solve this problem, gradient optimization algorithms 
are usually used; usually gradient descent or its modifications are used, for example, 
stochastic gradient descent. 

2.4.2. Metaheuristic Algorithms 
The differential evolution algorithm (DE) is a modification of the evolutionary 

optimization algorithm [25]. DE works by improving the collection of N possible 
solutions, which are being evaluated using the objective function f through the iterative 
process. At the first stage, a set of random vectors, called a generation, are initialized, 
which represent possible solutions to the optimization problem. Further, at each iteration, 
a new generation of vectors is generated randomly combining the vectors of the previous 
generation. After crossing, a selection operation is performed. If the resulting vector turns 
out to be better than the base vector (the value of the objective function has improved), 
then, in the new generation, the base vector is replaced with a trial one, otherwise the base 
vector remains in the new generation. In every era of the evolutionary process or at a given 
frequency, the best generation vector is determined in order to control the speed of finding 
the optimal solution. 

The described stages of the differential evolution algorithm are repeated upon 
reaching a given number of iterations 𝑘𝑘. 

The particle swarm optimization algorithm (PSO) is based on the movement of 
particles-agents in the search space and the evaluation of the attractiveness of the 
solutions found [23]. Each agent at some point in time is characterized by a vector of 
parameter values from the solution domain and the value of the function being optimized. 

At each iteration of the algorithm, the agents change their position and speed 
depending on the previously found best solutions. Thus, as the study progresses, all 
agents begin to pull together in the area of the global solution. If an agent finds the best 
solution, then the values of the best positions for each agent of the entire system are 
updated. Further iterations are repeated until a certain stopping criterion is reached. 

The bats algorithm (BI) is based on imitating the echolocation properties of bats [24]. 
As an agent approaches the local (or global) optimum, the volume of the emitted signal 
decreases, and its intensity increases. The approximation is determined by the current 
change in the value of the objective function. 
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At the first stage, a population of bats is initialized, each of which is characterized by 
position, speed, frequency, wavelength of the emitted pulse, and volume for searching of 
prey. The search of a solution is carried out taking into account the average loudness value 
of all bats at a certain time step. If the obtained solution is less than the best solution at the 
current step, then the volume is lowered, and the pulse propagation speed is increased. 

2.4.3. Orb-Weaving Spider Algorithm 
The orb-weaving spider algorithm is a heuristic competitive iterative random search 

algorithm, the main idea of which is to simulate the behavior of a diadem spider from the 
orb-weaving spider family [19]. 

Each iteration represents a day. During the day, the spider hunts, exploring the 
search area. At the end of the day, the spider looks for a new good place to build a web 
and destroys the old one, moving in the direction of the spider with the lowest (largest) 
function value. 

If a spider enters the territory of another spider while moving, competition occurs. 
The stronger spider with the smallest (largest) function value at a given iteration wins and 
eats the spider with a greater (lower) function value. 

An overview of the spider method is presented in Figure 1. 

Inputs (Ns, K, D, Nst, Rn, S, SI, Smax, NF, kg, kd, Dmin)

Setting initial parameters
k = 0

Formation of the initial positions of Ns  
spiders using the uniform law from 

-D/2 to D/2

Calculate the size of the sticky area
Rst = 1 – kg – Rn · (Nst – 1)

Web building:
• non-sticky area of radius Smax· Rn
• sticky area of radius Smax· Rst
• number of sticky areas Nst 

Generate NF of flies in each of the sticky 
areas using the uniform distribution law

Move to each fly:
• segment from the center of the web to 

the fly divided into S parts
• fix the result of the function at each 

point

Search for the best point from the 
previous step and move the spider to this 

point

Search for the best function value among 
all spiders

For all spiders except the best one, take a 
step of SI size towards the best spider 

Smax = Smax · kd
SI = SI · kd

k < Kk = k + 1

Output: best function value 
among all remaining spiders

Spiders are at the distance less than Dmin 
Remove spiders whose current function 

value is highYes

No

Yes

No

 
Figure 1. General scheme of the algorithm. 
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3. Experimental Study and Discussion 
3.1. Algorithm Parameters 

The efficiency of the algorithms in the search for the global minimum is caused by 
the setting of their respective parameters. Within the framework of this work, the selection 
of effective values of the parameters was carried out. The correct choice of such 
parameters has the greatest influence on the result of solving the optimization problem, 
namely, on achieving the minimum of the standard deviation function [48–50]. The results 
are shown in Tables 1–4. 

Table 1. Particle swarm optimization algorithm. 

Name Description Value 
𝐾𝐾 Maximum number of iterations 100 
𝑁𝑁𝑁𝑁 Number of particles in a swarm 100 
𝑁𝑁𝑁𝑁𝑚𝑚𝑖𝑖𝑛𝑛 Least number of neighbors - 
𝜔𝜔 Weight coefficient characterizing particle memory 0.5 

𝛼𝛼 and 𝛽𝛽 Parameters used in calculating particle speed 0.5, 0.3 

Table 2. Orb-weaving spider algorithm. 

Name Description Value 
𝐾𝐾 Maximum number of iterations 100 
𝑁𝑁𝑠𝑠 Number of spiders 100 
𝑅𝑅𝑛𝑛 Radius of non-sticky area 0.05 
𝑁𝑁𝑠𝑠𝑠𝑠 Radius of sticky area 1 
𝑆𝑆 Number of steps 2 

𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 Maximum step size 0.3 
𝑆𝑆𝐼𝐼 Step after iteration 0 
𝑁𝑁𝐹𝐹 Number of flies 5 
𝐷𝐷𝑚𝑚𝑖𝑖𝑛𝑛 Minimum distance between spiders 0.001 
𝑘𝑘𝑔𝑔 Range coefficient of generation of flies 0.1 
𝑘𝑘𝑑𝑑 Coefficient for decreasing the variables 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑆𝑆𝐼𝐼 0.95 
𝐾𝐾 Maximum number of iterations 25 

Table 3. Bats algorithm. 

Name Description Value 
𝑁𝑁𝑁𝑁𝑁𝑁 Number of bats 100 
𝑁𝑁𝑡𝑡𝐼𝐼𝐼𝐼 Number of iterations 100 
𝐼𝐼 Signal pulsation frequency 0.8 
𝑎𝑎 Bat signal volume 0.8 

𝑄𝑄𝑚𝑚𝑖𝑖𝑛𝑛 Minimum frequency 0 
𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚 Maximum frequency 2 

Table 4. Differential evolution algorithm. 

Name Description Value 
𝐾𝐾 Maximum number of iterations 100 

Popsize A multiplier to determine the total population 100 
CR Crossover probability 0.7 
F Differential weight 0.4 
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3.2. Data Description 
To study the training algorithms, three datasets were taken from the Kaggle data 

science community website: 
• Daily climate: Average daily temperature data from Delhi, India recorded over 3 

years—from 1 January 2013 to 24 April 2017 [51,52]. 
• Advance retail sales: US Census Bureau dataset hosted on the Federal Reserve 

Economic Database [53]. 
• Solar radiation: Solar radiation dataset. Contains columns such as “wind direction”, 

“wind speed”, “humidity”, and “temperature”. Parameter “wind direction” is 
predicted [54]. 
Time series parameters are shown in Table 5. 

Table 5. Series parameters. 

Cell Series Length Mean Value Min Value Max Value Standard Error 
Daily climate 10,000 24.49 6.0 38.71 0.19 

Advance retail 
sales 10,000 0.9 −29.5 23 0.55 

Solar radiation 10,000 143.49 0.09 359.95 0.82 

For time series forecasting, neural networks with long short-term memory (LSTM) 
have been designed and built. 

The architecture of neural networks for solving each subtask was chosen 
individually. The number of LSTM layers varied from one to three, the number of neurons 
in each layer—from 50 to 100 with a step of 10. The setting up of other model 
hyperparameters was carried out using the random search technique with cross 
validation. 

A description of the architectures of the obtained neural networks is presented in 
Table 6. 

Table 6. Description of the architecture of the obtained neural networks. 

Dataset Number of 
Layers 

Number of Neurons Trainable 
Params  

Accuracy 

Daily climate 2 50 30,651 MSE: 2.31 
MAE: 0.51 

Advance retail 
sales 2 60 43,981 

MSE: 29.62 
MAE: 2.35 

Solar radiation 3 60 73,021 
MSE: 8.52 
MAE: 2.25 

3.3. Analysis and Comparison 
To train the model, the sample was divided into training and test in a 3:1 ratio. For 

each of the algorithms, the following parameters were calculated: MAE and MSE [55]. To 
calculate the descriptive statistics for metrics of the estimation of quality of predictive 
models during the analysis, each algorithm was used to configure neural networks and 
was run m times: 
• Mean squared error (MSE): 

𝑀𝑀𝑆𝑆𝐸𝐸 = 𝑇𝑇−1��𝑥𝑥(𝑡𝑡) − 𝑥𝑥�(𝑡𝑡)�2
𝑇𝑇

𝑠𝑠=1

 (6) 

where T—test part time series length. 
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• Mean absolute error (MAE): 

𝑀𝑀𝑀𝑀𝐸𝐸 = 𝑇𝑇−1�|𝑥𝑥(𝑡𝑡) − 𝑥𝑥�(𝑡𝑡)|
𝑇𝑇

𝑠𝑠=1

 (7) 

• Median of the mean squared error: 

median𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑁𝑁𝐼𝐼𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚(𝑀𝑀𝑆𝑆𝐸𝐸1, … ,𝑀𝑀𝑆𝑆𝐸𝐸𝑚𝑚) (8) 

• Median of the mean absolute error: 

median𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑁𝑁𝐼𝐼𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚(𝑀𝑀𝑀𝑀𝐸𝐸1, … ,𝑀𝑀𝑀𝑀𝐸𝐸𝑚𝑚) (9) 

• The number of evaluations of the objective function values at trial points of the 
algorithm during its operation. 
The calculation results are shown in Tables 7–9. 

Table 7. Calculation results for dataset daily climate. 

Indicator Name Bats Algorithm 
Particle Swarm 
Optimization 

Algorithm  

Differential 
Evolution 
Algorithm 

Spiders 
Algorithm 

MSE 17.95 1.44 2.29 1.60 
MAE 3.52 0.88 1.15 1.11 

Median MSE 8.45 1.18 1.95 1.32 
Median MAE 3.23 0.32 0.98 0.38 
Calculations 

number 
301,532 250,100 302,908 251,100 

Table 8. Calculation results for dataset advance retail sales. 

Indicator Name Bats Algorithm 
Particle Swarm 
Optimization 

Algorithm 

Differential 
Evolution 
Algorithm 

Spiders 
Algorithm 

MSE 305.22 44.65 80.05 48.78 
MAE 12.61 2.54 5.24 3.13 

Median MSE 146.18 16.48 41.93 25.48 
Median MAE 10.5 1.87 4.27 2.18 
Calculations 

number 303,100 250,100 317,167 251,100 

Table 9. Calculation results for dataset solar radiation. 

Indicator Name Bats Algorithm 
Particle Swarm 
Optimization 

Algorithm 

Differential 
Evolution 
Algorithm 

Spiders 
Algorithm 

MSE 12.23 8.74 10.53 9.17 
MAE 2.71 1.82 1.92 1.82 

Median MSE 8.66 8.14 9.38 8.34 
Median MAE 2.30 1.64 1.27 1.36 
Calculations 

number 
303,100 250,100 218,971 251,100 

Let us look at the results for each dataset. In order to compare metrics that indicate 
forecast errors, you need to know the maximum, minimum and average values for each 
dataset. 
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Based on the calculated data, we can conclude that the bats algorithm showed the 
worst results both in terms of the quality metrics of the obtained solution MSE and MAE, 
and in terms of the complexity of the computational process. On average for the three 
tasks, the MSE metric was 6.9 times higher, and the number of calculations was 20% 
higher compared to the best PSO algorithm. 

The spider algorithm lags slightly behind the particle swarm optimization algorithm 
in terms of performance and has the same number of calculations, but is significantly 
ahead of the bats and differential evolution algorithms both in the number of calculations 
and in their quality: 
1. According to the MSE metric, the spider algorithm outperforms the: 

• Bats algorithm in the daily climate, advance retail sales and solar radiation 
problems by 11.22, 6.26, and 1.25 times, respectively. 

• Differential evolution algorithm in the daily climate, advance retail sales, and 
solar radiation problems by 1.43, 1.64, and 1.15 times, respectively. 

2. According to the MAE metric, the spider algorithm outperforms the: 
• Bats algorithm in the daily climate, advance retail sales, and solar radiation 

problems by 3.17, 4.03, and 1.49 times, respectively. 
• Differential evolution algorithm daily climate, advance retail sales, and solar 

radiation problems by 1.04, 1.67, and 1.05 times, respectively. 
Figures 2–4 show the quality estimation of the algorithms relative to the best one (PSO) 

on the following problems: daily climate (Figure 2), advance retail sales (Figure 3), and solar 
radiation (Figure 4). 

 
Figure 2. Quality estimation of the algorithms relative to the best one (PSO) on the daily climate 
problem. 
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Figure 3. Quality estimation of the algorithms relative to the best one (PSO) on the advance retail 
sales problem. 

 
Figure 4. Quality estimation of the algorithms relative to the best one (PSO) on the solar radiation 
problem. 

It can be seen that when solving the daily climate problem, the spider’s algorithm 
showed significantly better results for all considered criteria compared to BI and DE, 
while being slightly inferior to PSO. When solving the advance retail sales problem, AA 
is even more superior to BI and DE, but also more inferior to PSO in terms of the median 
MSE criterion. In the solar radiation problem, all algorithms showed similar results, with 
AA outperforming PSO in the median MAE criterion. 

Figures 5–7 show the results of forecast fragments for the compared algorithms on 
each dataset. 
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Figure 5. Fragment of the forecast result for the dataset daily climate, where the green lines is real 
data, red is the result of training by the orb-weaving spider algorithm, blue is by the differential 
evolution algorithm, orange is by the backpropagation algorithm, purple is by the bats algorithm, 
and yellow is by the particle swarm optimization algorithm. 

 
Figure 6. Fragment of the forecast result for dataset solar radiation, where the green line is real data, 
red is the result of training by the orb-weaving spider algorithm, blue is by the differential evolution 
algorithm, orange is by the backpropagation algorithm, purple is by the bats algorithm, and yellow 
is by the particle swarm optimization algorithm. 

 
Figure 7. Fragment of the forecast result for dataset advance retail sales, where the green line is real 
data, red is the result of training by the orb-weaving spider algorithm, blue is by the differential 
evolution algorithm, orange is by the backpropagation algorithm, purple is by the bats algorithm, 
and yellow is by the particle swarm optimization algorithm. 

Figure 5 shows that AA allows a good approximation of the seasonal fluctuations of 
the mean temperature, both in the annual cycle and in the seasonal warming at the end of 
each year. 

In the solar radiation problem (Figure 6), the AA algorithm made it possible, not only 
to approximate the real data, but also to take into account the peaks of the wind direction 
on 218, 243, and 352 ticks. 
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In the advance retail sales task (Figure 7), the AA algorithm was allowed to train the 
recurrent neural network, which takes into account better negative peaks rather than 
positive. 

Based on the presented fragments of forecasting results, we can conclude that the 
best results were shown by the PSO, AA, and BP algorithms. On datasets like daily climate 
and Advance Retail Sales, the PSO algorithm performed better than on datasets like solar 
radiation—AA. It is also worth noting that AA predicts the amplitude of the time series 
with a high percentage of probability. 

4. Conclusions 
This paper compares metaheuristic optimization algorithms using the example of 

setting up the weights of a recurrent neural network. The main attention is paid to the 
study of the properties of the new optimization algorithm for orb-weaving spiders. 

In order to assess the effectiveness of AA, three datasets of different directions were 
selected and forecasting was performed. The comparison was happening with three 
classical optimization algorithms. The results showed the high efficiency of the proposed 
approach to solve the problem of recurrent neural networks training. 

To date, there are many new metaheuristic optimization algorithms that are also 
applicable to the problem of tuning the weights of neural networks and, at the same time, 
can outperform the classical global optimization algorithms selected in this article. 
However, the comparison with classical algorithms, taking into account their existing 
standard software implementation, allows us to make an adequate comparative analysis. 
At the same time, as part of further research, it is planned to compare the effectiveness of 
the algorithm proposed in the article with other state-of-the-art metaheuristic algorithms 
on a wider and more representative set of tasks. 

In addition, when solving machine learning problems using neural networks, it is 
important to tune, not only the weights of connections between neurons, but also the 
hyperparameters of neural networks, such as the number of layers, the number of neurons 
within each layer, and the type of activation function. In this article, to solve the problems 
under consideration, specific structures of neural networks that have become widespread 
have been chosen. However, a number of modern global optimization algorithms allow 
us to simultaneously adjust the weights and choose an optimal architecture of neural 
networks, which is a limitation of the presented study and a topic for future developments 
within the proposed approach. 

Thus, from the point of view of expanding the capabilities of the proposed algorithm, 
the potential value lies in modifying this algorithm to solve, not only the problem of 
neural network training, but also architecture synthesis problems by extending the orb-
weaving spider algorithm to solve discrete and mixed optimization problems [56–58]. 

In addition, one more future research question will be to study and improve the 
presented algorithm for setting up other types of neural networks, as well as to implement 
a multi-threaded version of the algorithm, which will significantly increase the speed of 
calculations. 
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