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Abstract: Periodic high-utility sequential pattern mining (PHUSPM) is used to extract periodically
occurring high-utility sequential patterns (HUSPs) from a quantitative sequence database according to
a user-specified minimum utility threshold (minutil). A sequential pattern’s periodicity is determined
by measuring when the frequency of its periods (the time between two consecutive happenings of
the sequential pattern) exceed a user-specified maximum periodicity threshold (maxPer). However,
due to the strict judgment threshold, the traditional PHUSPM method has the problem that some
useful sequential patterns are discarded and the periodic values of some sequential patterns fluctuate
greatly (i.e., are unstable). In frequent itemset mining (FIM), some researchers put forward some
strategies to solve these problems. Because of the symmetry of frequent itemset pattern (FIPs), these
strategies cannot be directly applied to PHUSPM. In order to address these issues, this work proposes
the stable periodic high-utility sequential pattern mining (SPHUSPM) algorithm. The contributions
made by this paper are as follows. First, we introduce the concept of stability to overcome the
abovementioned problems, mine sequential patterns with stable periodic behavior, and propose the
concept of stable periodic high-utility sequential patterns (SPHUSPs) for the first time. Secondly,
we design a new data structure named the PUL-list to record the periodic information of sequential
patterns, thereby improving the mining efficiency. Thirdly, we propose the maximum lability pruning
strategy in sequential pattern (MLPS), which can prune a large number of unstable sequential patterns
in advance. To assess the algorithm’s effectiveness, we perform many experiments. It turns out that
the algorithm can not only mine patterns that are ignored by traditional algorithms, but also ensure
that the discovered patterns have stable periodic behavior. In addition, after using the MLPS pruning
strategy, the algorithm can prune 46.5% of candidates in advance on average in six datasets. Pruning
a large number of candidates in advance not only speeds up the mining process, but also greatly
reduces memory usage.

Keywords: data mining; high-utility sequential pattern mining; stable periodic high-utility sequential
pattern mining

1. Introduction

High-utility sequential pattern mining (HUSPM) [1–11] is a significant area of knowl-
edge discovery and data mining that has been the subject of a great deal of research.
HUSPM has been applied in many applications, such as mining high-utility sequential
patterns (HUSPs) in online dynamic log data [12], mobile commerce data [13], and gene
regulation data [14]. Large numbers of HUSPs are mined, but some are redundant in
some special scenarios. In the marketing example, the merchant needs to consider which
product combinations are both highly profitable and can be sold regularly. However, some
product combinations that are highly profitable but not frequently sold are considered
HUSPs, in which case they are redundant. In recent years, some researchers have added
the time constraint problem to HUSPM [15,16]. Considering the periodicity of HUSPs in
the quantitative sequence database, some researchers proposed the periodic high-utility
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sequential pattern mining (PHUSPM) to mining periodic high-utility sequential patterns
(PHUSPs) [15,16]. The PHUSPM is also widely used in pattern discovery and knowledge
discovery-related fields, such as research on consumer habits, website click-through rate
data, financial market analysis, biomedical applications, and mobile computing. The
PHUSPM defines the interval of the same pattern in different sequences as a period. The
maximum periods of a sequential pattern are generally used to define the pattern’s period.
If a sequential pattern’s period is below the user-defined upper limit (maxPer), it will be
regarded as periodic. However, maxPer is set too strictly, because if a sequential pattern
exceeds the maxPer threshold for only one period, it will be discarded. For example, in the
market basket analysis, maxPer is assumed to be one week and there are customers buying
eggs and milk every weekend. This pattern will be periodic, but it will not be considered
periodic if the customer skips a week. Therefore, traditional PHUSPM discards some useful
and interesting PHUSPs. In addition, when the maxPer value of PHUSPM is set too large,
the PHUSPs mined will also vary. Obviously, these sequential patterns are not suitable
for most practical applications. To sum up, the traditional PHUSPM method suffers from
problem that some useful sequential patterns are discarded and some sequential patterns
have large periodic fluctuations.

These problems also exist in periodic frequency pattern mining (PFPM) [17–19]. In or-
der to provide greater flexibility, Kiran et al. proposed the partial periodic frequency pattern
mining (PPFPM) algorithm [20]. This algorithm relaxes the maxPer threshold constraint,
allowing a specific amount of periods beyond it. In brief, if a pattern is considered periodic,
it has no more than x (user-defined) periods that exceed the maxPer threshold. Obviously,
PFPM is a special situation of x = 0. Although PPFPM is more adaptable than PFPM, there
is still an important problem in that it only verifies whether each period exceeds the maxPer
threshold. At the same time, PFPM and PPFPM ignore the amount by which each period
exceeds the maxPer threshold. For example, if the maxPer threshold is set to a week, it
makes no difference whether some products are discontinued by customers for two weeks
or a year. Additionally, none of the models discussed above consider how closely spaced
the values of the periods meeting the maxPer threshold are. As a result, a pattern can be
considered periodic, even though this pattern’s several periods often alternate between
values greater or smaller than the maxPer threshold. In order to solve the above problems,
Fournier–Viger et al. proposed stable periodic frequent pattern mining (SPFPM) [21] and
top-k stable periodic frequent pattern mining (TSPIN) [22]. SPFPM and TSPIN propose the
concept of stability in PFPM, mining stable periodic patterns that satisfy periodicity while
maintaining similar period lengths and thus are more predictable than unstable patterns.
However, these algorithms are not suitable for PHUSPM, because they do not consider the
utility of items, and PHUSPM has no symmetry compared to these algorithms. Briefly, an
item could have several utility values in a sequence, and a corresponding sequence will
also have multiple utility values.

This paper suggests the stable periodic high-utility sequential pattern mining (SPHUSPM)
algorithm for mining stable periodic high-utility sequential patterns (SPHUSPs). The SPHUSPM
has three important contributions.

• The SPHUSPM provides a brand-new stability method and utilizes the time period
information to a greater extent to mine more useful patterns. In the HUSPM re-
search field, the algorithm provides a new research strategy. The addition of multiple
methods also makes the mined patterns more interesting and more in line with user
requirements. At the same time, in the field of practical application, the algorithm
considers the maximum profit and the time period information at the same time,
giving decision makers more accurate and efficient decision-making methods.

• We design a new data structure named PUL-list and a maximum stability pruning
strategy in HUSPM (MLPS) to increase the effectiveness of mining. Experiments show
that these two methods greatly improve the efficiency of the algorithm.
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• We perform some experiments on six different datasets, which are guaranteed to
be able to mine the desired SPHUSPs, while also showing excellent performance in
operational efficiency and memory usage efficiency.

The remainder of this paper is structured as follows. Section 2 discusses related work.
The SPHUSPM’s preliminaries and problem definitions are introduced in Section 3. In
Section 4 the suggested SPHUSPM algorithm is described. Comparative experiments are
then presented in Section 5. Lastly, the conclusion of the paper is given.

2. Related Work
2.1. High-Utility Sequential Pattern Mining

High-utility itemset mining (HUIM) [23], which takes into account the quantity of
items bought and unit profit, aims to find interesting patterns. Although a growing number
of researchers have proposed several HUIM algorithms [24–29], they cannot be directly
applied to the HUSPM because they did not consider the order of the itemsets.

HUSPM [2–5] is a research that combines HUIM and SPM, and its goal is to mine
HUSPs in quantitative sequence databases. HUSPM was first proposed by Zhou et al., who
added the concept of high utility to web log sequence pattern mining [1]. Ahmed et al.
proposed a horizontal method called UL and a mode growth method called US [6]. Yin et al.
proposed the concept of maximum utility value, the efficient USpan algorithm [3], which
used a lexicographic sequence tree (LS-tree) structure to store sequence and utility informa-
tion and used width and depth pruning strategies. On this basis, the top-k strategy was
introduced, and the TUS algorithm [7] was proposed to mine HUSPs. The HUS-span algo-
rithm [4], which made use of the same LS-tree structure as USpan, was put forth by Wang
et al. In addition, pruning strategies such as the prefix extension utility (PEU) strategy and
reduced sequence utility (RSU) strategy were also used in this algorithm. Lan et al. devised
the PHUS algorithm [8], which used a sequential utility table structure to store sequential
utility values, and employed a projection-based pruning strategy, and an indexing strategy
to reduce search time. Alkan et al. proposed the HuspExt algorithm [9], which used a
data matrix storage structure and a PBCG pruning strategy, which was based on a more
compact overestimation strategy named CRoM, which could delete an abundance of un-
promising candidates, greatly improving the mining efficiency. Recently, Gan et al. devised
ProUM [10], an innovative projection-based mining algorithm. To increase mining speed,
the algorithm makes use of the utility array structure and the sequence extended utility
(SEU) pruning strategy. On this basis, Gan et al. devised the HUSP-ULL algorithm [11],
which used a data structure called the utility-linked (UL)-list, which could efficiently record
utility and location. To get strict upper constraints on the utility of candidate sequences,
the algorithm also suggested the pruning methods irrelevant item pruning strategy (IPS)
and look-ahead strategy (LAS).

Although the HUSPM could discover a large number of HUSPs, in some application
scenarios, some of the sequential patterns were redundant and useless. The traditional
HUSPM method ignored the time constraint problem, so some researchers proposed the
PHUSPM algorithm. The next section will review the related work of PHUSPM.

2.2. Periodic High-Utility Sequential Pattern Mining

Some researchers have developed algorithms to mine periodic frequent patterns
(PFPs) in transaction databases in the area of frequent pattern mining (FPM) [20,30–33].
Most of these algorithms relied on the excellent tree-based data structures to produce an
entire collection of periodic–frequent patterns in a transactional database. Researchers
have simultaneously suggested certain algorithms to exploit periodic–frequent sequential
patterns (PFSPs) in sequence databases [34,35]. Because the above two types of algorithms
used the support of the patterns to mine the corresponding patterns, ignoring the utility
problem of the items, these algorithms could not find high-utility and periodic patterns.

In the field of HUIM, researchers have devised some methods for mining periodic
high-utility itemsets (PHUIs) in the quantitative transaction database [36–38]. PHM [36]
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is an approach that Fournier–Viger et al. suggested for mining PHUIs in quantitative
transaction datasets. The algorithm created a new class of pattern called as periodic high-
utility itemsets by fusing the ideas of periodic itemsets and high-utility itemsets. They
proposed the minimum periodicity and the average periodicity as two new measurements
to more precisely assess periodic behavior. For finding short-period high-utility itemsets
(SPHUIs) [37,38] in quantitative transaction databases, Lin et al. suggested two techniques.

In the field of HUSPM, there are currently only two algorithms to mine PHUSPs in the
quantitative sequence database. Dinh et al. proposed an algorithm named PHUSPM [15]
by adding the method of periodicity to HUSPM for the first time. However, this algorithm
did not design the special data structure and pruning strategy, so the algorithm was not
efficient. After that, Dinh et al. [16] suggested the PUSOM algorithm based on the original
algorithm, which designed a data structure called PUSP and used the maximum periodic
pruning (MPP) strategy. However, the maxPer threshold set by this algorithm was too
strict, and some useful sequential patterns were discarded and some patterns had large
periodic fluctuation (unstable) problems. These problems also exist in PFPM [18–20], and
some researchers propose the concept of stability to solve this problem. The following
sections will review related work on SPFPM.

2.3. Stable Periodic Frequent Pattern Mining

Most research about PFP mining has evaluated the periodic behavior of patterns by
comparing them with a maxPer threshold, but ignored the extent to which these periods
exceed maxPer [18–20,36]. In order to find patterns with stable periodic behavior, Fournier–
Viger et al. [21] proposed to mine a novel class of periodic frequent patterns in transaction
databases, named stable periodic frequent patterns (SPFPs). The algorithm was called
stable periodic frequent pattern mining (SPFPM). On this basis, in order to address the
issue that the minimum support threshold is difficult to set, Fournier–Viger et al. [22]
suggested an algorithm named top-K stable periodic patterns (TSPIN). Although the above
algorithms could mine patterns with stable periodic behavior in transaction databases, they
could not be directly applied to HUSPM. Because they do not take into account the order
of itemsets in a sequence, that is, asymmetry, nor the utility of patterns.

• In light of the above, we list the limitations of the previously proposed work.
• In the PHUSPM algorithm, it is difficult to set the maxPer threshold accurately. Some

patterns have a few periodic fluctuations. However, this situation has little impact
on the decision, and they are still useful patterns. If maxPer is set too small, these
interesting patterns will be ignored. If maxPer is set too large, the mined patterns will
have unstable periods.

• Because the SPFPM algorithm is designed specifically for FPM, it cannot be directly
applied to HUSPM. In short, it did not take into account the order between itemsets
and the utility values of the items.

To resolve the aforementioned issues, we suggest a new stabilization method to
discover stable periodic high-utility sequential patterns (SPHUSPs). We will define the
SPHUSPM problem definitions and provide its preliminary information in the next part.

3. Preliminaries and Problem Definitions

To help the reader better understand the topic, we summarized symbols that appear
in the definition section into Table 1.

Let I = {i1, i2, . . ., iM} be a finite set containing M unique items. A q-item is denoted
as (ik, qk), which represents the item ik ∈ I(1 ≤ k ≤ M) and its purchase quantity (internal
utility). Each item has a weight to represent importance or profit per unit, which is called
external utility and is denoted by p(ik). A q-itemset X = [(i1, q1)(i2, q2). . .(im, qm)] is a set
of q-items. Without loss of generality, the order of q-items in a q-itemset is in lexicographic
order(≺). A q-sequence s = < X1X2. . .Xn > is an order list of itemsets. A quantitative
sequence database S = {s1, s2, . . ., sN} is a set of q-sequences wherein each q-sequence has
a unique identifier called sid. Table 2 is a quantitative sequence database. The external
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utility (profit) of each item in I is shown in Table 3. All the examples in this article are from
this quantitative sequence database.

Table 1. Symbols.

i item
X q-itemset
t sequence
s q-sequence
S, D a quantitative sequence database
sid the identifier of sequence
q(i, s) the quantity of a q-item i in a q-sequence s
p(ik) the unit profit or importance (external utility) of ik
≺ the lexicographical order
u(i, q) the utility of a q-item (i, q) in a q-sequence s
u(X) the utility of a q-itemset X in a q-sequence s
u(s) the utility of a q-sequence s
t ∼ s sequence t matches q-sequence s
v(t, s) the sequence utility of a sequence t in a q-sequence s
v(t) the utility of t in a q-sequence database S
umax(t, s) the maximum utility of a sequence t in a q-sequence s
umax(t) the maximum utility of a sequence t in a q-sequence database S
< s− t >rest the extension of a sequence t in a q-sequence s

I(t)rest
the set of extension items of a sequence t in a quantitative sequential
database D

ru(t, s) the remaining utility of a sequence t in a q-sequence s
S(t) the set of q-sequences containing the sequence t
pe(sα, sβ) the period of two consecutive q-sequence sα and sβ

pes(t) periods of the sequence t
la(t) the lability of the sequence t
< t⊕ ij > the concatenation of t with ij

Table 2. A quantitative sequence database.

SID Q-Sequence

S1 <[(a,1)(b,1)(e,3)], [(c,3)(d,2)(g,3)], [(b,2)(e,1)], [(d,3)]>
S2 <[(a,3)(b,1)(c,3)(f,2)], [(a,5)(c,2)(g,5)], [(b,3)(d,2)(e,2)]>
S3 <[(b,1)(c,1)(e,2)(g,5)], [(a,3)(b,2)(e,4)(f,2)], [(b,2)(c,1)(e,2)]>
S4 <[(b,2)(c,3)], [(a,5)(e,1)], [(b,4)(d,3)(e,5)]>
S5 <[(a,4)(c,3)], [(a,2)(b,5)(c,2)(d,4)(e,3)]>
S6 <[(f,4)], [(a,5)(b,3)], [(a,3)(d,4)]>

Table 3. A utility table.

Item a b c d e f g

Profit 1 3 4 2 1 6 2

Definition 1. Let Xa = [(ia1 , qa1)(ia2 , qa2). . .(iam , qam)] and Xb = [(ib1 , qb1)(ib2 , qb2). . .(ibm′
,

qbm′
)] be two q-itemsets, where iak ∈ I(1 ≤ k ≤ m) and ibk′

∈ I(1 ≤ k′ ≤ m′). If there exist
positive integers 1 ≤ j1 ≤ j2 ≤ . . .≤ jm ≤ m’, such that ia1 = ibj1

∧ qa1 = qbj1
, ia2 = ibj2

∧ qa2 =

qbj2
, . . . , iam = ibjm

∧ qam = qbjm
, then Xb is said to contain Xa, which is denoted as

Xa ⊆ Xb.

For example, the q-itemset [(b, 3)(d, 2)(e, 2)] in q-sequence s2 contains q-itemsets
(b, 3), (d, 2), (e, 2), [(b, 3)(d, 2)], [(b, 3)(e, 2)], [(d, 2)(e, 2)], and [(b, 3)(d, 2)(e, 2)].

Definition 2. Let A = < A1 A2. . .An > and B = < B1B2. . .Bn′ > (n ≤ n′) be the two
q-sequences, where Aα, Bβ are q-itemsets(1 ≤ α ≤ n, 1 ≤ β ≤ n′). If there exists positive integers
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1 ≤ j1 ≤ j2 ≤ . . . ≤ jn ≤ n′, such that A1 ⊆ Bj1 , A2 ⊆ Bj2 , . . ., An ⊆ Bjn , then A is a
q-subsequence of B and B is a q-supersequence of A, denoted as A ⊆ B.

For example, the q-sequences < [(a, 3)( f , 2)], [(a, 5)], [(e, 2)] > and < [(a, 3)(b, 1)],
[(a, 5)(c, 2)(g, 5)], [(b, 3)(d, 2)] > are two q-subsequences of s2.

Definition 3. The utility of a q-item (i, q) in a q-sequence s is denoted and defined as

u(i, q) = p(i)× q(i). (1)

The utility of a q-itemset X in a q-sequence s is denoted and defined as

u(X) =
m

∑
k=1

u(ik, qk). (2)

The utility of a q-sequence s is denoted and defined as

u(s) =
n

∑
j=1

u(Xj). (3)

For example, the utility of the q-item c in q-sequence s4 (e.g., c1) is u(c, 3) = 4× 3 = 12.
The utility of the q-itemset [(b, 2)(c, 3)] in q-sequence s4 is u([(b, 2)(c, 3)]) = u(b, 2) +
u(c, 3) = 3× 2 + 4× 3 = 18. The utility of the q-sequence s4 is u(s4) = u([(b, 2)(c, 3)] +
u([(a, 5)(e, 1)]) + u([(b, 4)(d, 3)(e, 5)]) = 18 + 6 + 23 = 47.

Definition 4. Given a q-sequence s = < (i1, q1)(i2, q2). . .(in, qn) > and a sequence t = <
t1t2. . .tm >, s is said to match t if n = m and ik = tk for 1 ⊆ k ⊆ n, denoted as t ∼ s.

For example, t = < (abc f )(acg)(bde) >∼ s2.

Definition 5. The sequence utility of a sequence t = < t1t2. . .tm > in a q-sequence s = <
X1X2. . .Xn > is denoted and defined as

v(t, s) =
⋃

s′∼t∧s′⊆s

u(s′). (4)

The utility of t in a q-sequence database S is denoted as

v(t) =
⋃
s∈S

v(t, s). (5)

For example, the utility of the sequence t = < gb > in the q-sequence s1 is calculated
as v(t, s1) = {u(< (g, 3)(b, 2) >)} = {12}. The utility of t shown in Table 2 is v(t) =
{v(t, s1), v(t, s2), v(t, s3), v(t, s4), v(t, s5), v(t, s6)} = {12, 19, 16, 16}.

Definition 6. The maximum utility of a sequence t in a q-sequence s is denoted and defined as

umax(t, s) = max{v(t, s)}. (6)

The maximum utility of a sequence t in a q-sequence database S is denoted and defined as

umax(t) = ∑ umax(t, s), ∀s ∈ S. (7)

For example, the maximum utility of the sequence t =< gb > in the sequence database
S shown in Table 2 is umax(t) = umax(< gb >, s1) + umax(< gb >, s2) + umax(< gb >, s3) =
12 + 19 + 16 = 47.



Symmetry 2022, 14, 2032 7 of 23

Definition 7. Given two q-sequences s and s’, if s ⊆ s′, the extension of s in s’ is said to be
the rest of s’ after s, and is denoted as < s′ − s >rest. Given a sequence t and a q-sequence s,
if t ∼ sk ∧ sk ⊆ s(t ⊆ s), the extension of t in s is the rest of s after sk, which is denoted as
< s− t >rest, where sk is the first match of t in s.

For example, given a sequence t = < [ac] >. There exist two matches of t in s2. The first one
is < [(a, 3)(c, 3)]] >. Thus, < s− t >rest= < [( f , 2)], [(a, 5)(c, 2)(g, 5)], [(b, 3)(d, 2)(e, 2)] >.

Definition 8. The set of extension items of a sequence t in a quantitative sequential database D is
denoted as I(t)rest and defined as

I(t)rest = {ij|ij ∈< s− t >rest ∧t ⊆ s ∧ s ⊆ D}. (8)

For example, I(< [a], [b] >)rest = {c, d, e}.

Definition 9. The remaining utility of a sequence t in a q-sequence s is denoted as ru(t) and
defined as

ru(t, s) = u < s− t >rest (t ⊆ s) = ∑
ij∈<s−t>rest

u(ij). (9)

For example, given a sequence t = < ab > and a q-sequence s1 in Table 2, the
extension of t in s1 is rest = < [(e, 1)], [(d, 3)] >. The remaining utility is ru(< ab >, s1) =
u < s1− < ab >>rest= u(e, 1) + u(d, 3) = 1 + 6 = 7.

Definition 10. A sequence t is said to be a high-utility sequential pattern if umax(t) ≥ minutil(or ξ),
where minutil(or ξ) is a given a user-specified minimum utility threshold.

Definition 11. Let there be a q-sequence database S = {s1, s2, . . ., sn} and a sequence t. The set of
q-sequences containing t is denoted as

S(t) = {sα1 , sα2 , . . ., sαk}, 1 ≤ α1 ≤ α2 ≤ . . . ≤ αk ≤ n. (10)

For example, Table 4 shows the occurrences of items in the q-sequence database S
(Table 2). The list of q-sequences containing the sequences < ab > and < (ab) > are
respectively S(< ab >) = {s1, s2, s3, s4, s5} and S(< (ab) >) = {s1, s2, s3, s5, s6}.

Table 4. The occurrences of all items.

Sequnence ID 1 2 3 4 5 6

Transaction ID 1 2 3 4 1 2 3 1 2 3 1 2 3 1 2 1 2 3

Items a a a a a a a a a
b b b b b b b b b b b

c c c c c c c c
d d d d d d

e e e e e e e e e
f f f

g g g

Definition 12. Let there be two q-sequences sα, sβ and a sequence t, such that t ∼ s′ ∧ s′ ⊆
sα ∧ sα ∈ S(t) and t ∼ s′′ ∧ s′′ ⊆ sβ ∧ sβ ∈ S(t). sα and sβ are said to be consecutive with respect
to t if there is not a q-sequence sγ ∈ S(t), such that α < γ < β.

The period of two consecutive q-sequence sα and sβ is denoted and defined as

pe(sα, sβ) = β− α. (11)
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In a word, pe(sα, sβ) is the number of q-sequences between sα and sβ.

For example, The sequence < (ab) > appears in s1, s2, s3, s5 and s6. Hence, pe(s1, s2) =
2− 1 = 1, pe(s2, s3) = 3− 2 = 1, pe(s3, s5) = 5− 3 = 2, pe(s5, s6) = 6− 5 = 1.

Definition 13. Let there be a sequence t and S(t) = {sα1 , sα2 , . . ., sαk}, where 1 ≤ α1 ≤ α2 ≤
. . . ≤ αk ≤ n. The periods of a sequence t is a list of periods denoted and defined as

pes(t) =
⋃

1≤ρ≤k+1

pe(sαρ−1 , sαρ ) = {pes(t, 0), pes(t, 1), . . .pes(t, |S(t)|)}, α0 = 0, αk+1 = n. (12)

For example, the sequence < ab > has pes(< ab >) = {1, 1, 1, 1, 1, 1}. The sequence
< (ab) > has pes(< (ab) >) = {1, 1, 1, 2, 1, 0}.

In PHUSPs, the mining algorithm PHUSPM and PUSOM proposed by Dinh et al. [15,16],
three periodicity measures are used to assess the periodicity of HUSPs in sequence databases.

Definition 14. The maximum periodicity, minimum periodicity, and average periodicity of a
sequence t are denoted and defined respectively as

maxper(t) = max(pes(t)), (13)

minper(t) = min(pes(t)), (14)

avgper(t) = ∑ x ∈ pes(t)/|pes(t)|. (15)

For example, the periods of < (ab) > are pes(< (ab) >) = {1, 1, 1, 2, 1, 0}. Thus,
maxper(< (ab) >) = 2, minper(< (ab) >) = 0, and avgper(< (ab) >) = 6/6 = 1.

Definition 15. Let there be five positive user-specified thresholds: minutil(or ξ), minAvg, maxAvg,
minPer, and maxPer. A sequence t is a periodic high-utility sequential pattern if t is a HUSP
(it satisfies Definition 8) and minAvg ≤ avgper(t) ≤ maxAug, minper(t) ≥ minPer and
maxper(t) ≤ maxPer.

Fournier–Viger et al. introduced a novel model based on the cumulative sum in order
to find frequent patterns having a stable periodic behavior in PFP mining [21,22]. The
main function of the model is to determine whether all periods of patterns are stable or not.
Experiments on SPP [21] and TSPIN [22] algorithms show that this model is flexible and
practical. However, this model is not designed for mining patterns on sequential databases.
For the problem of this paper, we have modified this model to accommodate sequential
databases. This model evaluates the stability of a pattern by calculating the cumulative
sum of the difference between each period of the pattern and the maxPer. We define a
method called lability to determine the periodic behavior of patterns.

Definition 16. The lability of a sequence t is a list of values denoted as

la(t) = < la(t, 0), la(t, 1), . . ., la(t, |S(t)|) > . (16)

The la(t) list contains |S(t)|+ 1 values. In other words, |la(t)| = |S(t)|+ 1 = |pes(t)|. Each
lability value in la(t) is no less than zero. The first lability value of t is defined as la(t, 0) =
max(0, pes(t, 0) − maxper). Then, the i-th lability value of t for i > 0 is defined based on the
the previous lability value as la(t, i) = max(0, la(t, i− 1) + pes(t, i)−maxper) . Thus, lability
values are calculated as a cumulative sum. Note that the above definition of lability can also be
rewritten more concisely as follows:

la(t, i) = max(0, la(t, i− 1) + pes(t, i)−maxper), la(t,−1) = 0. (17)
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For example, for the database of the running example and maxPer = 1, the periods
of t =< (ab) > are pes(< (ab) >) = {1, 1, 1, 2, 1, 0}. Because the t has six periods, it also
has six lability values. The first lability value of t is la(t, 0) = max(0, pes(t, 0)−maxper) =
max(0, 1− 1) = 0. Then, the following lability values are la(t, 1) = 0, la(t, 2) = 0, la(t, 3) =
1, la(t, 4) = 1, and la(t, 5) = 0. Thus, the lability of itemset {d} is la(< (ab) >) =
{0, 0, 0, 1, 1, 0}.

For a sequence t, its la(t) corresponds one-to-one to the value in pes(t). If the value in
pes(t) is smaller, the calculated value in la(t) will also show a smaller value. Conversely,
the calculated value in la(t) will also be relatively large. In addition, if a large value appears
in la(t), the value after that value may also become large. If the value of la(t) is 0 or tends
to 0, it indicates that the sequence t has good periodic stability. Conversely, the sequence t
has unstable periodic behaviors.

Definition 17. The maximum lability of a sequence t is defined as

maxla(t) = max(la(t)). (18)

The maximum lability of a sequence t is also called the stability of t. For example, as the lability
values of sequence t =< (ab) > is la(< (ab) >) = {0, 0, 0, 1, 1, 0}, then maxla(< (ab) >) = 1.

Definition 18. Let there be a sequence database D, a sequence t, three user-defined thresholds
minimum utility threshold (minutil or ξ) > 0, maximum periods (maxPer) > 0, and maximum
lability threshold (maxLa) ≥ 0. The problem of mining the stable periodic high-utility sequential
patterns in D consists of enumerating each sequence t in D such that maxla(t) ≤ maxLa and
u(t) ≥ ξ.

To better understand the above definitions, we will give a example. At the same time,
the pattern in this example will provide a case that is ignored by other algorithms. Assume
that maxPer = 2 and maxLa = 2 are the limiting conditions. Given a sequence t = <
(cg) >, it appears in sequences s1, s2 and s3 in the quantitative sequence database shown
in Table 2. Consequently, S(< (cg) >) = {s1, s2, s3}. We get pes(< (cg) >) = {1, 1, 1, 3}
by Definition 13. So, maxpes(< (cg) >) = 3. In the traditional PHUSPM algorithm, the
sequence t = < (cg) > will not be considered periodic according to the constraint
maxPer = 2. Obviously, this pattern appears periodically in the first half of the database.
Therefore, this pattern is useful for some applications. However, due to strict restrictions,
this pattern is ignored by the traditional algorithm. In this article, we use the stability
strategy that solves this problem. By Definition 16, we get that la(< (cg) >) = {0, 0, 0, 1}.
According to maxla(< (cg) >) = 1 < maxLa = 2, we get that t = < (cg) > is a useful
pattern. It is clear from this example that this method can find interesting patterns that
traditional methods miss.

4. Proposed Algorithms
4.1. The Data Structure

In 2019, Gan et al. [11] proposed the HUSP-ULL algorithm, which utilized a utility-
linked (UL)-list structure and a lexicographic sequence (LS)-tree for mining HUSPs. This
paper also uses LS-tree and designs a new data structure based on the UL-list, namely
period utility-linked (PUL)-list structure. This structure can quickly access period and
utility information, which greatly improves the operating efficiency of the algorithm.

4.1.1. Lexicographic Sequence Tree and Concatenations

Each node in the lexicographic sequence tree [39] represents a potential SPHUSP
candidate. To identify an SPHUSP candidate, the utility value in the node can be evaluated
to the minimal utility threshold and the stability value to the maximum lability threshold.
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In the LS-tree nodes, all of the original database’s sequences are converted to UL-
lists. The designed algorithm utilizes two common sequence mining operations named
I-concatenation and S-concatenation to create new sequences (child nodes) in the LS-tree.

Definition 19. Given a sequence t and an item ij, the I-concatenation of t with ij consists of
appending ij to the last itemset of t, denoted as < t⊕ ij >I−concatenation. The S-concatenation of t
with an item ij consists of adding ij to a new itemset appended after the last itemset of t, denoted as
< t⊕ ij >S−concatenation.

For example, given a sequence t = < [b], [c] > and a item a, < t⊕ a >I−concatenation =
< [b], [ac] > and < t⊕ a >S−concatenation = < [b], [c], [a] >.

It is clear that after executing the I-concatenation operation, the sequence’s itemsets
count stays the same; however, after doing the S-concatenation action, the itemsets count
rises by one. All potential sequence patterns in the search space for SPHUSPM can be
constructed based on these two methods.

The algorithm’s search procedure can be compared to the procedure of gradually
constructing a LS-tree. The method first searches the database for a set of 1-sequences
that meet the minimum utility and maximum lability thresholds. The LS-tree is then
explored by using a depth-first search approach, starting from the 1-sequence. We use the
I-concatenation and S-concatenation operations to obtain the child nodes of each node.
Finally, the complete sequence database set is obtained.

4.1.2. The Period-Utility-Linked List Structure

The burden increases during the mining process because the program must repeatedly
scan the original database. To solve this problem, this study uses the same UL-list structure
as the HUSP-ULL algorithm [11] to store the relevant information of each q-sequence in the
q-sequence database, and then constructs the PUL-list to discover SPHUSPs. The PUL-list
contains the SID of each q-sequence where the candidate sequence is located and the suffix
sequence information in the q-sequence. In order to facilitate candidate sequence expansion
and utility calculation, the PUL-list also stores the first occurrence position of each different
item of the suffix sequence in the q-sequence, that is, index information. In addition, in
order to easily measure the stability of the candidate pattern, the order of the q-sequence
(period information) where the candidate sequence is located in the original database is
also included in the PUL-list.

In the UL-list, the utility and position (UP) information and header table of the q-
sequence are included. Among them, the UP information records the item name, the utility
of the item, the remaining utility of the item, and the position where the item appears next
in the sequence. The heard table stores the name of each item in the q-sequence and the
position where the item first appears in the sequence.

For example, Table 5 shows the UL-list of s1. In UP information, the first item in s1 is
a, the utility is 1, the remaining utility is 41, and the next position is empty, which means
that it no longer appears in this sequence. In the heard table, the first occurrence location of
the different items in s1 is stored. The information (a, 1) indicates that the position where
item a first appears in s1 is the first position.

Table 5. The utility-linked (UL)-list structure of s1.

UP Information of s1

[(a, 1, 41,−)(b, 3, 38, 7)(e, 3, 35, 8)],
[(c, 12, 23,−)(d, 4, 19, 9)(g, 6, 13,−)],
[(b, 6, 7,−)(e, 1, 6,−)], [(d, 6, 0,−)]

Header Table of s1 (a, 1)(b, 2)(c, 4)(d, 5)(e, 3)(g, 6)

The PUL-list is a projection database of candidate sequences in the mining process. It
contains UP information, heard table and periodic information of candidate sequences of
multiple sequences. Its purpose is to facilitate the calculation of periodicity and stability.
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The PUL-list takes < (ab) > as an example, as shown in Table 6. As indicated in Table 6,
the PUL-list takes < (ab) > as an example. In the PUL-list of < (ab) >, the projection
information of sequence < (ab) > in each q-sequence is stored; for example, the projection
of sequence < (ab) > in s2 is < [(c, 3)( f , 2)], [(a, 5)(c, 2)(g, 5)], [(b, 3)(d, 2)(e, 2)] >. The
periodic information in this table records the index of the sequence containing the sequence
< (ab) > in original databases (i.e., the quantitative sequence database), and < 1, 2, 3, 5, 6 >
means the sequence < (ab) > appears in the first, second, third, fifth and sixth sequences.

The SPHUSPM algorithm uses the PUL-list structure to simply access utility, loca-
tion, and period information instead of repeatedly scanning the original database. The
access efficiency and mining efficiency of the algorithm are both significantly increased by
this structure.

Table 6. The period-utility-linked (PUL)-list structure of < (ab) >.

UP Information of s1

[(e, 3, 35, 6)],
[(c, 12, 23,−)(d, 4, 19, 7)(g, 6, 13,−)],
[(b, 6, 7,−)(e, 1, 6,−)]], [(d, 6, 0,−)]

Header Table of s1 (b, 5)(c, 2)(d, 3)(e, 6)(g, 4)

UP Information of s2

[(c, 12, 50, 4)( f , 12, 38,−)],
[(a, 5, 33,−)(c, 8, 25,−)(g, 10, 15,−)],

[(b, 9, 6,−)(d, 4, 2,−)(e, 2, 0,−)]]

Header Table of s2 (a, 3)(b, 6)(c, 1)(d, 7)(e, 8)( f , 2)(g, 5)

UP Information of s3
[(e, 4, 24, 5)( f , 12, 12,−)],

[(b, 6, 6,−)(c, 4, 2,−)(e, 2, 0,−)]

Header Table of s3 (b, 3)(c, 4)(e, 1)( f , 2)

UP Information of s5 [(c, 8, 11,−)(d, 8, 3,−)(e, 3, 0,−)]

Header Table of s5 (c, 1)(d, 2)(e, 3)

UP Information of s6 [(a, 3, 8,−)(d, 8, 0,−)]

Header Table of s6 (a, 3)(d, 2)

The Periodic Information of < (ab) > < 1, 2, 3, 5, 6 >

4.2. Pruning Strategy

Numerous candidates are produced during the mining process. Therefore, this will
increase the chance of combinatorial explosion, which in turn will cause the algorithm to
run slower, so we need to introduce several pruning strategies to solve this problem.

4.2.1. The Downward Closure Property of Upper Bound

Definition 20. The sequence-weighted utilization (SWU) [3] of a sequence t in a quantitative
sequential database D is denoted as SWU(t) and defined as

SWU(t) = ∑
s′∼t∧s′⊆s∧s⊆D

u(s). (19)

For example, SWU(< a >) = u(s1) + u(s2) + (s3) + (s4) + (s5) + (s6) = 42 + 68 +
56 + 47 + 52 + 49 = 314 and SWU(< f >) = u(s2) + u(s3) + (s6) = 68 + 56 + 49 = 173.

Theorem 1. Given a quantitative sequential database D and two sequences t and t’ . If t ⊆ t’, then

SWU(t′) ≤ SWU(t). (20)

Proof. Because t ⊆ t′, SWU(t′) = ∑s′∼t′∧s′⊆s∧s⊆D u(s) ≤ ∑s′′∼t∧s′′⊆s∧s⊆D u(s)
= SWU(t).
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Theorem 2. Given a quantitative sequential database D and a sequence t, it can be obtained that

u(t) ≤ SWU(t). (21)

Proof. Because u(t, s) ≤ u(s), we can obtain that u(t) =
⋃

s∈D v(t, s) ≤ ∑s′∼t∧s′⊆s∧s⊆D u(s)
= SWU(t).

From the above SWU definition and theorems, the utility of sequence t must be less
than the minimum utility threshold if the SWU value of t is less than that threshold. When
this happens, the utility of any supersequence of t will also be below this threshold. SWU is
able to eliminate many candidates that are unqualified as a result. In actuality, the utility of
a sequence t is typically significantly smaller than its SWU value, so a tighter upper bound
also needs to be introduced.

We introduce two strategies from the HUSP-ULL algorithm [11] to generate a stricter
upper bound, which is built on the prefix extension utility (PEU) model.

Definition 21. The PEU of a sequence t in a q-sequence s is denoted as PEU(t, s) and defined as

PEU(t, s) = max{u(sk) + u(< s− sk >)rest‖t ∼ sk ∧ sk ⊆ s}. (22)

Definition 22. The PEU of a sequence t in D is denoted as PEU(t) and defined as

PEU(t) = ∑
s∈D
{PEU(t, s)|t ⊆ s}. (23)

Theorem 3. Given a quantitative sequential database D, and two sequences t and t’. If t ⊆ t’, we
obtain

PEU(t′) ≤ PEU(t). (24)

Theorem 4. Given a quantitative sequential database D and a sequence t, we can obtain

u(t) ≤ PEU(t). (25)

The proofs of Theorems 3 and 4 can be found in [11]. Theorems 3 and 4 demonstrate
that if the sequence t’s PEU value is below the minimal utility threshold, then the superse-
quence of t’s PEU value is similarly below the minimum utility threshold. The utility of t
and the utility of the supersequence of t are both less than the minimum utility threshold if
the PEU value of the sequence t is less than the minimum utility threshold.

4.2.2. Pruning Strategies

The candidate sequence t can produce a lot of candidate sequences when doing I-
concatenations and S-concatenations. In order to reduce a mount of candidate sequences,
this research introduces the look-ahead strategy (LAS) and the irrelevant item pruning
strategy (IPS) in the HUSP-ULL algorithm [11] to eliminate hopeless candidates in advance.

Theorem 5. Given a sequence t and a quantitative sequential database D, two situations are
considered to generate a supersequence.

(1) If ij is an I-concatenation candidate item of t, the maximal utility of < t⊕ ij >I−concatenation
is no more than ∑s∈D{PEU(t, s)| < t⊕ ij >I−concatenation⊆ s}.

(2) If ij is a S-concatenation candidate item of t, the maximal utility of < t⊕ ij >S−concatenation
is no more than ∑s∈D{PEU(t, s)| < t⊕ ij >S−concatenation⊆ s}.

The proof of Theorem 5 can be referred to [11].
Look-Ahead Strategy (LAS):

(1) If ij is an I-concatenation candidate item of t and
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∑s∈D{PEU(t, s)| < t⊕ ij >I−concatenation⊆ s} is less than the minimum utility threshold, ij

should be removed from CI (the set of candidate items for I-concatenation with t).
(2) If ij is a S-concatenation candidate item of t and

∑s∈D{PEU(t, s)| < t⊕ ij >S−concatenation⊆ s} is less than the minimum utility threshold, ij

should be removed from CS (the set of candidate items for S-concatenation with t).

Theorem 6. For any sequence t and item ij ∈ I(t)rest, the maximal utility of < t⊕ ij >I−concatenation
⊆ s or < t⊕ ij >S−concatenation⊆ s is no more than ∑s∈D{PEU(t, s)|(< t⊕ ij >I−concatenation⊆
s) ∨ (< t⊕ ij >S−concatenation⊆ s)}.

Proof of Theorem 6 can be referred to [11].
Irrelevant Item Pruning Strategy (IPS):

Given a sequence t and an item ij ∈ I(t)rest, if ∑s∈D{PEU(t, s)|(< t⊕ ij >I−concatenation
⊆ s) ∨ (< t⊕ ij >S−concatenation⊆ s)} is less than the minimum utility threshold, ij is called
an irrelevant item of t and should be removed from the utility linked lists of t and t’s supersets.

This algorithm uses LAS and IPS pruning strategies to remove a large number of
candidates, which greatly improves the running efficiency of the algorithm. The places
where these two strategies are used will be marked in the algorithm section.

Because the pruning strategies mentioned above are all pruning in terms of utility, in
order to further improve the mining speed of the algorithm, we introduced the maximum
lability pruning (MLP) strategy in the TSPIN algorithm [22]. However, this strategy is only
applicable to transactional databases, so we modified it to make it suitable for quantitative
sequence databases.

Theorem 7. For any two sequences t ⊂ t′ ⊆ D, the relationship maxla(t′) ≥ maxla(t) holds.

Proof. Because t ⊂ t′, it follows that S(t′) ⊆ S(t). In the case where, S(t′) = S(t), the
periods of t and t′ are the same. Hence, la(t) = la(t′) and maxla(t) = maxla(t′). In the case
where S(t′) ⊂ S(t), then for each sequence {sz|sz ∈ S(t) ∧ sz /∈ S(t′)}, the corresponding
pes(t) will have smaller numbers. Thus, maxla(t′) ≥ maxla(t) .

Theorem 8. For a sequence database D, if maxla(t) > maxLA for an sequence t,then t and its
supersequences don’t have stability.

Hence, the part of the search space containing t and its supersets can be ignored.

Proof. According to the definition of SPHUSPM, if maxla(t) > maxLa, then t is not an
SPHUSP. Then, any supersequence t′ of t is also not a SPHUSPM based on Theorem 7.

4.3. The SPHUSPM Algorithm

Based on the proposed problem definition, the PUL-list structure and SWU, LAS, IPS,
and MLPS strategies, this section proposes the stable periodic high-utility sequential pattern
mining (SPHUSPM) algorithm. The framework of the proposed SPHUSPM algorithm is
shown in Figure 1, which shows the main parts of the method and their interworking. This
algorithm is the first in the field of HUSPM to mine sequential patterns with stable periods.
This work is challenging because SPHUSPs have not been defined before, and stability
methods cannot be directly applied to quantitative sequence databases.

The pseudo-code of the Algorithm 1: SPHUSPM will be given below .
First, scan the quantitative sequence database D to calculate u(s) and u(D), and

construct the PUL-list for each q-sequence s ∈ D (Line 1). Initialize the set of SPHUSPs
(Line 2). For each item ij ∈ D, the algorithm builds a projection database PD(ij) to store
the transformed PUL-list (Lines 3 to 4). The utility and SWU values for each 1− sequence
are computed by using the corresponding projection database (Line 5). A 1− sequence
whose SWU value is not less than the minimum utility threshold will be considered as
the candidate SPHUSP (Lines 5 to 12). Therefore, those 1− sequences with lower SWU
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values will be considered unpromising, and they will be deleted at this step. Then use
the PUL-list of (ij) to calculate the set of pes and the set of la. Then judge the stability of
(ij). If not satisfied, both it and its supersequence are considered not to be SPHUSPs, and
the MLPS pruning strategy is applied here. The 1− sequence utility if not less than the
minimum utility threshold will be output as SPHUSPs (Lines 6 to 10). Next, the PGrowth
algorithm treats candidates as prefixes for mining more SPHUSPs (Line 12). The program
is cited from [11]. In this part, we acquire the projection database PD(pre f ix) of the pre f ix
and CI (candidate item set for I-concatenation), CS (candidate item set for S-concatenation)
through IPS and LAS strategies, respectively. Then, we use the items in CI and CS to
perform I-concatenation or S-concatenation with the pre f ix respectively, and then enter the
Judge-SPHUSPs program (Lines 13 to 18).

Algorithm 1: SPHUSPM
Input: D, a quantitative sequential database; utable, a utility table containing the

unit profit of each item; minutil, the minimum utility threshold; maxPer,
the maximum periods; maxLa, the maximum lability threshold.

Output: The complete set of SPHUSPs.
1 scan D to: (1). calculate u(s) for each s ∈ Dand calculate u(D); (2). build the

PUL-list of each s ∈ D;
2 SPHUSPs← Ø ;
3 for each ij ∈ D do
4 PD(ij)← {thePUL− list o f ij} ;
5 calculate SWU(ij) and u(ij) ;
6 if SWU(< ij >) ≥ minutil × u(D) then
7 calculate pes(< ij >) and la(< ij >);
8 if maxla(ij) ≤ maxLa then
9 if u(< ij >) ≥ minutil × u(D) then

10 SPHUSPs← SPHUSPs ∪ < ij >

11 end
12 PGrowth(< ij >, PD(ij), SPHUSPs) ;
13 for each ij ∈ CI do
14 Judge-SPHUSPs(< pre f ix⊕ ij >I−Concatetion, PD(pre f ix),
15 SPHUSPs);
16 end
17 for each ij ∈ CS do
18 Judge-SPHUSPs(< pre f ix⊕ ij >S−Concatetion, PD(pre f ix),
19 SPHUSPs);
20 end
21 end
22 end
23 end
24 return SPHUSPs

The judge-SPHUSPs process (Algorithm 2) first constructs the PUL-list of pre f ix′

through the projection database of pre f ix, and obtains the projection database of pre f ix′

(Line 1). Then calculate the PEU value, utility value, the set of pes, and the set of la of
pre f ix′ by PD(pre f ix′) (Line 2). If the utility of pre f ix′ is not less than the minimum utility
threshold and the maxla value of pre f ix′ is not greater than the maxLa value, pre f ix′ is
determined to be a SPHUSP (Lines 4 to 6). If the PEU value of pre f ix′ is not less than the
minimum utility threshold and the maxla value of pre f ix′ is not greater than the maxLa
value, pre f ix′ will enter the PGrowth process (Line 8). If no candidate sequence is generated,
the process ends. Finally, the designed algorithm returns a list of mined SPHUSPs.
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Figure 1. Framework of the SPHUSPM algorithm.

Algorithm 2: Judge-SPHUSPs

Input: pre f ix′, PD(pre f ix), SPHUSPs
1 PD(pre f ix′)← {PUL− list o f pre f ix′} ;
2 calculate u(pre f ix′) and PEU(pre f ix′), calculate pes(pre f ix′) and la(pre f ix′) ;
3 if PEU(pre f ix′) ≥ δ× u(D) then
4 if maxla(pre f ix′) ≤ maxLa then
5 if u(pre f ix′) ≥ δ× u(D) then
6 SPHUSPs← SPHUSPs ∪pre f ix′ ;
7 end
8 PGrowth(pre f ix′, PD(pre f ix′), SPHUSPs)
9 end

10 end

4.4. Total Computational Complexity

In order to further understand the proposed algorithm, we will analyze the time com-
plexity of the algorithm in the following. N1 is the number of sequences in the quantitative
sequence database. N2 is the average number of items in a sequence in the quantitative
sequence database. N3 is the number of all candidates produced by the algorithm. N4 is
the average number of occurrences of all candidates.

The SPHUSPM algorithm must scan the original database once when building the
projection database and performing width pruning. Therefore, the time complexity of this
operation is O(N1 × N2) . This algorithm must build LS-tree by expanding the candidates,
so the time complexity of this process is O(N3 × N4). All candidates must enter the judge-
SPHUSPs algorithm to determine whether they are real SPHUSPs. Therefore, the time
complexity of this operation is O(N3).

In summary, the time complexity of the SPHUSPM algorithm is O(N1 × N2 + N3 × N4 +
N3).
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5. Experimental Evaluation

The performance of SPHUSPM is not compared to that of other algorithms because it
is the first algorithm for mining SPHUSPs. SPHUSPM is implemented in Java. To evaluate
the SPHUSPM algorithm, extensive experiments have been done on a workstation running
Windows 10, equipped with an Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz 3.41 GHz, and
32 GB of RAM.

5.1. Datasets

Six real datasets [40] are used in the experiment to evaluate the performance of
the algorithm.

Sign. The National Center for Sign Language and Gesture Resources at Boston University
developed Sign, a real-world dataset of sign language utterance sequences. Every utterance in
the dataset corresponds to a video segment that has been meticulously transcribed.

Bible. By converting the Bible into a collection of item sequences, the Bible can be viewed as
a real-world dataset.

Kosarak10k. Kosarak10k is a subset of the original Kosarak dataset. This is a real-
world dataset made up of click-stream data from a news portal in Hungary.

Leviathan. Leviathan is a conversion of Thomas Hobbes’ Leviathan novel (1651) to a
sequence of items (words).

yoochoose-buys. YOOCHOOSE GmbH created the yoochoose-buys commercial
dataset to assist RecSys Challenge 20,151 participants.

MSNBC. The click-stream data from the MSNBC website has been transformed from
the original data from the UCI repository to create the MSNBC dataset. Only 31,790 se-
quences remain after the smallest ones were eliminated.

Tables 7 and 8, which show the parameters and properties of these datasets, respec-
tively. The above datasets can be downloaded from [40].

Table 7. Parameters of the datasets.

|D| Number of sequences

|I| Number of distinct items

C Average number of itemsets per sequence

T Average number of items per itemset

MaxLen Maximum number of items per sequence

Table 8. Characteristics of the datasets.

Dataset |D| |I| C T MaxLen

Sign 730 267 52.0 1 94
Bible 36,369 13,905 21.6 1 100

Kosarak10k 10,000 10,094 8.14 1 608
Leviathan 5834 9025 33.8 1 100

yoochoose-buys 234,300 16,004 1.13 1.97 21
MSNBC 31,790 423,776 13.33 1 86

5.2. Execution Time

Figure 2 shows the experimental results of the execution time of the SPHUSPM algorithm.
The experiment was conducted on the six real datasets mentioned above. We observe the
performance of the algorithm on different datasets with different thresholds by setting the
values of minutil, maxPer, and maxLa. In Figure 2, the x axis represents minutil and the y
axis represents execution time. P− L indicates maxPer = P and maxLa = L. The following
observations can be drawn from Figure 2.
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When the execution time of the algorithm is high, the value of maxLa is usually set
high. The reason is that with the increase of maxLa, the stability value of sequence patterns
also decreases. In this case, SPHUSPM must consider more sequential patterns in mining.

At the same time, decreasing the value of minutil and increasing the value of maxLa
will relax the threshold. Therefore, in these cases, SPHUSPM must consider more sequence
patterns and increase the execution time of the algorithm.

On the sparse dataset, the SPHUSPM method performs better than it does on the
dense dataset. Because the occurrence probability of the same sequence pattern in sparse
datasets is low, the sequence pattern stability is low. Thus, a large number of unstable
patterns will not be considered.
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Figure 2. Execution times for different parameter values. (maxPer−maxLa(P− L)).

5.3. Pattern Count

Figure 3 shows the experimental results of the pattern count of SPHUSPM algorithm.
The experiment was conducted on the six real datasets mentioned above. We observe the
performance of the algorithm on different datasets with different thresholds by setting the
values of minutil, maxPer, and maxLa. In this figure, the x axis represents the minimum
utility threshold (minutil), and the y axis represents the number of SPHUSPs generated.
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P− L means maxPer = P, maxLa = L. The following observations can be drawn from
Figure 3.

Fix the maxLa value and the maxPer value, and increase the minutil value. Alterna-
tively, fix the minutil value and the maxPer value, and decrease the maxLa value. In both
cases, the number of sequential patterns is reduced because the criteria for the threshold is
increased.

When minutil remains unchanged, the number of SPHUSPs increases with maxPer
and maxLa, indicating a large number of potentially stable patterns in the HUSPs in datasets.
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Figure 3. Pattern count for different parameter values. (maxPer−maxLa(P− L)).

5.4. Memory Usage

Table 9 shows the memory usage of the SPHUSPM algorithm with different minutil,
maxPer, and maxLa values set on six datasets. The results show that the SPHUSPM
algorithm uses less memory when the high minutil value, the low maxPer value and
the low maxLa value are set. This is reasonable because the algorithm can prune more
sequential patterns in these cases.
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Table 9. Memory usage for different parameter values.

SIGN BIBLE
maxPer maxLa minutil Maxmemory maxPer maxLa minutil Maxmemory

1% 5% 1.2% 306.42 0.5% 0.5% 0.5% 1106.55
1% 5% 1.7% 306.32 0.5% 0.5% 1% 1112.40
1% 10% 1.2% 307.49 0.5% 1% 0.5% 1118.63
1% 10% 1.7% 306.68 0.5% 1% 1% 1125.90
2% 5% 1.2% 307.60 1% 0.5% 0.5% 1113.62
2% 5% 1.7% 306.81 1% 0.5% 1% 1133.95
2% 10% 1.2% 310.12 1% 1% 0.5% 1140.22
2% 10% 1.7% 307.75 1% 1% 1% 1134.50

Kosarak10k LEVIATHAN
maxPer maxLa minutil Max memory maxPer maxLa minutil Max memory

0.5% 0.5% 1.69% 238.70 0.5% 0.5% 1% 666.37
0.5% 0.5% 1.74% 236.87 0.5% 0.5% 1.25% 648.24
0.5% 1% 1.69% 248.66 0.5% 1% 1% 674.32
0.5% 1% 1.74% 242.95 0.5% 1% 1.25% 662.90
1% 0.5% 1.69% 248.30 1% 0.5% 1% 676.01
1% 0.5% 1.74% 247.64 1% 0.5% 1.25% 666.23
1% 1% 1.69% 250.92 1% 1% 1% 681.99
1% 1% 1.74% 248.94 1% 1% 1.25% 678.90

yoochoose-buys MSNBC
maxPer maxLa minutil Max memory maxPer maxLa minutil Max memory

25% 25% 0.024% 549.85 0.5% 0.5% 1% 636.57
25% 25% 0.034% 536.48 0.5% 0.5% 2% 620.43
25% 30% 0.024% 579.85 0.5% 1% 1% 640.75
25% 30% 0.034% 560.78 0.5% 1% 2% 626.33
30% 25% 0.024% 582.66 1% 0.5% 1% 641.33
30% 25% 0.034% 567.38 1% 0.5% 2% 634.43
30% 30% 0.024% 586.02 1% 1% 1% 651.61
30% 30% 0.034% 561.23 1% 1% 2% 637.15

5.5. Effectiveness of Pruning Strategies

To test the performance of the improved maximum lability pruning strategy in sequen-
tial pattern mining (MLPS), we conduct experiments on six datasets. Figure 4 shows the
number of candidates generated by the SPHUSPM when setting different values of minutil,
maxPer, and maxLa on six datasets. In this figure, the x axis represents the minimum utility
threshold (minutil), and the y axis represents the number of generated candidates. P− L
means maxPer = P, maxLa = L. In addition, MLP P− L indicates that the MLPS strategy
is used. The following observations can be drawn from Figure 4.

MLPS can eliminate a large number of candidates in advance and show excellent
performance on all datasets. The reduction of the number of candidates makes the execution
time of the algorithm greatly reduced and the search space is greatly reduced. Moreover,
with low maxPer and low maxLa, fewer candidates will be generated.



Symmetry 2022, 14, 2032 20 of 23

1.2 1.3 1.4 1.5 1.6 1.7

minutil(%)

0

0.5

1

1.5

2

C
a
n
d
id

a
te

s

10
6 SIGN

MLP1%-5%

MLP2%-10%

1%-5%

2%-10%

0.5 0.6 0.7 0.8 0.9 1

minutil(%)

0

0.5

1

1.5

2

2.5

3

3.5

C
a
n
d
id

a
te

s

10
4 BIBLE

MLP0.5%-0.5%

MLP1%-1%

0.5%-0.5%

1%-1%

1.69 1.7 1.71 1.72 1.73 1.74

minutil(%)

500

600

700

800

900

C
a
n
d
id

a
te

s

Kosarak10k

MLP0.5%-0.5%

MLP1%-1%

0.5%-0.5%

1%-1%

1 1.05 1.1 1.15 1.2 1.25

minutil(%)

0

1

2

3

C
a
n
d
id

a
te

s

10
4 LEVIATHAH

MLP0.5%-0.5%

MLP1%-1%

0.5%-0.5%

1%-1%

0.024 0.026 0.028 0.03 0.032 0.034

minutil(%)

0

1

2

3

4

5

C
an

d
id

at
es

10
5 yoochoose-buys

MLP25%-25%

MLP30%-30%

25%-25%

30%-30%

1 1.2 1.4 1.6 1.8 2

minutil(%)

0

0.5

1

1.5

2

2.5

C
a
n
d
id

a
te

s

10
5 MSNBC

MLP0.5%-0.5%

MLP1%-1%

0.5%-0.5%

1%-1%

Figure 4. Candidates for different parameter values. (maxPer−maxLa(P− L)).

6. Conclusions

In this paper, the problem of mining stable periodic high-utility sequential patterns
is defined, and the stability method is proposed for the first time in the mining of high-
utility sequential patterns. In the HUSPM research area, this method provides a more
flexible, precise decision-making mining strategy. In application areas, this method can be
widely used in pattern discovery and knowledge discovery-related fields, such as research
on consumer habits, website click-through rate data analysis, financial market analysis,
biomedical applications, and mobile computing. To efficiently discover all SPHUSPs, an
efficient SPHUSPM algorithm is designed. After experimental verification, the SPHUSPM
algorithm can not only mine the sequence patterns ignored by the traditional algorithm,
but also ensure that the mined sequence patterns show stable periodic characteristics in
databases. At the same time, the addition of the PUL-list structure and the MLPS strategy
accelerates the access speed and reduces the search space, so that the algorithm can ensure
that the required sequence pattern can be mined, while also improving the mining efficiency
and memory usage efficiency.
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In future work, we will introduce the non-redundant strategy [17] and the negative
utility strategy [41] based on this algorithm. These strategies are used to improve the
accuracy of decision making and expand application scenarios.
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HUSPs High Utility Sequential Patterns
PHUSPM Periodic High Utility Sequential Pattern Mining
PHUSPs Periodic High Utility Sequential Patterns
SPHUSPM Stable Periodic High Utility Sequential Pattern Mining
SPHUSPs Stable Periodic High Utility Sequential Patterns
minutil minimum utility threshold
maxPer maximum periodicity threshold
minPer minimum periodicity threshold
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