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Abstract: It is well known that Renyi’s entropy of order 2 determines the maximum possible length
of the distilled secret keys in sequential secret key distillation protocols so that no information is
leaked to the eavesdropper. There have been no attempts to estimate this key quantity based on
information available to the legitimate parties to this protocol in the literature. We propose a new
machine learning system, which estimates the lower bound of conditional Renyi entropy with high
accuracy, based on 13 characteristics locally measured on the side of legitimate participants. The
system is based on a prediction intervals deep neural network, trained for a given source of common
randomness. We experimentally evaluated this result for two different sources, namely 14 and
6-dimensional EEG signals, of 50 participants, with varying advantage distillation and information
reconciliation strategies with and without additional lossless compression block. Across all proposed
systems and analyzed sources on average, the best machine learning strategy, called the hybrid
strategy, increases the quantity of generated keys 2.77 times compared to the classical strategy. By
introducing the Huffman lossless coder before the PA block, the loss of potential source randomness
was reduced from 68.48% to a negligible 0.75%, while the leakage rate per one bit remains in the
order of magnitude 10−4.

Keywords: key distillation; advantage distillation; information reconciliation; CASCADE; EEG;
machine learning; Renyi entropy; Huffman coding; deep neural networks

1. Introduction

The advent of quantum computing has resulted in a deeper theoretical re-examination
of all existing cryptographic mechanisms and their practical implementations. The result of
these reviews is a return to symmetric cryptographic systems and information-theoretical
security measures. The central principle of this approach is simple to formulate: a cryp-
tographic system provides absolute secrecy of messages if, and only if, the uncertainty
(entropy) of its secret key is not less than the uncertainty of messages [1]. Systems designed
in this way are known to be resistant to the unlimited computing resources of adversaries
and thus to cryptanalysis based on quantum computers [2]. The price to be paid is the
production and distribution of an enormous quantity of secret cryptographic keys, which
must meet the highest criteria of true randomness. Nowadays, solutions for the problem of
generating and distributing secret keys at the same time are mainly based on the funda-
mental results of Ahlsvede and Csiszar [3], Maurer [4], and Csiszar and Narayan [5]. The
basic idea of this approach is the extraction of keys in a distributed communication scenario
based on a random source whose correlated components are available to participants.
Depending on the location of the source of uncertainty, there are two different approaches:
(i) source is independent of communication channels (the source model), and (ii) source is
the communication channel itself (the channel model) [4].
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In this paper, we will deal only with the source model and corresponding sequential
key distillation strategy by public discussions (SKD) since it has many advantages for
professional applications, primarily in the domain of military and special operations [6]:

• Secret keys cannot be established through physical distribution during special operations;
• If there are no pre-generated and distributed secret keys, it makes them impossible to

compromise before the start of critical operations;
• The principle of risk minimization dictates that compromising one subsystem does not

compromise the entire system. Accordingly, the SKA system should be independent
of cryptographic and telecommunication modules. This fact excludes the use of the
SKA channel model, favoring the SKA source model.

The critical block in SKD is the privacy amplification (PA), which minimizes the
amount of information available to an eavesdropper. If the PA is based on hash functions,
the eavesdropper conditional Renyi entropy of order 2 (ECRE2) of sequence shared by
legitimate parties determines the maximum length of the secret keys so that no information
is leaked to the eavesdropper, see Corollary 4 [7]. However, two key things are difficult to
quantify in practice:

1. How much of the total available pure randomness is allocated to secret keys?
2. Is there any leakage toward eavesdropper and what is the real security margin of the

generated secret keys?

The first category of common practice is based on adopting a single global lower bound
for ECRE2 for a given source. This constant is then used to determine the output dimension
of a universal class of hash functions for all individual realizations of the protocol [4,7–9].
It is clear that in this way, the optimal strategy based on the local lower bound of ECRE2 is
replaced by a far suboptimal one. We will call this strategy the global lower bound (GLB)
strategy. The consequences of the GLB strategy are as follows:

• Restrictive PA block gives a significantly smaller quantity of secret keys;
• Unreliable quantitative estimate of leaked information to an eavesdropper;
• Privacy amplification and information reconciliation always appear together, which

requires a cross-design between these two stages [10].

The second category of common practice is based on the (usually wrong) assumption
that the input sequence in the PA block is uncorrelated with the corresponding eavesdrop-
per sequence. In that case, relying on the well-known hash leftover lemma (HLL) [11], the
PA block is designed to eliminate only that information that is leaked through the public
discussion channel [12–14]. We will call this strategy the HLL strategy. The consequences
of the HLL strategy are as follows:

• Absence of quantitative measures for the amount of leaked information;
• Unreliable estimation of security margin for generated secret keys;
• The final criterion for the validity of the SKD is reduced to passing some standard

package of statistical tests (e.g., NIST suite, [15]). The choice of tests and their interpre-
tation is a complex problem. Relying only on them takes us away from information-
theoretical security.

In this paper, we propose a new PA design methodology based on a machine learning
system that estimates ECRE2 and its lower bound. The system is based on a predicting
intervals regression deep neural network (PIDNN), trained for a given source of common
randomness. Inputs to the system are features locally measured on the side of legitimate
participants. The basic properties of this system are as follows:

• A precise estimate of the lower bound for ECRE2;
• Quantification of the security margin of the generated keys;
• Quantification of the amount of leaked information;
• Quantification of the unused randomness of a given source;
• Quantification of the gain of the chosen strategy in relation to any other PA strategy.
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In this way, we address the key issues of PA design, mentioned in points 1 and 2.
Quantifications of the unused randomness of a given source and quantification of the gain
of the chosen strategy in relation to any other PA strategy are introduced for the first time in
this field. The quantification of the unused randomness of a given source can also be seen
as a contribution to the general field of Information and Communications Technologies
for Sustainable Development Goals [16] and encourages the development of services for
privacy preserving [17].

The price to be paid for all the advantages of the proposed system is the formation of
training sets and the training of PIDNN for a given source. Since this part of the work is
performed only once in the offline mode, the complexity of the PA block in the working
mode increases only for the computing resources necessary for ECRE2 prediction based on
the already trained PIDNN.

The theoretical basis of the proposed method is formulated in Theorems 2 and 3,
Section 3. In this way, we remain within the framework of information-theoretic security,
which guarantees, in advance, the appropriate performance and security margins of the
generated secret keys.

Experimental evaluation was conducted for two different sources, i.e., 6-dimensional
and 14-dimensional EEG signals from 50 participants, varying the different advantage
distillation (AD) and information reconciliation (IR) SKD strategies. The results show a
significant increase in the quantity of generated secret keys without compromising their
cryptographic quality. For a 14-dimensional and 6-dimensional EEG source, amplification
is from 3.6 to 4.6 times and from 1.35 to 1.85 times, respectively, depending on the IR
strategy and the lossless compression block before PA. On average, across all proposed
systems and analyzed sources, the best machine learning strategy, called the hybrid strategy,
increases the quantity of generated keys by 2.77 times compared to the classical strategy.
By introducing the Huffman lossless coder before the PA block, the loss of potential source
randomness was reduced from 68.48% to a negligible 0.75%, while the leakage rate per one
bit remains in the order of magnitude 10−4.

The rest of the paper is organized as follows. Section 2 provides the basics of the SKD
strategy for the source model.

In Section 3, the classic PA block design strategy is presented. The importance of
local decision making based on ECRE2 and the fundamental role of its lower bound was
indicated. Theorem 2 can be considered a reformulation of Corollary 4 from [7] under
conditions of knowing ECRE2. Theorem 3 gives the conditions under which the PA block
provides maximum uncertainty about established secret keys on the Eve side if the lower
bound for ECRE2 is known with a given probability.

In Section 4, the ML system for predicting the lower bound of ECRE2 is presented.
It consists of an interval prediction deep neural network with 11 or 13 inputs and three
outputs, which provide a prediction for ECRE2, as well as the lower and upper bounds
of the range in which its true value lies with a predefined probability. Having a reliable
lower bound enables a more efficient design of the PA block. Global indicators of gains are
introduced, both in terms of the efficiency of using the randomness of a given source, as
well as in terms of the quantity of generated keys in comparison with classical PA systems.

In Section 5, the synthesis of the proposed system in the case of two sources of EEG signals
of different dimensions is presented in detail. The training set was obtained by recording EEG
signals for 50 participants, resulting in an ensemble of 2 × 50 × (2 × 50 − 1)/2 = 4950 different
triplets (Alice, Bob, Eve). After appropriate quantization and serialization, binary sequences
of 36,000 bits in length were obtained for each participant. Experimental metrics include
estimation of key generation rate (KR), the amount of information leaked to Eve, NIST’s
tests of the cryptographic quality of keys, as well as the gains compared to classical systems.

In the sixth concluding section, the complexity of system implementation and its
practical usability are discussed, as well as some open issues concerning the efficient
estimate of ECRE2.
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2. Sequential Key Distillation Strategy

Figure 1 shows a source model for SKA within a scenario in which three parties,
Alice, Bob, and Eve, observe realizations of a DMS. Each of them receives their own set of
observations. Let X, Y, and Z, be Alice’s, Bob’s, and Eve’s observations, respectively. Alice’s
and Bob’s goals are to agree on a secret key K, based on their observations X and Y, so that
Eve has no information about it. A public authenticated noiseless communication channel
is fully available to all parties, including Eve.

Figure 1. Source model for secret key agreement.

SKD strategy is four stage protocol consisting of [4]:
Randomness sharing. Alice, Bob, and Eve observe n realizations of DMS (XYZ, PXYZ),

where PXYZ denotes the joint probability measure of the random variables X, Y, and Z.
Advantage distillation. If necessary, Alice and Bob exchange messages over a public

channel to “distill” the observation parts on which they have an advantage over Eve.
Information reconciliation. Alice and Bob exchange messages over the public channel in

order to eliminate mutual differences and agree on a common binary string.
Privacy amplification. Alice and Bob publicly agree on a deterministic function that they

would apply to their common sequence to generate the final secret key.
The secrecy capacity of a public channel is the maximum rate at which informa-

tion can be reliably exchanged between legitimate parties such that the rate at which an
eavesdropper obtains this information is arbitrarily small.

The secret key capacity is, at the same time, the maximum length of a secret key that
can be sent in the presence of an eavesdropper and can be defined by

Ck= min{I(X; Y), I(X; Y|Z)}, (1)

where I(X; Y) denotes the mutual information between X and Y, while I(X; Y|Z) denotes
this mutual information conditioned by Z. The advantage of the SKD strategy is the proven
achievement of all secret key rates lower than the secrecy capacity Ck, as well as its explicit
practical implementation [4].

3. PA Strategy

PA is the last stage of SKD in which all the information that was leaked to Eve in the
PA and IR protocol execution phase is eliminated from the common sequence of Alice and
Bob. As a rule, it is achieved by applying a suitable hash function from the class of universal
hash functions or by applying a class of functions called extractors [18]. In the theoretical
sense, both procedures are equivalent. Recent studies show that the use of extractors is
superior to the use of hash functions only with the very large key length of order greater
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than 105 bits [19]. Keeping in mind the typical practice, we will limit ourselves to PA based
on hash functions from the universal class of hash functions, defined as follows [20]:

Definition 1. Given two finite sets A and B, a family Gof functions g : A → B is 2-universal
(universal for short) if

∀ x1, x2 ∈ A x1 6= x2 =⇒ PG[G(x1)= G(x2)] ≤
1
|B| , (2)

where G is the random variable that represents the choice of a function g ∈ G uniformly at random
in G.

In the analysis of this class of systems, collision entropy is shown to be the most
suitable information measure, since it better measures the amount of uncertainty faced
by Eve regarding the keys agreed upon by Alice and Bob using hash functions from the
universal class. Therefore, we will list some important properties of this information
measure.

Definition 2. The collision entropy of a discrete random variable X ∈ X is

Hc(X) , −logE[pX(x)]= −logPc(x)= −log
(
∑x∈X pX(x)2

)
, (3)

where
Pc(x) = ∑x∈X pX(x)2, (4)

is collision probability.

For two discrete random variables, X ∈ X and Y ∈ Y , the conditional collision entropy
of X given Y is

Hc(X|Y) , ∑
y∈Y

pY(y)Hc(X|Y = y). (5)

For any discrete random variables X ∈ X , the collision entropy satisfies
H(X) ≥ Hc(X) ≥ 0. If X is uniformly distributed over X , then H(X) = Hc(X)= log|X |,
where H(X) is Shannon entropy.

The name collision entropy comes from the fact that it is a function of the collision
probability (3) of obtaining the same realization of a random variable twice in two in-
dependent experiments. For a discrete random variable X, the Renyi entropy of order
α is

Rα(X) =
1

1− α log

(
∑

x∈X
pX(x)α

)
. (6)

Therefore, collision entropy is identical to Renyi entropy of order 2, namely, Hc(X)= R2(X).
The connection between Renyi entropy and PA based on the universal family of hash

functions is formulated in the following theorem [7]:

Theorem 1 . Let S ∈ {0, 1}n be the random variable that represents the common sequence by
Alice and Bob, and letEbe the random variable that represents the total knowledge about S available
to Eve. Let e be a particular realization of E. If Alice and Bob know the ECRE2,R2(S|E = e)to be at
least some constantc, and if they chooseK = G(S) as their secret key, where G is a hash function
chosen uniformly at random from a universal family of hash functions G : {0, 1}n → {0, 1}k , then

H(K|G, E = e) ≥ k − 2k − c

ln2
(7)
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Remark 1. This result claims that Alice and Bob can generate a shared secret key of length k < c ,
if they know the lower bound c of ECRE2, see Figure 2. Combining (7) and the fact that a binary
sequence of length k cannot have a Shannon entropy greater than k, we obtain

k ≥ H(K|G, E = e) ≥ k − 2k − c

ln2
. (8)

This further means that if Alice and Bob choose the length of the shared secret key

kGLB_c(e)= c − s, (9)

where s is the security parameters > 0, the generated keys will differ exponentially small insfrom the
maximum entropy sequences, while Eve’s total information about that secret key will be exponentially
small in s. We will call this PA strategy the global lower bound strategy.

Figure 2. PA with hash functions.

This result dominates today’s practice of applying PA in the SKD source model. Since
the constant c does not depend on Eve’s specific sequence E = e, it is clear that for each
specific E = e, there is a smaller or larger deviation from the established fixed lower bound
c, which leads to an unnecessary loss in the length of the generated keys, for the same
operating conditions of SKD protocol and the same security parameter s > 0.

The following theorem provides the basis for strategy based on the local lower bound
for ECRE2.

Theorem 2 . Let S ∈ {0, 1}n be the random variable that represents the common sequence by
Alice and Bob, and let E be the random variable that represents the total knowledge about S available
to Eve. Let e be a particular realization of E. If Alice and Bob choose K = G(S) as their secret key,
where G is a hash function chosen uniformly at random from a universal family of hash functions
G : {0, 1}n → {0, 1}k , then

k ≥ H(K|G, E = e) ≥ k − 2k − R2(S| E = e)

ln2
(10)

Proof of Theorem 2. The proof completely follows the steps of the proof of Theorem 3
from [7], if all relevant probability measures are extended by the additional condition E = e.
For complete proof see Appendix A. �
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In some practical fORapplications, the lower bound for ECRE2 is known to hold with
some probability. Theorem 3 answers the question under which conditions in this situation
the PA block will ensure the maximum equivocation of the established secret keys from
Eve’s side.

Theorem 3. Let S ∈ {0, 1}n be the random variable that represents the common sequence
shared by Alice and Bob, and let E be the random variable that represents the total knowledge
about S available to Eve. Let e be a particular realization of E. Let the probability that let e be a
particular realization of E takes on a value e satisfying R2(S|E = e) ≥ R2δ is at least 1 − δ. Let
s be an arbitrary security parameter. If Alice and Bob choose k(e) = R2δ − s as their secret key,
where G is a hash function chosen uniformly at random from a universal family of hash functions
G :{0, 1}n → {0, 1}k , then key equivocation from the side of Eve is

H(K|G, E) ≥ (1− δ)

(
k − 1

ln2
2−s
)

. (11)

Proof of Theorem 3. By direct application of Theorem 2, we obtain

H(K|G, E) = ∑
all e

H(K|G, E = e)p(e) ≥ ∑
all e

[
k − 1

ln2
2k − R2(S|E = e)

]
p(e).

Let us divide the set of all sequences e into two sets

E+ = { e|R 2(S|E = e) ≥ R2δ}

E− = { e|R 2(S|E = e) < R2δ}

Then it is valid

∑
all e

[
k − 1

ln2 2k − R2(S|E=e)
]

p(e) = ∑
e∈E−

[
k − 1

ln2 2k − R2(S|E = e )
]

p(e)

+ ∑
e∈E+

[
k − 1

ln2 2k − R2(S|E = e )
]

p(e)

≥ ∑
e∈E+

[
k − 1

ln2 2k − R2(S|E = e )
]

p(e)

≥ ∑
e∈E+

[
k − 1

ln2 2k − R2δ

]
p(e)

= ∑
e∈E+

[
k − 1

ln2 ·2
−s
]

p(e)

= (1− δ)·
(

k − 1
ln2 2−s

)
which should have been proved. �

Remark 2. From Theorem 3, and the fact that the maximum value of Shannon entropy of a binary
sequence of length k cannot be greater than k, for a small δ , K has almost maximal entropy for Eve:

k ≥ H(K|G, E) ≥ (1− δ)

(
k − 1

ln2
2−s
)

Remark 3. If, during the execution of the IR phase of the protocol, nb parity bits were exchanged
over the public channel. According to Lemma 4 [7], it is necessary to perform additional compression
for the same amount of nb bits in the PA phase.
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Based on Theorem 2 and Remarks 1 and 3, we can claim that the optimal PA strategy
based on the ECRE2 is given by

kOpt(e)= R2(S|E = e)− nb − s. (12)

The main obstacle to the application of this strategy is the fact that ECRE2 is unknown
to Alice and Bob since it is conditioned by Eve’s sequence e, which is generally unavailable
to them. Is it possible to overcome this uncertainty? In this paper, we propose a solution
based on machine learning.

4. ML System for Predicting Lower Bound of ECRE2

In the real operating conditions of a given SKD, since the selected DMS is known, it is
possible to form training sets of the following structure, see Figure 3:{[

Xij
]
,
[
Yij
]
,
[
Zij
]
, Si, ei

}
, i = 1, . . . , M, j = 1, . . . , N, (13)

where N is the length of individual DMS sequences participating in the protocol, and M is
the number of these sequences in the training set. Since Si, ei determine R2i( Si|E = e i ),
we get the training set

{[
Xij
]
,
[
Yij
]
, R2i

}
and its final form

{Fi, R2i}, i = 1, . . . , M. (14)

Figure 3. Proposed machine learning system for predicting the lower bound of ECRE2.
AD—advantage distillation block, IR—information reconciliation block, LLC—lossless compression
block, PA—privacy amplification block, ML—machine learning block.

The feature vectors Fi are formed during the execution of SKD so that they are calcula-
ble entirely from the information possessed by Alice. As shown symbolically in Figure 3,
these features are usually formed based on information on Alice’s side after the execution
of individual sub-blocks of SKD. Note that we limit ourselves to the direct SKD, in which
Alice starts the protocol and determines the final key length [21]. The same procedure
applies to the inverse protocol, in which Alice and Bob switch roles.
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Remark 4. The transition from the training set (13) to the final form (14) requires the calculation
of ECRE2 for all pairs (S i, ei). It can be done based on the expression

R2(Si|E = e i)= −log2

(
ε2 +

(
1− ε2

)2
)

, (15)

where ε is the bit error probability of equivalent binary symmetric channel (BSC), whose input is
Si and output ei [7]. A good estimate of ε, is normalized Hamming distance Dh(S i, ei) between
Si and ei. The normalized Hamming distance between two binary sequences X and Y of the same
length is given by

Dh(X, Y) =
number of non-match bits
number of bits compared

. (16)

If the ML block at the output would only provide an estimate R̂2 for ECRE2, which
then be used in (12) to calculate the length of the distilled secret key, we have no guarantee
that the value R̂2 will be less than the true value of ECRE2. According to Theorem 2, the
secret keys generated in this way would not have the desired cryptographic properties of
uncertainty and negligible leakage of information to Eve.

Therefore, the ML block should output an interval in which, with a given high prob-
ability of 1− δ, the true value of ECRE2 falls, see Figure 4. Then we could use the lower
bound L(F) of that interval as an estimate for ECRE2 in (12). According to Theorem 3, we
now have a guarantee of the desired cryptographic properties for the obtained keys.

Figure 4. Prediction interval deep neural network (PIDNN) for ECRE2.

In the field of machine learning, the regression block shown in Figure 4 is known as
the prediction interval (PI) deep neural network (DNN) model, designed to produce PI
for each sample [22–24]. The usual approach to train PIDNN is based on two criterion
functions: coverage and mean prediction interval width [25].

Coverage is the ratio of dataset samples that fall within their respective PIs, measured
using the prediction interval coverage probability (PICP) metric

PICP =
1
n

n

∑
i=1

mi, (17)

where n denotes the number of samples and mi= 1 if R2i ∈ (L(F i), U(F i)), otherwise
mi= 0. It is obvious that PICP tends to 1− δ.
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Mean prediction interval width (MPIW) is a quality metric for the generated PIs whose
goal is producing as tight a bound as possible:

PICP =
1
n

n

∑
i=1

U(Fi)− L(Fi), (18)

The training of PIDNN is performed by the MPIW minimization optimization proce-
dure while keeping the predefined PICP. By combining into a single criterion, we get an
unconstrained loss function

JPI= MPIWθ+λΨ(1− δ− PICPθ), (19)

Ψ(x)= max(0, x)2, (20)

where Ψ is a quadratic penalty function and λ is a hyperparameter controlling the relative
importance of width vs. coverage. The algorithm used in this paper is based on the
optimization described in [24] and the software package provided on the corresponding
GitHub repository [26].

PA strategy based on PIDNN we will call machine learning strategy. It can be formu-
lated by

kML(Fi)= L(F i) − nb − s. (21)

In the PA system, based on the strategy (21), there may be a situation where L(F i) < c,
where c is the global lower bound of ECRE2. Then the global lower bound strategy (9)
is better, which justifies the introduction of the next strategy, which we will call the
hybrid PA strategy

kHyb(Fi)= LHyb(F i) − nb − s. (22)

where
LHyb(Fi)= Hyb( L(F i), R2δ), (23)

while R2δ is the value of ECRE2 satisfying the condition

Prob {R2 ≥ R2δ} ≥ 1− δ, δ =
1− PICP

2
, (24)

PICP been coverage value (17) of PIDNN trained on given DMS.
Figure 5 shows the global flow chart of the proposed PA design methodology based

on machine learning.

Figure 5. Block diagram of proposed PA strategy.
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5. Experimental Evaluation

In the previous section, we defined four different PA strategies:

1. Global lower bound strategy (9);
2. Optimal strategy (12);
3. Machine learning strategy (21); and
4. Hybrid strategy (22).

The experimental evaluation of these strategies was carried out within a general
methodological framework, which allows their fair comparison. This implies that different
PA strategies are compared by fixing the source, AD and IR part of the SKD, and then
varying the PA strategies. In order to get an idea of the dependence of the obtained
results on the sources, two different sources were chosen, both in terms of their nature and
probabilistic properties.

5.1. Sources of Common Randomness

All evaluation was performed on two sources of common randomness, both obtained
from electroencephalography (EEG) signals recorded using the 14-channel EMOTIV EPOC+
wireless EEG headset [27,28]. A detailed argumentation regarding the practical application
of this transducer as a source of common randomness in SKD protocols is given in [6].

The first source, which we will call raw EEG, is formed by the serialization of all
14 EEG channel signals. The second source, which we will call EEG metrics, is formed by
serialization of 6-dimensional performance metrics, denoted by interest (i.e., emotional
valence, attractiveness, or averseness of the task at hand), engagement (or boredom, in
negative valence, reflecting the mental workload), excitement (arousal, emotional intensity),
stress (frustration), relaxation (meditation), and focus (attention) [28]. Table 1 shows the
basic parameters of these sources.

Table 1. This table shows the basic parameters of these sources: sampling rate, length of individual
sequences in seconds (length (s)), number of quantization bits per sample (Nbits), as well as the total
length of sequences after quantization and serialization (length (bits)).

Sampling Rate Sensors/Metrics Length (s) Nbits Length (bits)

Raw EEG 128 14 2 10 35,840

EEG metrics 2 6 300 10 36,000

The signals were recorded from 50 participants aged 20–65 years selected randomly
among the employees of Vlatacom Institute of High Technology, Belgrade, Serbia. The
participants were aware of the research procedure, including the application of the sensors,
and voluntarily agreed to take the test. The institutional ethics committee approved this
research following the principles of the Declaration of Helsinki.

The EEG signal recording session lasted 20 min for each participant, who could do
whatever they wanted during that time. As a rule, the participants read web content from
the Internet, played games, worked on their projects, or meditated. For each participant,
two samples of 2 s of recording for the raw EEG source, or two samples of 300 s for the
source of EEG metrics, were then randomly selected. In this way, 100 samples were formed
for each source.

Figures 6 and 7 show samples of these two sources in the time domain.

5.2. Architectures of Evaluated Systems

Based on the general architecture of the system from Figure 3, three special variants,
which we will denote as System A, B, and C, were selected for experimental evaluation.
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Figure 6. Illustration of the raw EEG source.

Figure 7. Illustration of the EEG metrics source.
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System A consists of the sequence of BP ADD→CASCADE→Universal Hash blocks,
where the BP ADD block denotes the bit parity advantage distillation/degeneration pro-
tocol [29], and the CASCADE block denotes the one class of IR protocols, first proposed
in [30]. This protocol has found wide application in the domain of quantum key distribution
and, as such, has been continuously improved and optimized. In this paper, we used an
implementation described in [31] and its associated GitHub repository [32].

System B consists of the sequence of ADD→WINNOW→Universal Hash blocks, where
the WINNOW block denotes a class of IR protocols based on error-correcting codes [33].

System C consists of a sequence of blocks ADD→WINNOW→Huffman coding→Universal
Hash, where the Huffman coding block performs lossless compression based on Huffman
source codes [34]. Huffman coders are synthesized based on local sequences at the output
of the IR block. Since these sequences are the same for Alice and Bob, the resulting encoders
will be the same for them and need not be exchanged over the public channel.

For all three systems, the BP ADD algorithm is executed in the AD block since it
proved to be significantly more efficient than the standard bit parity advantage distillation
(BP AD) algorithm [35]. Figure 8 illustrates this fact. The top row shows the histograms
of mutual normalized Hamming distances of all 100 · 99/2 = 4950 pairs (Alice, Bob) of
sequences for the given initial set of 100 sequences. The bottom row shows a histogram of
normalized Hamming distances for the same set of pairs after the end of the AD phase. It
can be seen that the BP ADD algorithm more significantly increases the correlation between
(Alice, Bob) sequences than the BP AD algorithm. Let us keep in mind that identical
sequences have a normalized Hamming distance equal to zero, and uncorrelated sequences
have a distance equal to 0.5.

Figure 8. BP AD vs. BP ADD algorithm. It can be seen that the BP ADD algorithm more significantly
increases the correlation between (Alice, Bob) sequences than the BP AD algorithm.
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The training set is formed for each of the analyzed systems in such a way that for
each pair of sequences (Alice, Bob) the corresponding Eve sequence is randomly selected
from the remaining sequences. This choice of the eavesdropper is close to the worst-case
scenario for the efficiency of the SKD protocol since Eve is actually an insider. Namely, Eve
belongs to the population that was selected to represent the future users of the system as
representatively as possible.

Table 2 provides an overview of features F, which are measured during the execution
of the SKD protocol for all 4950 pairs of legitimate users.

Table 2. Features 10 and 11 were used only for the system with the CASCADE algorithm because, in
this information reconciliation algorithm, no security bits were discarded for privacy maintenance.
In the case of the Winnow algorithm, security bits are discarded during the algorithm.

Feature No. Block Description

1 Start Length of the sequence at the beginning

2 Start Length of the sequence after the first iteration of the AD algorithm

3 Start Length of the sequence after the second iteration of the AD algorithm

4 Start Normalized block entropy with block size = 8 at the beginning

5 AD Normalized block entropy with block size = 8 after the first iteration of the
AD algorithm

6 AD Normalized block entropy with block size = 8 after the second iteration of
the AD algorithm

7 AD Number of parity messages exchanged during the AD algorithm

8 IR Length of the sequence after the IR algorithm

9 IR Normalized block entropy with block size = 8 after the IR algorithm

10 * IR Number of parity messages exchanged during the IR algorithm

11 * IR Number of bits that eavesdropper found out during the IR algorithm

12 LLC Length of the sequence after the lossless compression algorithm

13 LLC Normalized block entropy with block size = 8 after the lossless
compression algorithm

Having in mind Remark 4, the normalized Hamming distance εi= Dh(S i, ei) between
Si and ei was taken for the desired output in the training set. This practically means that
PIDNN is trained to predict ε, and then this output is translated into ECRE2 by functional
transformation (15). Experimental results show that this approach is more efficient than
direct ECRE2 prediction.

Figures 9 and 10 shows architecture for proposed PIDNN systems.
PIDNN training was performed by 10-fold cross-validation over all 4950 pairs of

legitimate users. Lower bound predictions L were calculated on the corresponding test
sets for each cross-validation iteration. In this way, after completing 10 rounds of cross-
validation, predictions were obtained for all 4950 pairs of legitimate users while preserving
the independence of the training and test sets. Parameters of learning algorithm are: a
number of epochs = 400, batch size = 32, with Adam optimizer and learning rate 0.0005 [28].
For PI algorithm parameters are: λ = 15, and PICP = 0.95. Figure 11 shows loss during
training of PINDD.
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Figure 9. Architecture of PIDNN for System A (obtained from the keras API, [36]).

Figure 10. Architecture of PIDNN for System B and C (obtained from the keras API, [36]).
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Figure 11. Typical behavior of model loss (19) on training and test set during training of PIDNN.

Figure 12 shows output of PIDNN model.

Figure 12. Illustrative sample of output of PIDNN before functional transformation (15).
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5.3. Performance Measures

In order to compare individual PA strategies, we will introduce two indicators, gain
and loss. Gain of PA strategy A over PA strategy B is defined as follows

GA
B =

|KA|
|KB|

, (25)

where |KA| and |KB| denote the total length of generated keys using strategies A and B for
the same input sequences S. Loss of PA strategy A is defined by

LossA =

∣∣KOpt−KA
∣∣

KOpt
·100 [%], (26)

where KOpt is the total length of generated keys using optimal PA strategy (12) for the same
input sequences S.

The quantities appearing in Tables 3 and 4 are defined as follows. PICP is given by
(17), MPIW is defined by (18), R2 denotes the mean value, while R2min is the minimum
value of ECRE2 over the entire population of size L of the given DMS

R2 =
1
L

L

∑
i=1

R2(Si|E = e i), (27)

R2min = min
i

R2(Si|E = e i). (28)

The mean value of the ECRE2 lower bound L obtained from PIDNN is denoted by

R2ML =
1
L

L

∑
i=1

L(Fi). (29)

while the mean value of the corresponding lower bound LHyb from the hybrid PA strategy
is denoted by

R2Hyb =
1
L

L

∑
i=1

LHyb(Fi), (30)

GOpt
GLB_R2min =

R2
R2min

, (31)

which represents the potential gain in the length of the generated keys when applying the
optimal PA strategy over the strategy based on the global lower bound R2min. Similarly,

GML
GLB_R2min =

R2ML
R2min

, (32)

is the gain in the length of the generated keys when applying the PA strategy based on
machine learning compared to the standard procedure based on the global lower bound
R2min for ECRE2. Corresponding losses

LossGLB_R2min =
|R2 − R2min|

R2
·100 [%], (33)

LossML =
|R2 − R2ML|

R2
·100 [%], (34)

express percentage of the unused of a given DMS when applying global lower bound and
machine learning PA strategy, respectively.
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Table 3. Summary of all indicators for System A, B, and C and both sources: raw EEG and EEG
metrics. Columns labeled Mean A, Mean B, and Mean C represent averaging over sources, while the
column total mean gives average values over both sources and systems.

A
(Cas-Hash)

Mean
A

B
(Win-Hash) Mean B C

(Win-Huff-Hash) Mean C Total
Mean

Raw Metrics Raw Metrics Raw Metrics

R > 0 (%) 99.35 100 99.68 99.47 99.94 99.71 100 100 100 99.79

PICP 0.9602 0.9756 0.9679 0.9604 0.9636 0.9620 0.9919 0.9978 0.99485 0.9749

MPIW 0.315 0.221 0.268 0.323 0.215 0.269 0.072 0.063 0.0675 0.2015

R2 2650.71 2609.42 2630.07 2106.40 2131.33 2118.87 2389.59 2993.76 2691.68 2480.20

R2min 319.91 1157.49 738.70 244.93 981.90 613.42 512.88 1612.42 1062.65 804.92

R2ML 1064.21 1425.47 1244.84 847.95 1160.49 1004.22 2369.37 2973.56 2671.47 1640.18

GOpt
GLB_R2min 8.2858 2.2544 5.2701 8.6000 2.1706 5.3853 4.6592 1.8567 3.2580 4.6378

GML
GLB_R2min 3.3266 1.2315 2.2791 3.4620 1.1819 2.3220 4.6197 1.8442 3.2320 2.6110

LossGLB_R2min (%) 87.93 55.64 71.79 88.37 53.93 71.15 78.54 46.14 62.34 68.43
LossML (%) 59.82 45.37 52.60 59.66 45.53 52.60 0.85 0.67 0.76 35.32
KRML (%) 1.12 1.89 1.51 2.36 3.22 2.79 6.61 8.26 7.44 3.91

KARML (%) 84.57 99.74 92.16 99.47 99.94 99.71 100 100 100 97.29
LRML (10−3) 4.319 1.487 2.903 1.173 0.684 0.929 0.349 0.241 0.295 1.376
LRHLL (10−3) 233.383 290.447 261.915 219.418 282.512 250.965 0.512 0.333 0.423 171.101

Table 4. Randomness test results of the key sequences. The tests are based on the Statistical Test
Suite developed by NIST, and results are presented in terms of p-values. Initial letters indicate test
names: F—frequency, BF—block frequency, R—runs, LR—longest run, FFT—fast Fourier transforma-
tion, S—serial, AE—approximate entropy, CSf—cumulative sums forward, CSr—cumulative sums
reverse. Tested sequences have a length of 12 million bits for systems A, B, and C, respectively.
p− value treshold = 0.01.

F BF R LR FFT S AE CSf CSr

A
Raw 0.9167 0.3976 0.3360 0.4400 0.9535 0.0678 0.3218 0.7410 0.8362

Metrics 0.3399 0.8281 0.4842 0.8010 0.8523 0.0506 0.8992 0.5478 0.2525

B
Raw 0.9276 0.6909 0.5960 0.4376 0.8193 0.5114 0.3720 0.3939 0.4603

Metrics 0.8308 0.2789 0.8185 0.8228 0.9878 0.1349 0.6255 0.9370 0.9590

C
Raw 0.0748 0.5075 0.3403 0.8959 0.2386 0.3444 0.0995 0.0701 0.1108

Metrics 0.4152 0.6420 0.6948 0.4182 0.9828 0.0741 0.5117 0.6581 0.5525

The key rate is given by

KR =
total length of established keys
total length of input sequences

·100 [%], (35)

while the key acceptance rate is given by

KAR =
number of final keys with length > 0

total number of keys
·100 [%]. (36)

The leakage rate measures the amount of information per bit contained in Eve’s keys
about Alice and Bob’s common keys:

LR = I(X; Z)= 1 − hb(D h(A, E)), (37)
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where hb(x) = −x·log(x)− (1− x)·log(1− x), 0 < x < 1, is the binary entropy function.
Quantities (25)–(31) characterize the performance of the system in terms of the length

of the generated keys, provided that s = 0 and nb = 0. In this way, ECRE2 was highlighted
as the dominant factor affecting the lengths of the generated keys. In order to get a clear
visual representation of the effects of different strategies on the degree of unused of a given
source, specific histograms (see Figure 13) were formed for each of the analyzed systems
and sources. First, the ECRE2 histogram of the given source is calculated (blue color). It is
also the theoretical limit of the possible length of generated keys, according to (12). Then
we keep the bin structure of this basic histogram and calculate over them the histogram
of key lengths generated by ML PA strategies (21) (yellow) and global lower bound PA
strategy (9) (brown). The areas of these histograms are proportional to the total length of
the generated keys of the corresponding PA strategies. Therefore, R2 (27) is proportional
to the blue area, R2min (28) to the brown area, and R2ML (29) to the yellow area. Gain
indicators (31) and (32) are the ratios of blue and brown as well as yellow and brown areas,
respectively. Loss indicators (33) and (34) can be interpreted similarly.

Table 3 summarizes all indicators for all three systems and both DMS.
Table 4 shows the results of the randomness tests of all generated key sequences. The

randomness tests are based on the Statistical Test Suite developed by the U.S. National
Institute of Standards and Technology NIST [15]. The outcome of each experiment is
represented by the p-value. An individual test is considered to be passed successfully if
the obtained p-value is higher than the threshold of 0.01. Following the obtained results, it
can be seen that all generated key sequences meet the defined randomness criteria in all
presented tests.

The results of testing the hybrid strategy are given in Table 5. The value of R2δ is
defined by (24), while the other indicators are given by

GHyb
GLB_R2min =

R2Hyb

R2min
, (38)

GHyb
GLB_R2δ =

R2Hyb

R2δ
, (39)

GHyb
ML =

R2Hyb

R2ML
, (40)

LossHyb =

∣∣∣R2− R2Hyb

∣∣∣
R2

·100 [%]. (41)

Table 6 shows the results of the randomness tests of all generated key sequences.
Histograms of generated key lengths for optimal, hybrid, and global lower bound R2δ

PA strategies are presented in Figure 14.
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Figure 13. Blue: ECRE2 histograms of the sources raw EEG and EEG metrics. It is also a histogram of
generated keys by optimal PA strategy (12). Yellow: histogram of key lengths generated by ML PA
strategies (21). Brown: histogram of key lengths generated by global lower bound PA strategy (9).
The areas of these histograms are proportional to the total length of the generated keys of the
corresponding PA strategies.
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Table 5. Summary of all indicators for System A, B, and C and both sources: raw EEG and EEG
metrics for hybrid strategies. Columns labeled Mean A, Mean B, and Mean C represent averaging
over sources, while the column total mean gives average values over both sources and systems.

A
(cas-hash)

Mean
A

B
(win-hash) Mean B C

(win-huff-hash) Mean C Total
Mean

Raw Metrics Raw Metrics Raw Metrics

R > 0 [%] 99.35 100 99.68 99.47 99.94 99.71 100 100 100 99.79

PICP 0.9602 0.9756 0.9679 0.9604 0.9636 0.962 0.9919 0.9978 0.9949 0.9749

MPIW 0.315 0.221 0.268 0.323 0.215 0.269 0.072 0.063 0.068 0.2015

R2 2650.71 2609.42 2630.07 2106.40 2131.33 2118.87 2389.59 2993.76 2691.68 2480.20

R2δ 1028.65 1555.26 1291.96 816.10 1303.18 1059.64 850.71 1694.77 1272.74 1208.11

R2Hyb 1169.26 1584.56 1376.91 928.87 1328.10 1128.49 2369.99 2973.61 2671.80 1725.73

GHyb
GLB_R2min

3.6550 1.3690 2.5120 3.7925 1.3526 2.5726 4.6210 1.8442 3.2326 2.7724

GHyb
GLB_R2δ

1.1367 1.0188 1.0778 1.1382 1.0191 1.0787 2.7859 1.7546 2.2703 1.4756

GHyb
ML

1.0987 1.1116 1.1052 1.0954 1.1444 1.1199 1.0003 1.0000 1.0002 1.0751

LossHyb (%) 55.89 39.28 47.59 55.90 37.69 46.80 0.82 0.67 0.75 31.71

KRHyb (%) 1.37 2.33 1.85 2.59 3.69 3.14 6.61 8.26 7.44 4.14

KARHyb (%) 93.01 100 96.51 100 100 100 100 100 100 98.84

LRHyb (10−3) 3.106 0.875 1.991 0.840 0.545 0.693 0.343 0.240 0.292 0.992

LRHLL (10−3) 233.383 290.447 261.915 219.418 282.512 250.965 0.512 0.333 0.423 171.101

Table 6. Randomness test results of all generated key sequences by the PA Hybrid strategy. The
tests are based on the Statistical Test Suite developed by NIST, and results are presented in terms of
p-values. Initial letters indicate test names: F—frequency, BF—block frequency, R—runs, LR—longest
run, FFT—fast Fourier transformation, S—serial, AE—approximate entropy, CSf—cumulative sums
forward, CSr—cumulative sums reverse. Tested sequences have a length of 12 million bits for systems
A, B, and C, respectively. p− value treshold = 0.01.

F BF R LR FFT S AE CSf CSr

A
Raw 0.0732 0.9533 0.3227 0.8138 0.2654 0.1771 0.3879 0.0908 0.0511

Metrics 0.1287 0.2838 0.2788 0.0775 0.0766 0.4990 0.1135 0.2339 0.0609

B
Raw 0.4059 0.5174 0.8757 0.1129 0.5928 0.0293 0.8818 0.1801 0.7563

Metrics 0.1742 0.8863 0.0690 0.0819 0.2042 0.3527 0.5038 0.2692 0.3301

C
Raw 0.4794 0.8560 0.1586 0.2438 0.6685 0.7032 0.2597 0.8810 0.4310

Metrics 0.6468 0.1673 0.6297 0.9099 0.7037 0.3355 0.0257 0.4634 0.8687
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Figure 14. Blue: ECRE2 histograms of the sources raw EEG and EEG metrics. It is also a histogram of
generated keys by optimal PA strategy (12). Yellow: histogram of key lengths generated by hybrid PA
strategies (22). Brown: histogram of key lengths generated by global lower bound PA strategy with
bound R2δ according to (24). The areas of these histograms are proportional to the total length of the
generated keys of the corresponding PA strategies.

Based on all the data presented in Tables 3–6, the following conclusions can be drawn.

(a) For all systems and all sources, the generated keys passed NIST randomness tests
with a high margin of confidence;

(b) On average, across all systems and sources, the GLB strategy leaves almost 68% of
ECRE2 potential unused. By introducing the ML strategy, the unused is reduced to
35%, and the hybrid strategy would further reduce this indicator to 32%;

(c) On average, across all systems and sources, the ML strategy increases the quantity
of generated keys by 2.61 times compared to the GLB strategy. The hybrid strategy
further increases this indicator to 2.77 times;

(d) The average value for the δ parameter across all systems and sources is 1−0.9749
2 = 0.012,

see (24). Since it is a very small value, according to Remark 2, generated keys have
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almost maximal entropy for Eve. The further consequence of this fact is the very small
average leakage rate LR = 1.38× 10−3 that is LRHyb = 0.99 × 10−3 per one key bit;

(e) Note the dramatic difference of two orders of magnitude in the leakage rate between
the classic HLL strategy and the proposed ML hybrid strategy (LRHLL vs. LRHyb, last
two rows of Table 5);

(f) On average, across all systems and sources in terms of KR indicators, hybrid strategies
give better results than non-hybrid ones (4.41 vs. 3.91). The same is valid for the KAR
indicator (98.84% vs. 97.29%);

(g) Averaged by sources, the performance of systems A, B, and C are ranked as A < B
< C for all important indicators, such as KR, KAR, LR, and GML

GLB_R2min. The same
relationships are observed for hybrid strategies;

(h) System C has a loss close to 0, unlike systems A and B, where this parameter is 52.6%;
(i) Averaged across sources, ML gain with respect to the GLB strategy amounts to (2.28,

2.32, 3.23) for systems A, B, and C, respectively;
(j) In systems A and B, the hybrid strategy provides improvements of 10–12%, while

for system C they do not provide a significant improvement compared to the basic
ML strategy;

(k) In terms of all performances, system C significantly exceeds systems A and B by
giving GML

GLB_R2min = 3.23, LossML = 0.76%, LR = 0.295 × 10−3, KAR = 100%, and
KR = 7.44.

5.4. Security Analysis

The presented PA strategies based on machine learning introduce an additional ML
block compared to standard PA strategies. From the point of view of security, this does not
reduce the uncertainty of the generated keys since the output of this block is the output
dimension of the applied hash function, which is also sent to all parties via the public
channel as a public parameter in the original version of the protocol.

In the training phase, the system designer can incorporate additional a priori infor-
mation about the expected Eve strategy. This strategy can be different from the worst-case
scenario, which we adopted in this research, taking Eve as a de facto insider from the set of
expected users of the system.

The introduction of a block for lossless compression based on Huffman’s optimal
coding also does not impair the security performance of the system. Namely, the Huffman
coder is uniquely determined by the common sequence that Alice and Bob have before
the PA block. Therefore, Alice and Bob generate their own Huffman codes locally without
requiring any additional communication over the public channel. Eve’s strategy, in this
case, can be two-fold. The first possibility is to generate a local Huffman coder on its
sequence. In that case, any mismatch of its sequence with the Alice, Bob sequence has
an effect very similar to applying some equivalent hash function with the same degree
of compression. Another possibility is that Eve owns a local Huffman encoder formed
by Alice and Bob. Due to the mismatch of the coder with the local Eve sequence, the
output sequence will be very similar to the result of the equivalent hash function, as in the
first strategy. The experimental evaluation shows that the Huffman coder not only does
not compromise the security performance of the system but improves it to a significant
extent, which is best seen by the significantly lower value of the LR indicator of system C
compared to systems A and B, regardless of the type of source and type of strategy (hybrid
or not hybrid).

6. Conclusions

In this paper, a new methodology for the synthesis of the PA block of the SKD system
based on machine learning was introduced. In offline mode, before the execution of the
protocol itself, the PIDNN was trained on the training set drawn from the given DMS. In
protocol execution mode, trained PIDNN gives a local lower bound for ECRE2 with high
precision and confidence.
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The proposed theoretical-empirical methodology of PA block analysis and design
allows us to give new answers to two difficult questions posed in the introductory part of
the paper,

1. How much of the total available pure randomness is allocated to secret keys?
2. Is there any leakage toward eavesdroppers, and what is the real security margin of

the generated secret keys?

The proposed PA block design methodology allows us to quantify both phenomena
mentioned in these questions. In addition, it allows us to precisely quantify the advantage
of the proposed hybrid ML strategy over previously known GLB and HLL strategies.
The proposed ML and hybrid strategies far surpass GLB and HLL classic PA design in
all aspects.

In particular, System C, which consists of the sequence of blocks ADD→WINNOW→
Huffman coding→Universal Hash, in terms of efficient utilization of the given DMS,
gives almost ideal results (percentage of unused is 0.75%). This property is of particular
importance in today’s time of “hunger” for efficient sources and methods of generation
and distribution of absolutely secret cryptographic keys.

A particularly interesting and unexpected result is the large leakage of information
toward Eve in the classical HLL strategy, which today dominates the practical application
of SKD. This result shows that although these systems pass NIST randomness tests, such
as in [14], they are susceptible to an efficient dictionary-based attack that allows Eve to
reconstruct the Alice and Bob strings before entering the hash block.

Our next research efforts will be focused on trying to replace the entire AD—IR—LLC—PA
processing chain with a unique machine learning structure.
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Appendix A

Proof of Theorem 2. Since H(K|G, E = e) ≥ R2(K|G, E = e), it suffices to establish a
lower bound for the R2(K|G, E = e), i.e., ECRE2. Note that

R2(K|G, E = e) = ∑
g∈G

pG(g)R2(K|G = g, E = e)

= ∑
g∈G

pG(g)
(
−logEK|G=g,E=e

[
pK|GE(K|g, e)

])
≥ −log

(
∑

g∈G
pG(g)EK|G=g,E=e

[
pK|GE(K|g, e)

]) (A1)

where the last inequality follows from the convexity of the function x 7→ −logx and Jensen’s
inequality. Now, let S1 ∈ {0, 1}n and S2 ∈ {0, 1}n be two random variables that are
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independent of each other and independent of G, which are distributed according to
pS|E=e. Then,

P [G(S1)= G(S2)|G = g ] = ∑
kk∈{0,1}k

pG(S)|GE(kk|g, e)pG(S)|GE(kk|g, e)

= EK|G=g,E=e

[
pK|GE(K|g, e)

]
,

where kk ∈ K, and we can rewrite inequality (A1) as

R2(K|G, E = e) ≥ −logP[G(S1)= G(S2)] (A2)

We now develop an upper bound for P [G (S1)= G(S2)]. By the law of total probability,

P[G(S1)= G(S2)] = P[G(S1)= G(S2), S1= S2]P[S1= S2]
+ P[G(S1)= G(S2), S1 6= S2]P[S1 6= S2].

(A3)

Note that P[G(S1)= G(S2)|E = e, S 1 = S2] ≤ 1 and P[S1 6= S2|E = e ] ≤ 1.
In addition, by virtue of the definition of collision entropy,

P[S1= S2] = ∑
s∈{0,1}n

pS|E=e(s|e)
2= 2−R2(S|E=e).

Finally, because the hash function G is chosen in a universal family, it holds that

P[G(S1)= G(S2)|S 1 6= S2] ≤ 2−k.

On substituting these inequalities into (A3), we obtain

P[G(S1)= G(S2)] ≤ 2−R2(S|E=e)+2−k= 2−k
(

1 + 2k−R2(S|E=e)
)

. (A4)

On substituting (A4) into (A2) and using the fact that ln(1 + x) ≤ x for all x > −1,
we obtain

R2(K|G, E = e) ≥ k − 2k−R2(S|E=e)

ln2
Finally, having in mind the lower bound for Shannon entropy, we obtain

k ≥ H(K|G, E = e) ≥ k − 2k−R2(S|E=e)

ln2
�
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