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Abstract: Wavelet transform is a powerful tool for analysing the problems arising in harmonic
analysis, signal and image processing, sampling, filtering, and so on. However, they seem to be
inadequate for representing those signals whose energy is not well concentrated in the frequency
domain. In pursuit of representations of such signals, we propose a novel time-frequency transform
coined as quadratic-phase wave packet transform in L2(R). The proposed transform is aimed at
rectifying the conventional wavelet transform by employing a quadratic-phase Fourier transform
with extra degrees of freedom. Besides the formulation of all the fundamental results, including the
orthogonality relation, reconstruction formula and the characterization of range, we also derive a
direct relationship between the well-known Wigner-Ville distribution and the proposed transform. In
addition, we study the quadratic-phase wave-packet transform in the framework of almost periodic
functions. Finally, we extend the scope of the present work by investigating the composition of
quadratic-phase wave packet transforms.

Keywords: quadratic-phase Fourier transform; wave-packet transform; Wigner-Ville distribution;
periodic function; composition operator

1. Introduction

Time-frequency analysis has witnessed a giant leap with the birth of the Gabor trans-
form, in which the Gaussian distribution function is used as a window function to construct
efficient time-frequency localization of finite energy signals[1]. Gabor systems are gener-
ated by modulationsMcψ(t) = eictψ(t), c ∈ R and translations Tbψ(t) = ψ(t− b), b ∈ R
of a single function ψ(t) ∈ L2(R) and hence, can be viewed as the set of time-frequency
shifts of ψ in a time-frequency plane. Although the Gabor transforms catered much to
the needs of scientific and engineering communities, however, due to the rigid window
function, they can only provide the time-frequency content of a signal with constant fre-
quency and time resolution. This is often not the most desired resolution, which led to
the birth of wavelet transform [1]. Wavelet systems are generated by a set of dilations
Daψ(t) = a−1/2 ψ(t/a), a ∈ R+ and translations Tbψ(t) = ψ(t − b), b ∈ R of a single
window function ψ(t) ∈ L2(R). The wavelet transform can be viewed as a time-scale
analysis tool, which provides a better description of the signal than the Gabor transform [2].
Moreover, the symmetry property of wavelets is often desirable in practical applications,
and as such, wavelets can reveal different patterns and singularities of highly nonstationary
signals, such as Brownian motions, patterns on the water surfaces, fractal properties of
the velocity field, computations of Renyi dimensions, Hurst and Hölder exponents. Some
prominent examples of the symmetric wavelets include biorthogonal wavelets, quincunx
wavelets, and carinal Bsplines [3]. Despite the fact that the wavelet transforms have cap-
tivated the scientific, engineering, and research communities with their wide range of
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applications and simple mathematical underpinning, however, they could not perform
satisfactorily while analyzing signals whose energy is not well concentrated in the fre-
quency domain. To circumvent this defect, Labate et al. [4] introduced wave packet systems{
DaTbMcψ(t) : a ∈ R+, b, c ∈ R

}
by incorporating all three of the operations, that is,

translation, dilation, and modulation, to a family of functions in L2(R). The wave-packet
transform can be thought of as the Fourier transform of the signal f windowed with the
kernel of the wavelet transform [5]. Indeed, the wave-packet transformation has gained
respectable status in the research community and has been successfully applied across
diverse fields of science and engineering, particularly in de-noising, image compression
and encryption in wireless communication [6–8].

The most recent generalisation of the Fourier transform appeared via the theory of
reproducing kernels underneath the guise of the quadratic-phase Fourier transform. The
off-shoots of Fourier transform include the fractional Fourier transform, linear canonical
transform, and the special affine Fourier transform. For a given collection of real parameters
Λ = (A, B, C, D, E), B 6= 0, the quadratic-phase Fourier transform of any f ∈ L2(R) is
defined by [9]

FΛ
[

f
]
(ω) =

∫
R

f (t)KΛ(t, ω) dt, (1)

where KΛ(t, ω) denotes the quadratic-phase Fourier kernel and is given by

KΛ(t, ω) = exp
{
− i
(

At2 + Btω + Cω2 + Dt + Eω
)}

. (2)

It is worth noting that (1) is indeed a cluster of transformations which includes the
prominent signal processing tools ranging from Fourier to much recent special affine Fourier
transforms [10]. Owing to the arbitrariness of the real parameters Λ = (A, B, C, D, E), the
QPFT ha a lot of flexibility and is of critical significance in tackling problems requires higher
degrees of freedom [11]. The quadratic-phase Fourier transform has rectified almost all
the limitations of preceding transforms; nonetheless, in some cases, QPFT is inadequate
for analysing the signals having high-frequency components for short durations and
low-frequency components for long durations. Therefore, in order to obtain joint time-
frequency representations, Shah and Lone [12] first introduced the quadratic-phase wavelet
transform in the pursuit of time-frequency analysis. The quadratic-phase wavelet transform
inherits the excellent mathematical properties of the wavelet transform and the QPFT along
with some fascinating properties of its own. As of now, this transformation has received
immense attention in many aspects of science and engineering, including harmonic analysis,
differential equations, sampling and so on [13,14]. However, much to dismay, one of the
severe limitations is that their signal analyzing capability is restricted in the time-frequency
plane and hence, are incompetent for localized analysis of those signals whose energy is
not well concentrated in the quadratic-phase frequency domain, for instance the chirp like
signal which is ubiquitous in nature.

The sole aim of this paper is to introduce the notion of quadratic-phase wave packet
transform in L2(R) originated by the combined action of dilations, modulations, and
translations of a single function. This novel integral transform can efficiently localize any
non-transient signal at different scales and locations in the time-frequency plane with more
degrees of freedom. At first, we formulate the quadratic-phase wave-packet transform,
braced with an example. In the aftermath, we investigate the orthogonal property of the
proposed transform and then establish a natural relationship between the Wigner-Ville
distribution and the quadratic-phase wave-packet transform. To broaden the scope of
the present study, we shall investigate the composition of quadratic-phase wave-packet
transformations in L2(R).

The space of almost periodic function on R is a closed subspace of L∞(R) spanned
by the set of functions of the form eiλt, λ ∈ R. EIn other words, we say that the space
of almost periodic functions is the uniform closure of the trigonometric polynomials of
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the form ∑m
1 hk eiλkt, where hk ∈ C, λk ∈ R and m ∈ N. All almost periodic functions are

uniformly continuous and bounded in nature. These functions have received considerable
attention across various disciplines of science and technology such as quantum mechanics,
optics, geophysics, differential equations, harmonic analysis, and so on [15,16]. Keeping the
exciting developments of almost periodic functions in hindsight, it is desirable to study the
behaviour of almost periodic functions in the framework of quadratic-phase wave-packet
transform. The main contributions of the article are itemized below:

• To introduce the notion of quadratic-phase wave packet transform.
• To study mathematical properties of the proposed transform.
• To study of quadratic-phase wave packet transform on the space of almost periodic

functions.
• To study the composition of quadratic-phase wave-packet transforms.

The rest of the paper is structured into four main sections. In Section 2, we formulate
the concept of quadratic-phase wave packet transform and study its basic properties.
Section 3 deals with the study of quadratic-phase wave packet transform on the space
of almost periodic functions. Section 4 is completely devoted to the formulation of the
composition of quadratic-phase wave packet transforms. Finally, a conclusion is extracted
in Section 5.

2. Quadratic-Phase Wave-packet Transform in L2(R)
In this section, we formally introduce the notion of quadratic-phase wave-packet

transform in L2(R) and then study the fundamental properties of the proposed transform
including the orthogonality relation, an inversion formula and the characterization of range.
In the sequel, we derive a direct relationship between the well-known Wigner distribution
and the quadratic-phase wave packet transform. To accomplish our objectives, we shall
define a couple of unitary operators acting on the space of square-integrable functions.

For any function ψ ∈ L2(R) and α ∈ R+, β, ω ∈ R, we define the translation operator
Tβ, dilation operator Dα and a generalized modulation operatorMΛ

ω by
(
Tβψ

)
(t) = ψ(t−

β), (Dαψ)(t) = α−1/2 ψ(t/α) and
(
MΛ

ωψ
)
(t) = ei(At2+Btω+Cω2+Dt+Eω)ψ(t), A, B, C, D, E ∈

R, B 6= 0, respectively.
We now define the family of analyzing functions by implementing the above defined

unitary operators together with the parametric set Λ = (A, B, C, D, E), B 6= 0 on a square
integrable function ψ as:

DαTβMΛ
ω ψ(t) = ψΛ

ω,α,β(t) =
1√
α

ψ

(
t− β

α

)
ei(At2+Btω+Cω2+Dt+Eω), α ∈ R+, β, ω ∈ R. (3)

Having constructed the collection of analyzing functions, we are ready to introduce
the definition of the quadratic-phase wave packet transform.

Definition 1. Given a parametric set Λ = (A, B, C, D, E), B 6= 0, the quadratic-phase wave
packet transform of any function f ∈ L2(R) is defined by(

WΛ
ψ f
)
(ω, α, β) =

〈
f , ψΛ

ω,α,β

〉
, α ∈ R+, β, ω ∈ R, (4)

where ψΛ
ω,α,β is given by (3).

Define ψα(t) = 1√
α

ψ
( t

α

)
, then the quadratic-phase wave packet transform (4) can be recast as

(
WΛ

ψ f
)
(ω, α, β) =

∫
R

f (t)ψα(t− β) e−i(At2+Btω+Cω2+Dt+Eω) dt. (5)
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Or, equivalently(
WΛ

ψ f
)
(ω, α, β) = e−i(Cω2+Eω)

∫
R

f (t) e−i(At2+Dt)ψα(t− β) e−iBtω dt

= e−i(Cω2+Eω)
∫
R

F(t)ψα(t− β) e−it(Bω) dt

= e−i(Cω2+Eω)WPTF(Bω, α, β), (6)

where F(t) = f (t) e−i(At2+Dt) and WPTF(Bω, α, β) denoted the classical wave packet transform
of a signal F(t) with its argument scaled by a parameter B. From (6), we observe that the computation
of the quadratic-phase wave packet transform performs the following three actions in unison:

(i). A product by a chirp signal, i.e., f (t)→ F(t) = f (t) e−i(At2+Dt).
(ii). A classical wave-packet transform (with its argument scaled by B), that is, F(t)→WPTF(Bω, α, β).
(iii). Another product by a chirp signal, that is, WPTF(Bω, α, β) →

(
WΛ

ψ f
)
(ω, α, β) =

e−i(Cω2+Eω)WPTF(Bω, α, β).

Hence the computational load of the quadratic-phase wave packet transform is essentially
dictated by the classical wave packet transform. Moreover, the aformentioned scheme is depicted in
Figure 1.

Figure 1. Structure of computing the proposed quadratic-phase wave packet transform.

We can draw the following observations from the Definition 1:

(i). For the parametric set Λ = (−A/2B, 1/B, 0,−D/2B, 0) and multiplying the right
side of (5) by 1/

√
2πiB, Definition 1 boils down to the linear canonical wave packet

transform(
WΛ

ψ f
)
(ω, α, β) =

1√
2πiB

∫
R

f (t)ψα(t− β) ei(At2−2Btω+Dω2)/2B dt. (7)

(ii). For the parametric set Λ = (− cot θ/2, csc θ,− cot θ/2, 0, 0), θ 6= nπ and multiplying
the right side of (5) by 1/

√
1− i cot α, Definition 1 reduces to the fractional wave

packet transform(
WΛ

ψ f
)
(ω, α, β) =

1√
1− i cot α

∫
R

f (t)ψα(t− β) ei(t2+ω2) cot θ/2−itω csc θ dt. (8)

(iii). For the parametric set Λ = (0, 1,−1, 0 : 0, 0), Definition 1 boils down to the classical
wave packet transform(

WΛ
ψ f
)
(ω, α, β) =

∫
R

f (t)ψα(t− β) e−iωt dt. (9)

We now present an example for the lucid illustration of the proposed quadratic-phase
wave packet transform given by (4).
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Example 1. Consider the wavelet function ψ(t) = e−πt2
. Then, we shall compute the quadratic-

phase wave packet transform (5) of the function f (t) = eikt, k > 0 with respect to an analyzing
function ψ(t) as:(

WΛ
ψ f
)
(ω, α, β) =

∫
R

f (t)ψα(t− β) e−i(At2+Btω+Cω2+Dt+Eω) dt

=
1√
α

∫
R

eikt e−π
(

t−β
α

)2

e−i(At2+Btω+Cω2+Dt+Eω) dt

=
1√
α

e−π
(

β
α

)2
−i(Cω2+Eω)

∫
R

e−
(

iA+ π
α2

)
t2+

(
ik+ 2πβ

α −Bω−D
)

t dt

=

√
πα

π + iAα2 exp

{
−π

(
β

α

)2
− i
(

Cω2 + Eω
)}

× exp


(

ik + 2πβ
α − Bω− D

)2

4
(

iA + π
α2

)
. (10)

It is immediate from (10) that the quadratic-phase wave packet transform (4) can be visualized
as a three-parameter representation of a signal f ∈ L2(R). Simultaneous visualization of quadratic-
phase wave packet transform in all three variables is hardly possible. Hence, in order to have a
sound visualization, some variables must either be fixed or eliminated, so that one is restricted to a
particular section of the parameter space determined by α ∈ R+, ω, β ∈ R.

(i). Position Representation: In case the frequency and scale parameters ω and α are kept fixed in
(10); that is

(
WΛ

ψ f
)
(ω, α, β) is rendered as a function of translation parameter β only, the

quadratic-phase wave packet transform yields a position representation system. For k = 1, the
position representation

(
WΛ

ψ f
)
(·, ·, β) of (10) corresponding to different parameters are presented

in Figure 2.
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Figure 2. (a) Position-representation of Example 1 for ω = 3, α = 7/2 and Λ = (1, 3, 5/2, 2, 1/2).
(b) Position-representation of Example 1 for ω = 1/2, α = 1 and Λ = (1, 1/2, 0, 3, 0).

(ii). Scale Representation: If
(
WΛ

ψ f
)
(ω, α, β) is solely regarded as a function of scale variable α,

then the quadratic-phase wave packet transform boils down to a scale representation(
WΛ

ψ f
)
(·, α, ·). For the case k = 1, the scale representation of (10) corresponding to different

parameters are depicted in Figure 3.
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Figure 3. (a) Scale-representation of Example 1 ω = 4, β = 1 and Λ = (1, 3, 5/2, 2, 1/2).
(b) Scale-representation of Example 1 ω = 4, β = 1 and Λ = (0, 5/2, 1, 3/2, 1/2).

(iii). Frequency Representation: The quadratic-phase wave packet transform yields a frequency
representation of a transformed signal when the scale and translation variables α and β are kept
constant. The frequency representation is especially useful in situations where frequency behaviour
is important. Figure 4 represents the frequency representation

(
WΛ

ψ f
)
(ω, ·, ·) of the Example 1

with respect to different set of parameters.
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Figure 4. (a) Frequency-presentation of Example 1 for k = 1, α = 5, β = 1 and Λ = (1, 3, 5/2, 2, 1/2).
(b) Frequency-representation of Example 1 with respect to k = 1, α = 4, β = 1 and Λ = (1, 3/2, 0, 2, 1).

In the following theorem, we assemble some basic properties of the quadratic-phase
wave packet transform Definition 1.

Theorem 1. For any f , g ∈ L2(R), γ, δ ∈ R, µ ∈ R+ and an admissible ψ, the quadratic-phase
wave packet transform

(
WΛ

ψ f
)
(ω, α, β) satisfies the following properties:

(i). Linearity:
(
WΛ

ψ (γ f + δg)
)
(ω, α, β) = γ

(
WΛ

ψ f
)
(ω, α, β) + δ

(
WΛ

ψ f
)
(ω, α, β),

(ii). Translation:
(
WΛ

ψ (Tk f )
)
(ω, α, β) = e−i(Ak2+Bkω+Dk)(WΛ

ψ (M−2Ak f )
)
(ω, α, β− k),

(iii). Modulation:
(
WΛ

ψ (Mω′ f )
)
(ω, α, β) = e2πi(αt+Cα2/B2−2αω/B−Eα/B)(WΛ

ψ f
)
(ω, α, β),

(iv). Scaling:(
WΛ

ψ f (µt)
)
(ω, α, β) = 1√

|µ|

(
WΛ′

ψ f
)(

ω
µ , µα, µβ

)
, Λ′ =

(
A/µ2, B, Cµ2, D/µ, Eµ

)
,

(v). Conjugation:
(
WΛ

ψ f̄
)
(ω, α, β) =

(
W−Λ

ψ f
)
(ω, α, β).

Proof. For the sake of brevity, we omit the proof.

Next, we derive the orthogonality relation for the proposed quadratic-phase wave
packet transform given by (4).
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Theorem 2. For any f , g ∈ L2(R) and admissible wavelets ψ1 and ψ2 , we have〈(
WΛ

ψ f
)
(ω, α, β),

(
WΛ

ψ f
)
(ω, α, β)

〉
=

1
|B|

∥∥∥ψ
∥∥∥2〈

f , g
〉

. (11)

Proof. Invoking the well-known Fubini theorem, we have,

∫
R

∫
R

(
WΛ

ψ f
)
(ω, α, β)

(
WΛ

ψ f
)
(ω, α, β)dω dβ

=
∫
R

{∫
R

f (t)ψα(t− β) e−i(At2+Btω+Cω2+Dt+Eω) dt
}

×
{∫

R
g(z)ψα(z− β) ei(Az2+Bzω+Cω2+Dz+Eω) dz

}
dω dβ

=
∫
R

{∫
R

e−i(B(t−z)ω) dω

}{∫
R

∫
R

f (t) g(z)ψα(z− β)ψα(t− β) e−i(A(t2−z2)+D(t−z)) dt dz
}

dβ

=
1
|B|

∫
R

∫
R

∫
R

f (t) g(z)ψα(z− β)ψα(t− β) e−i(A(t2−z2)+D(t−z)) δ(t− z)dt dz dβ

=
1
|B|

∫
R

∫
R

f (t) g(t)ψα(t− β)ψα(t− β)dt dβ

=
1
|B|

∫
R

ψα(t− β)ψα(t− β)dfi
∫
R

f (t) g(t)dt

=
1
|B|
∥∥ψ
∥∥2〈 f , g

〉
.

This completes the proof of Theorem 2.

Remark 1. (i). For f = g, Theorem 2 collapses to the following identity:∫
R

∫
R

∣∣∣(WΛ
ψ f
)
(ω, α, β)

∣∣∣2dω dβ =
1
|B|
∥∥ψ
∥∥2 ∥∥ f

∥∥2. (12)

(ii). For the case
∥∥ψ‖ = 1, relation (12) yields

∫
R

∫
R

∣∣∣(WΛ
ψ f
)
(ω, α, β)

∣∣∣2dω dβ =
1
|B|
∥∥ f
∥∥2, (13)

which, except for the parameter B, gives the energy preserving relation corresponding to the
quadratic-phase wave packet transform.

In our next theorem, we demonstrate that the quadratic-phase wave packet transform
WΛ

ψ f of any function f ∈ L2(R) is reversible in the sense that f can be easily recovered
from the transformed space L2(R×R).

Theorem 3. Let
(
WΛ

ψ f
)
(ω, α, β) be the quadratic-phase wave packet transform of any arbitrary

square integrable function f and ‖ψ‖ = 1, then f can be reconstructed via:

f (t) = |B|
∫
R

∫
R

(
WΛ

ψ f
)
(ω, α, β)ψΛ

ω,α,β(t)dω dt, (14)

where ψΛ
ω,α,β(t) is given by (3).
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Proof. We have,(
WΛ

ψ f
)
(ω, α, β) =

∫
R

f (t)ψα(t− β) e−i(At2+Btω+Cω2+Dt+Eω) dt

= e−i(Cω2+Eω)
∫
R

f (t) e−i(At2+Dt) ψα(t− β) e−iBtω dt

= e−i(Cω2+Eω)
∫
R

F(t)ψα(t− β) e−iBtω dt

= e−i(Cω2+Eω)(Gψα F
)
(Bω, β), (15)

where F(t) = f (t) e−i(At2+Dt) and
(
Gψα F

)
(Bω, β) is the Gabor transform of F(t) with

respect to the window function ψα. Since F(t) ∈ L2(R) whenever f (t) ∈ L2(R); therefore,
the inverse of the function F(t) ∈ L2(R) is given by

F(t) =
|B|〈

ψ1, ψ2
〉 ∫

R

∫
R

(
Gψ1 F

)
(Bω, β)ψ2(t− β) eiBωt dω dβ. (16)

For ψ1 = ψ2 and ψα as the window function, relation (16) yields

F(t) =
|B|
‖ψα‖2

∫
R

∫
R

(
Gψ1 F

)
(Bω, β)ψα(t− β) eiBωt dω dβ. (17)

Implementing (15) in (17), we obtain

f (t) e−i(At2+Dt) =
|B|
‖ψ‖2

∫
R

∫
R

(
WΛ

ψ f
)
(ω, α, β) ei(Cω2+Eω) ψα(t− β) eiBωt dω dβ.

Or equivalently,

f (t) = |B|
∫
R

∫
R

(
WΛ

ψ f
)
(ω, α, β)ψα(t− β) ei(At2+Btω+Cω2+Dt+Eω) dω dβ

= |B|
∫
R

∫
R

(
WΛ

ψ f
)
(ω, α, β)ψΛ

ω,α,β dω dβ.

This completes the proof of Theorem 3.

In the following, we investigate the characterization of the range for the quadratic-
phase wave packet transform given by (5).

Theorem 4. If f ∈ L2(R) and ψα ∈ L2(R) such that ‖ψ‖ = 1, then f belongs to the range
WΛ

ψ

(
L2(R)

)
if and only if

f
(
ω′, α, β′

)
=
∫
R

∫
R

f (ω, α, β)
〈

ψΛ
ω,α,β, ψΛ

ω′ ,α,β′

〉
dω dβ, (18)

where ψΛ
ω,α,β is defined in (3).
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Proof. Assume that f ∈ WΛ
ψ (L2(R)). Then, there exists g ∈ L2(R) such thatWΛ

ψ g = f . In
order to show that f satisfies (18), we proceed as

f
(
ω′, α, β′

)
=
(
WΛ

ψ g
)(

ω′, α, β′
)

=
∫
R

g(t)ψΛ
ω′ ,α,β′(t)dt

=
∫
R

{∫
R

∫
R

(
WΛ

ψ g
)
(ω, α, β)ψΛ

ω,α,β(t)dω dβ

}
ψΛ

ω′ ,α,β′(t)dt

=
∫
R

∫
R

(
WΛ

ψ g
)
(ω, α, β)

{∫
R

ψΛ
ω,α,β(t)ψΛ

ω′ ,α,β′(t)dt
}

dω dβ

=
∫
R

∫
R

f (ω, α, β)
〈

ψΛ
ω,α,β, ψΛ

ω′ ,α,β′

〉
dω dβ,

which evidently verifies our claim. Conversely, suppose that the function f satisfies (18).
To verify that f ∈ WΛ

ψ (L2(R)), it is sufficient to find out a function g ∈ L2(R) such that
WΛ

ψ g = f . Therefore, the desired function g will be constructed as follows:
Let

g(t) =
∫
R

∫
R

f (ω, α, β)ψΛ
ω,α,β(t)dω dβ. (19)

Then, it is straightforward to get
∥∥g
∥∥

2 ≤
∥∥ f
∥∥

2 < ∞; that is g ∈ L2(R). Furthermore,
by virtue of Fubini theorem, we have

(
WΛ

ψ g
)(

ω′, α, β′
)
=
∫
R

g(t)ψΛ
ω′ ,α,β′(t)dt

=
∫
R

{∫
R

∫
R

f (ω, α, β)ψΛ
ω,α,β(t)dω dβ

}
ψΛ

ω′ ,α,β′(t)dt

=
∫
R

∫
R

f (ω, α, β)
〈

ψΛ
ω,α,β, ψΛ

ω′ ,α,β′

〉
dω dβ

= f
(
ω′, α, β′

)
.

This completes the proof of Theorem 4.

The classic Wigner-Ville distribution, which is defined as the Fourier transform of
the instantaneous autocorrelation function f

(
t + τ

2
)

f
(
t− τ

2
)
, is one of the most prominent

tools for analysing signals whose energy is not well concentrated in the time-frequency
domains. Several areas of science and engineering, such as quantum physics, optics,
sonar, radar, and signal processing in general, have made extensive the use of Wigner-
Ville distribution [1,14]. The vast applicability of the Wigner-Ville distribution in time-
frequency analysis has sparked considerable attention and is one of the most active areas
of contemporary research. As such, it is essential to establish a relationship between the
conventional Wigner-Ville distribution and the proposed quadratic-phase wave packet
transforms.

Definition 2. The Wigner-Ville distribution of any finite energy signal f ∈ L2(R) is defined by

W f (t, ω) =
∫
R

f
(

t +
τ

2

)
f
(

t− τ

2

)
e−iωτ dτ. (20)

Towards the end of this section, we obtain a direct relationship between the classical
Wigner-Ville distribution (20) and the proposed quadratic-phase wave packet transform (5).
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Theorem 5. Let W f (t, ω) be the Wigner-Ville distribution of any f ∈ L2(R) and ψ be an
admissible wavelet. Then, we have

W f (t, ω) = 2 |B| e2i(ωt+2At2−Dt)
∫
R

∫
R

e−2iBtξ
(
WΛ

ψ

(
M−2ω f

))
(ξ, α, β)

×
(
WΛ′

ψ

(
M−4At f

))(
− ξ,−α,−(β + 2t)

)
dξ dβ, (21)

where Λ′ = (A, B, C,−D,−E).

Proof. The Wigner-Ville distribution of any f ∈ L2(R) is given by

W f (t, ω) =
∫
R

f
(

t +
τ

2

)
f
(

t− τ

2

)
e−iωτ dτ,

or equivalently,

W f (t, ω) = 2 e2iωt
∫
R

f (z) f (2t− z) e−2iωz dz. (22)

By virtue of inversion Formula (14) and Theorem 1, we have

f (2t− z) = |B|
∫
R

∫
R

(
WΛ

ψ f (−z + 2t)
)
(ξ, α, β)ψΛ

ξ,α,β(z)dξ dβ

= |B|
∫
R

∫
R

e−2i(2At2−Btξ−Dt)
(
WΛ

ψ

(
M4At f (−z)

))
(ξ, α, β + 2t)ψΛ

ξ,α,β(z)dξ dβ

= |B|
∫
R

∫
R

e−2i(2At2−Btξ−Dt)
(
WΛ′

ψ

(
M−4At f

))
(−ξ,−α,−(β + 2t))ψΛ

ξ,α,β(z)dξ dβ, (23)

where Λ′ = (A, B, C,−D,−E). Implementing the estimate (23) in (22) and using the
well-known Fubini theorem, we obtain

W f (t, ω) = 2 |B| e2iωt
∫
R

f (z) e−2iωz

×
{∫

R

∫
R

e2i(2At2−Btξ−Dt)
(
WΛ′

ψ

(
M−4At f

))
(−ξ,−α,−(β + 2t))ψΛ

ξ,α,β(z)dξ dβ

}
dz

= 2 |B| e2i(ωt+2At2−Dt)
∫
R

∫
R

e−2iBtξ
(
WΛ′

ψ

(
M−4At f

))(
− ξ,−α,−(β + 2t)

)
×
{∫

R

(
M−2ω f

)
(z)ψΛ

ξ,α,β(z)dz
}

dξ dβ

= 2 |B| e2i(ωt+2At2−Dt)
∫
R

∫
R

e−2iBtξ
(
WΛ

ψ

(
M−2ω f

))
(ξ, α, β)

×
(
WΛ′

ψ

(
M−4At f

))(
− ξ,−α,−(β + 2t)

)
dξ dβ.

This completes the proof of Theorem 4.

3. Quadratic-Phase Wave-Packet Transform for Almost Periodic Functions

In this Section, our main goal is to extend the theory of quadratic-phase wave-packet
transformation to the space of almost periodic functions. Almost periodic functions are a
natural generalization of the usual periodic functions on R. Let Tp represent the space of
all trigonometric polynomials on R and is of the form

Tp =

{
f (t) =

m

∑
k=1

hk eiλkt : hk ∈ C, λk ∈ R, m ∈ N
}

. (24)
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The space Tp is equipped with the sup norm given by ‖ f ‖∞ = supt∈R | f (t)|. The com-
pletion of the space Tp with respect to this sup norm turns out to be the space of almost
periodic functions and is denoted by Ap.

Let QR represents the family of functions q of the form

q(t) =


n

∑
`=1

λ` tα`, t ≥ 0,

−
n

∑
`=1

λ` (−t)α`, t < 0
, (25)

where n ∈ R, λ` ∈ R, ` = 1, 2, . . . , n and α1 > α2 > · · · > αn > 0. A function P of the form

P(t) =
m

∑
k=1

hk eiqk(t), q(t) ∈ QR is called a generalized trigonometric polynomial on R.

Definition 3. A function f defined on R is said to have a strong limit power if for every ε > 0,
there exists a generalized trigonometric polynomial Pε such that∥∥ f − Pε

∥∥ = sup
{∣∣ f (t)− Pε(t)

∣∣ : t ∈ R
}
< ε. (26)

We denote the space of all functions with strong limit power by G (R) and the inner
product associated with G (R) is defined by

〈
f , g
〉
= lim

T→∞

1
2T

∫ T

−T
f (t) g(t)dt. (27)

Moreover, it is worthwhile to mention that Ap ⊂ G (R) and ‖ f ‖Ap = ‖ f ‖G . Both the
spaces Ap and G (R) are closed subspaces of L∞(R).

We are now in a position to investigate the quadratic-phase wave packet transform (5)
on the space of almost periodic functions.

Theorem 6. Let f be an almost periodic function. Then, the quadratic-phase Fourier transform of
f with respect to a parametric set Λ = (A, B, C, D, E), B 6= 0 is a strong limit power function.

Proof. We shall begin the proof in case f is a trigonometric polynomial. That is, f is of the
form

f (t) =
m

∑
k=1

hk eiλkt. (28)

An application of QPFT (1) on (28) yields

FΛ
[

f
]
(ω) =

∫
R

f (t) e−i(At2+Btω+Cω2+Dt+Eω) dt

=
m

∑
k=1

hk

∫
R

eiλkt e−i(At2+Btω+Cω2+Dt+Eω) dt

=
m

∑
k=1

hk e−i(Cω2+Eω)
∫
R

e−iAt2+i(λk−Bω−D)t dt

=

√
1

iA

m

∑
k=1

hk e−i(Cω2+Eω) ei(λk−Bω−D)2/4A

=

√
1
A

m

∑
k=1

hk e
−i
(

Cω2+Eω− (λk−Bω−D)2

4A + π
4

)
, (29)
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which is a generalized trigonometric series in ω. Moreover, if f is an almost periodic function,
there exist a sequence { fn} of trigonometric polynomials converging uniformly to f . Therefore,
it suffices to verify that, if ‖ fn − f ‖∞ → 0, then

∥∥FΛ[ fn](ω)−FΛ[ f ](ω)
∥∥

∞ → 0.
We observe that∣∣∣FΛ

[
fn
]
(ω)−FΛ

[
f
]
(ω)

∣∣∣ = ∣∣∣FΛ
[

fn − f
]
(ω)

∣∣∣
=

∣∣∣∣∫R( fn − f )e−i(At2+Btω+Cω2+Dt+Eω) dt
∣∣∣∣

≤
∫
R

∣∣ fn(t)− f (t)
∣∣dt→ 0.

Consequently, we have∥∥∥FΛ
[

fn
]
(ω)−FΛ

[
f
]
(ω)

∥∥∥
∞
= sup

ω∈R

∣∣∣FΛ
[

fn
]
(ω)−FΛ

[
f
]
(ω)

∣∣∣→ 0.

This completes the proof of Theorem 6.

In our next theorem, we shall demonstrate that the assumption ψ ∈ L1(R) suffices to
conclude that the quadratic-phase wave packet transform is a strong limit power function.

Theorem 7. Let ψ ∈ L1(R) ∩ L2(R) be an admissible wavelet and Λ = (A, B, C, D, E) with
B 6= 0. Then for any almost periodic function f , the quadratic-phase wave packet transformWΛ

ψ of
f is a strong limit function in ω.

Proof. Let f (t) be a trigonometric polynomial of the form

f (t) =
m

∑
k=1

hk eiλkt. (30)

Then, the quadratic-phase wave packet transform of f given by (30) is computed as(
WΛ

ψ f
)
(ω, α, β) =

∫
R

f (t)ψα(t− β) e−i(At2+Btω+Cω2+Dt+Eω) dt

=
1√
α

m

∑
k=1

hk e−i(Cω2+Eω)
∫
R

ψ

(
t− β

α

)
e−i(−λkt+At2+Btω+Dt) dt

=
√

α
m

∑
k=1

hk e−i(Cω2+Eω)
∫
R

ψ(z) e−i((D−λk)(αz+β)+A(αZ+β)2+B(αZ+β)ω) dz

=
√

α
m

∑
k=1

hk e−i(Aβ2+Bωβ+(D−λk)β)

×
∫
R

eiαλkz ψ(z) e−i(α2 Az2+αBzω+Cω2+α(D+2βA)z+Eω) dz

=
√

α
m

∑
k=1

hk FΛ?

[
Ψ
]
(ω) e−i(Aβ2+Bωβ+(D−λk)β),

where Ψ(t) = eiαλkt ψ(t) and Λ? =
(
α2 A, αB, C, α(D + 2βA), E

)
, B 6= 0.

Hence, for any fixed α, we infer that the quadratic-phase wave packet transform(
WΛ

ψ f
)
(ω, α, β) turns out to be a generalized trigonometric polynomial in ω. Moreover,

since f is an almost periodic function, there exist a sequence { fn} of trigonometric polyno-
mials converging uniformly to f . Thus, it is sufficient to verify that, if ‖ fn − f ‖∞ → 0, then∥∥(WΛ

ψ fn
)
(ω, α, β)−

(
WΛ

ψ f
)
(ω, α, β)

∥∥
∞ → 0. To verify our claim, we proceed as:
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∥∥∥(WΛ
ψ fn

)
(ω, α, β)−

(
WΛ

ψ f
)
(ω, α, β)

∥∥∥
∞
= sup

ω∈R

∣∣∣(WΛ
ψ fn

)
(ω, α, β)−

(
WΛ

ψ f
)
(ω, α, β)

∣∣∣
= sup

ω∈R

∣∣∣(WΛ
ψ ( fn − f )

)
(ω, α, β)

∣∣∣
≤ sup

ω∈R

∣∣∣∣∫R( fn − f )ψα(t− β) e−i(At2+Btω+Cω2+Dt+Eω) dt
∣∣∣∣

≤ sup
ω∈R

√
α
∫
R

∣∣ fn(αz + β)− f (αz + β)
∣∣ ∣∣ψ(z)∣∣dz

≤
∥∥ fn − f

∥∥
∞

∥∥ψ
∥∥

1 → 0.

Thus, we conclude that the quadratic-phase wave packet transform
(
WΛ

ψ fn
)
(ω, α, β)

of an almost periodic function f is a strong limit power function in ω.

4. Composition of Quadratic-Phase Wave-Packet Transforms

The main objective of this section is to study the composition of quadratic-phase
wave packet transforms, which can be thought of as the successive application of two
quadratic-phase wave packet transforms with respect to a distinct pair of wavelets. The
idea is to compose a pair of wave packet transforms concerning two different admissible
wavelets to yield a new four-parameter wave packet transform determined by a pair of
scaling parameters and one common translation and frequency parameters. We intend
to examine the behaviour of the composition of quadratic-phase wave packet transforms
and study the associated properties, including the orthogonality relation and the inversion
formula.

Let

f Λ
ω (t) = f (t) e−i(At2+Btω+Cω2+Dt+Eω). (31)

Then, the application of QPFT on (31) yields

FΛ

[
f Λ
ω (t)

]
(ξ) =

∫
R

f (t) e−i(At2+Btω+Cω2+Dt+Eω) e−i(At2+Btξ+Cω2+Dt+Eξ) dt

= e2iCωξ
∫
R

f (t) e−i(2At2+Bt(ω+ξ)+C(ω+ξ)2+2Dt+E(ω+ξ)) dt

= e2iCωξ
∫
R

f (t) e−i(2At2+Bt(ω+ξ)+C(ω+ξ)2+2Dt+E(ω+ξ)) dt

= e2iCωξFΛ
[

f
]
(ω + ξ). (32)

Furthermore, we have

FΛ[ψα(t− β)](ξ)

=
∫
R

ψα(t− β) e−i(At2+Btξ+Cξ2+Dt+Eξ) dt

=
√

α
∫
R

ψ(z) e−i(A(αZ+β)2+B(αZ+β)ξ+Cξ2+D(αZ+β)+Eξ) dz

=
√

α e−i(Aβ2+Bβξ+Dβ)
∫
R

e−2iAαβz ψ(z) e−i
(

α2 Az2+Bz(αξ)+ c
α2 (αξ)2+αDz+ E

α (αξ)
)

dz

=
√

α e−i(Aβ2+Bβξ+Dβ)
∫
R

Ψ(z) e−i
(

α2 Az2+Bz(αξ)+ C
α2 (αξ)2+αDz+ E

α (αξ)
)

dz

=
√

α e−i(Aβ2+Bβξ+Dβ) FΛ̃
[
Ψ
]
(αξ), (33)

where Ψ(t) = e−2iAαβz ψ(z) and Λ̃ =
(

α2 A, B, C
α2 , αD, E

α

)
, B 6= 0.
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The quadratic-phase wave packet transform (4) can be recast in terms of inner product
of functions f Λ

ω (t) and ψα(t− β) as:

(
WΛ

ψ f
)
(ω, α, β) =

〈
f Λ
ω (t), ψα(t− β)

〉
= |B|

〈
FΛ
[

f Λ
ω (t)

]
(ξ), FΛ

[
ψα(t− β)

]
(ξ)
〉

=
√

α |B|
∫
R

e2iCωξFΛ
[

f
]
(ω + ξ) ei(Aβ2+Bβξ+Dβ) FΛ̃

[
Ψ
]
(αξ)dξ

=
√

α |B|
∫
R

ei(2Cωξ−Cξ2−Eξ)FΛ
[

f
]
(ω + ξ)FΛ̃

[
Ψ
]
(αξ)KΛ(β, ξ)dξ

= F−1
Λ

[√
α ei(2Cωξ−Cξ2−Eξ)FΛ

[
f
]
(ω + ξ)FΛ̃

[
Ψ
]
(αξ)

]
(β).

Consequently,

FΛ

[(
WΛ

ψ f
)
(ω, α, β)

]
(ξ) =

√
α ei(2Cωξ−Cξ2−Eξ)FΛ

[
f
]
(ω + ξ)FΛ̃

[
Ψ
]
(αξ). (34)

By virtue of relation (34), we can write

(
WΛ

ψ f
)
(ω, α1, β) =

√
α1 |B|

∫
R

ei(2Cωξ−Cξ2−Eξ)FΛ
[

f
]
(ω + ξ)FΛ̃

[
Ψ
]
(α1ξ)KΛ(β, ξ)dξ (35)

and

FΛ

[(
WΛ

φ f
)(

ξ, α2, β′
)]
(ω) =

√
α2 ei(2Cξω−Cω2−Eω)FΛ

[
f
]
(ξ + ω)FΛ̃

[
Φ
]
(α2ω) , (36)

where Ψ(t) = e−2iAα1βt ψ(t) and Φ(t) = e−2iAα2β′t φ(t). Based on (35) and (36), we shall
define the product of transforms as follows:(

PΛ
ψ,φ f

)
(ω, α1, α2, β) =WΛ

ψ

[(
WΛ

φ f
)(

ξ, α2, β′
)]
(ω, α1, β). (37)

With the aid of (35) and (36), we can express the composition of quadratic-phase wave
packet transforms as follows:

(
PΛ

ψ,φ f
)
(ω, α1, α2, β) =

√
α1 |B|

∫
R

ei(2Cωξ−Cξ2−Eξ)FΛ

[(
WΛ

φ f
)(

ξ, α2, β′
)]
(ω + ξ)

×FΛ̃
[
Ψ
]
(α1ξ)KΛ(β, ξ)dξ

=
√

α1 α2 |B|
∫
R

ei(2Cωξ−Cξ2−Eξ) ei(2Cξ(ω+ξ)−C(ω+ξ)2−E(ω+ξ))

×FΛ
[

f
]
(2ξ + 2ω)FΛ̃

[
Φ
](

α2(ω + ξ)
)
FΛ̃
[
Ψ
]
(α1ξ)KΛ(β, ξ)dξ

=
√

α1 α2 |B|
∫
R

ei(C(4ωξ−ω2)−2ωξ−E(ω+2ξ))FΛ
[

f
]
(2ξ + 2ω)

×FΛ̃
[
Φ
](

α2(ω + ξ)
)
FΛ̃
[
Ψ
]
(α1ξ)KΛ(β, ξ)dξ. (38)

Equation (38) serves as an explicit expression for the composition of quadratic-phase wave
packet transforms.

Next, we shall derive an analogue of orthogonality relation (11) for the composition
of quadratic-phase wave packet transforms defined in (38).
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Theorem 8. Let
(
PΛ

ψ,φ f
)
(ω, α1, α2, β) and

(
PΛ

ψ,φg
)
(ω, α1, α2, β) be the quadratic-phase wave

packet transforms of f and g belonging to L2(R), respectively. Then, we have∫
R

∫
R

(
PΛ

ψ,φ f
)
(ω, α1, α2, β)

(
PΛ

ψ,φ g
)
(ω, α1, α2, β)dω dβ =

1
|B|

〈
ψ, φ

〉〈
f , g
〉

. (39)

Proof. The proof directly follows from the Theorem 2, hence omitted.

Remark 2. (i). For f = g and ψ = φ, Theorem 8 yields the energy preserving relation associated
with the quadratic-phase wave packet transforms defined in (38).∫

R

∫
R

(
PΛ

ψ,φ f
)
(ω, α1, α2, β)

(
PΛ

ψ,φ g
)
(ω, α1, α2, β)dω dβ =

1
|B|
∥∥ψ
∥∥2 ∥∥ f

∥∥2. (40)

(ii). The operator PΛ
ψ,φ is bounded and linear. Moreover, for the normalized ψ and |B| = 1, relation

(40) becomes an isometry from L2(R) to L2(R×R).

Towards the culmination of this section, we shall demonstrate that the input signal
f ∈ L2(R) can be recovered from the corresponding composition of wave packet transforms(
PΛ

ψ,φ f
)
.

Theorem 9. If
(
PΛ

ψ,φ f
)
(ω, α1, α2, β) is the quadratic-phase wave packet transforms corresponding

to a function f ∈ L2(R), then f can be reconstructed via the following formula:

f (t) =
|B|〈
ψ, φ

〉 ∫
R

∫
R

(
PΛ

ψ,φ f
)
(ω, α1, α2, β)

(
PΛ

ψ,φ δ(· − t)
)
(ω, α1, α2, β)dω dβ. (41)

Proof. Let g(t) = δ(z− t) denotes the well-known Dirac delta function. Then using the
definition of QPFT (1), it can be easily deduced that

δ(z− t) =
∫
R
K−Λ(z, ω)K−Λ(z, ω)dω, (42)

so that F
[
g
]
(ω) = K−Λ(z, ω). Invoking the inversion formula of the QPFT, we have

f (t) =
1
|B|

∫
R

F
[

f
]
(ω)K−Λ(t, ω)dω

=
1
|B|

∫
R

F
[

f
]
(ω)F

[
g
]
(ω)dω

=
|B|〈
ψ, φ

〉 ∫
R

∫
R

(
PΛ

ψ,φ f
)
(ω, α1, α2, β)

(
PΛ

ψ,φ g
)
(ω, α1, α2, β)dω dβ. (43)

As a consequence of (43), we conclude that the desired reconstruction formula takes the
following form:

f (t) =
|B|〈
ψ, φ

〉 ∫
R

∫
R

(
PΛ

ψ,φ f
)
(ω, α1, α2, β)

(
PΛ

ψ,φ δ(· − t)
)
(ω, α1, α2, β)dω dβ.

This completes the proof of Theorem 9.

5. Conclusions

In the present study, we intertwined the advantages of the classical wavelet and
quadratic-phase fourier transforms, and introduced the notion of the novel quadratic-
phase wave packet transform in L2(R). The prime advantage of this intertwining lies in
the fact that the proposed transform enjoys certain extra degrees of freedom and thus
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achieves higher flexibility, which in turn can be employed in optimizing the concentration
of the higher frequency spectrum. As such, the proposed transform serves as a significant
addition to the contemporary tools of signal and image processing. Besides the study
of all the fundamental properties, we also obtained a direct relationship between the
Wigner-Ville distribution and the proposed transform. Moreover, we also investigated the
quadratic-phase wave packet transform on the space of almost periodic functions. Finally,
we carried out the analysis of composition of quadratic-phase wave packet transforms
in L2(R). Nevertheless, the present study, in itself, leads to several ramifications and
developments.
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