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Abstract: Nano-fluids have considerable importance in the field of thermal development that relates
to several industrial systems. There are some key applications in recent construction systems flow, as
well as microscale cooling gadgets and microstructure electric gadgets for thermal migration. The
current investigation concludes the study of electrically conducting nano-fluid flow and heat transfer
analysis in two-dimensional boundary layer flow over a curved extending surface in the coexisting
of magnetic field, heat generation and thermal radiation. The small sized particles of copper (Cu) are
taken as nanoparticles and water is assumed to be the base fluid. We used quasi-linearization and
central difference approximation to numerically solve the system of coupled equations obtained from
the partial differential equations (PDEs) by incorporating the concept of similarity. The impacts of
non-dimensional parameters on velocity, concentration and thermal profiles have been discussed with
the help of suitable graphs and tables. It has been noticed that the velocity decelerated with the effect
of the magnetic field interaction parameter. Thermal radiation caused an increase in temperature.

Keywords: nanofluid; magnetic field; curved stretching sheet; thermal radiation; quasi linearization
technique

1. Introduction

Many researchers have been interested in heat transportation and flow analysis of a
curved stretching surface in the past few decades due to its extensive range of applications
in the fields of engineering and industry. Some of the applications are extrusion of rubber,
drawing plastic films, metal spinning, filaments, glass blowing, paper production and
crystal growing. In all the above-mentioned processes, the final worth of the products
depends not only on the heat transportation rate but also on skin friction at the surface.
Naveed et al. [1] numerically examined the MHD electrically conducting boundary layer
flow of micro-structured fluid over a curved surface. Moreover, a curvilinear coordinate
system has been adopted in order to formulate the mathematical model. Misra et al. [2]
described incompressible visco-elastic electrically conducting fluid flow with allowance for
external magnetic field and transfer of heat in a parallel plate channel having extending
walls. It has also been revealed that due to stretching walls, back flow occurs near the
mid of the channel. Abbas et al. [3] analyzed viscous fluid flow and heat transmission
with the effect of a constant magnetic field over a curved stretching sheet. A curvilinear
coordinate system has also been used to govern flow equations. Abbas et al. [4] investigated
two-dimensional visco-elastic electrically conducting boundary layer fluid flow with the
effect of heat generation over shrinking/extending surface. Hayat et al. [5] discussed
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two-dimensional steady micropolar flow over a non-linear expanding surface, while mass
and heat transport with the effects of thermal radiation on micropolar unsteady fluid have
been studied by applying the homotopy analysis method in [6].

Kanti et al. [7] presented an experimental investigation to examine the effect of uniform
heat flux on nanofluid flow through a copper tube. The thermal characteristics of fly ash
nanofluid were examined by Kanti et al. [8]. They suggested that employing water-based
fly ash nanoparticles can help diminish ecological pollution. Further, they apply fly ash
nanomolecules for heat transfer performance, which is more useful. A three-dimensional
wavy microchannel turbulent flow was analyzed by Bazdar et al. [9]. They noticed vari-
ations in flow and heat transfer characteristics with changes in the CuO nanoparticle
concentration and wavelength of the sinusoidal microchannel. Sarlak et al. [10] numerically
investigated water-based aluminum oxide nanofluid flow in a closed enclosure, taking into
account the effect of a homogeneous magnetic field. Ishak et al. [11] examined the stretching
permeable surface of a laminar unsteady boundary layer flow and this unsteadiness in
temperature and flow fields became the reason for time dependence on surface tempera-
ture and stretching velocity. Javad et al. [12] described the flow of micropolar boundary
layer fluid over a stretched surface in a rotating frame of reference. Rasool et al. [13,14]
numerically investigated the flow of Multi-Walled Carbon Nanoparticles and Maxwell
nanofluids subject to entropy generation and Lorentz force.

Kumar [15] used the finite element method to discuss mass and heat transport analysis
in hydro-magnetic flow over a curved sheet. Mahmood et al. [16] investigated the effects
of slip parameter and heat transferal analysis for electrically conducting flow of micro-
structured fluid over a curved expanding sheet with coexistence of heat generation as well
as transverse magnetic field. Makinde [17] defined geophysical applications in thermal
insulation, geothermal tanks, and improvement in oil recovery and cooling of nuclear reac-
tors. Nazar et al. [18] elaborated steady two-dimensional micropolar fluid flow at the point
of stagnation over a stretched sheet using the Keller-box method. Sajid et al. [19,20] used
the Runge-Kutta method to discuss dimensionless curvature, which causes an increase in
boundary layer flow. Furthermore, they used the same numerical method to find the results
of micro constituents’ flow over a curved sheet with the flow at the point of stagnation in
the presence of a magnetic field and the flow over a vertical semi-infinite permeable sheet,
respectively. Raju et al. [21] and Reddy [22] analyzed the mass and heat transferal character-
istics of Casson fluid, taking into account the effect of thermal radiation. An exponentially
extending permeable surface was used as the geometry. Ibrahim et al. [23] discussed mixed
convection MHD Casson fluid flow over a non-linearly permeable extending sheet with
heat sink/source, viscous dissipation, thermal radiation, suction and chemical reaction.
Ghadikolaei et al. [24] studied the heat transport and micropolar boundary layer flow
of incompressible TiO2 water with nano-particles in the presence of thermal radiation.
Khan et al. [25] described heterogeneous-homogenous reactions with characteristics of
heat transfer and electrically conducting boundary layer fluid flow over stretched sheets.
Nasir et al. [26] discussed the computations and modeling of rotating three-dimensional
MHD nano-fluid flow through an extending surface.

Khan et al. [27] analyzed the properties of heat transport and steady flow in a per-
meable media about thin-film second-grade fluid over a stretching sheet. Khan et al. [28]
investigated the flow with the influence of multiple slips on an axi-symmetric buoyant
MHD nano-fluid over an expanding sheet. Mabood et al. [29] described the incompressible
flow of a Jeffery fluid at the point of stagnation over a stretched sheet. Akbar et al. [30]
presented a numerical analysis of viscous unsteady MHD nano-fluid flow of metallic nano-
particles in a channel with walls and a porous medium. Two cases of thermal conductivity
are studied in heat and mass transfer analysis through the H-C model. Hady et al. [31]
discussed nano-fluid flow in a permeable sheet of stream wise distance x with the influence
of thermophoresis as well as Brownian motion. Ahmad et al. [32] numerically investigated
MHD two-dimensional nano-fluid flow over cone/plate with the help of finite difference
discretization. Iqbal et al. [33] studied two orthogonally moving coaxial disks of hydro-
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magnetic unsteady viscous incompressible water-based nano-fluid flow with the effects
of suction. Further recent investigations relevant to the concerned topic can be seen in
refs. [34–43].

According to the author’s best information, no endeavor is available in the literature
that deals with electrically conducting nano-fluid flow along a curved extending surface,
taking into consideration the simultaneous effects of external magnetic field, heat generation
and thermal radiation. The current investigation is an attempt in this direction. In the
present work, a numerical model is developed in order to solve the governing equations
by incorporating the quasi-linearization technique. The results are scrutinized through
graphs and tables. Moreover, the present investigation provides a basis for many science
and engineering applications.

2. Mathematical Formulation

The assumptions for the flow model incorporate the magnetic field of strength Bo,
stretching sheet, and incompressible fluid. The flow geometry is presented in Figure 1.
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Figure 1. Geometry of the problem.

A very small magnetic Reynolds number is assumed for the magnetic field of strength
Bo. The origin is fixed, which is represented by O and two reverse, but equal forces are
utilized along m and l directions. The temperatures at the boundary of the sheet and far
away from the sheet are, respectively, represented by Tw and T∞. These temperatures are
taken in such a way that the temperature Tw at the boundary of the sheet is greater than
that the ambient temperature T∞. The difference between both these temperatures can be
given as ∆T = Tw − T∞. Moreover, l direction is normal to the origin. The curved sheet
takes the velocity u = am.

Incorporating the aforementioned assumptions, we write the leading equations as [1]:

∂

∂l
{(l + R)v}+ R

∂u
∂m

= 0, (1)

u2

R + l
=

1
ρn f

∂p
∂l

, (2)

v
∂u
∂l

+
Ru

R + l
∂u
∂m

+
uv

R + l
= − 1

ρn f

R
R + l

∂p
∂m

+ νn f

(
∂2u
∂l2 +

1
R + l

∂u
∂l
− u

(R + l)2

)
− σB2

o
ρn f

u, (3)

(
ρcp
)

n f

[
v

∂T
∂l

+
uR

R + l
∂T
∂m

]
= kn f

[
∂2T
∂l2 +

1
R + l

∂T
∂l

]
+

1
R + l

∂

∂l
(R+ l)qr +Q(T− T∞), (4)
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v
∂C
∂l

+
Ru

R + l
∂C
∂m

= D∇2C− k∗1(C− C∞). (5)

Here, the components of velocity in m and l directions are u, v respectively with
pressure p and density of the nano-fluid is taken to be ρn f . Additionally, µn f , vn f are
viscosity and kinematics viscosity of the nano-fluid flow while cp, C and C∞ are shown as
specific heat at constant pressure, concentration and concentration of the ambient fluid,
respectively. Thermal conductivity is k1

∗, qr is radioactive heat flux and Q represented
volumetric rate of the heat source. It is worth mentioning here that the pressure is no longer
constant for a curved stretching sheet inside the boundary layer flow.

The boundary conditions are given by:

u = am + L
(

∂u
∂l −

u
R+l

)
, v = 0, T = Tw, C = Cw at l = 0,

u→ 0, ∂u
∂l → 0, T → T∞, C = C∞ as r → ∞.

}
(6)

Here µn f represents the dynamic viscosity, L is the slip parameter, ρn f density, αn f
thermal diffusivity and

(
ρcp
)

n f heat capacitance of nano-fluid flow respectively, given as

µn f = µ f (1− ϕ)−2.5, (7)

ρn f = φρs + (1− φ)ρ f , (8)

αn f =
kn f(

ρcp
)

n f
, (9)

(
ρcp
)

n f = φ
(
ρcp
)
+ (1− φ)

(
ρcp
)

f . (10)

Here, the volume fraction of the solid nanoparticles is represented by φ. Restricted to
nanoparticles, the thermal conductivity of nanofluid is approximated as

kn f

k f
=

 ks + 2k f − 2φ
(

k f − ks

)
ks + 2k f − 2φ

(
k f − ks

)
. (11)

In Equations (6)–(10), the subscripts, such as f denotes the base fluid, n f is used for
nanofluid and s for nano-solid particles, respectively. The thermal attributes of nanoparti-
cles, as well as base fluid, are portrayed in Table 1.

Table 1. Thermal characteristics of water and copper particles.

cp (J/kgK) ρ (kg/m3) k (W/mK) β × 105 (K−1)

Pure water 4179 997.1 0.613 21
Cu 385 89.33 401 1.67

We incorporate Rosseland approximation to calculate the relation for thermal radiation:

qr = −
4σ∗

3k∗

(
∂T4

∂r

)
, (12)

where σ∗ denotes the Stefan–Boltzmann constant while the mean absorption coefficient is
k∗. By using the assumption, the temperature diffusion in flow is sufficiently small so that
the Taylor series can be used to expand term T4. Omitting the higher order terms, we have:

T4 ≡ 4TT3
∞ − 3T4

∞. (13)

In view of Equations (6) and (7), Equation (4) can be written as:
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v
∂T
∂l

+
uR

R + l
∂T
∂m

=
kn f(

ρcp
)

n f

(
1 +

16σ∗T3
∞

3k f k∗
k f

kn f

)[
∂2T
∂l2 +

1
R + l

∂T
∂l

]
+

Q(
ρcp
)

n f
(T − T∞), (14)

We obtained the radiation parameter as Rd = 16σ∗T3
∞

3k f k∗ , so Equation (13) becomes

v
∂T
∂l

+
uR

R + l
∂T
∂m

=
1
Pr

kn f

k f

(
1 + Rd

k f

kn f

)[
∂2T
∂l2 +

1
R + l

∂T
∂l

]
+

Q(
ρcp
)

n f
(T − T∞), (15)

We will use the following conversion to reduce the aforementioned equation, such
that

u = am f ′(η), v = −R
R+l
√aυ f f (η), p = ρa2m2P(η), η =

√
a

υ f
l

T = T∞ + (Am/δ)θ(η), θ(η) = T−T∞
Tw−T∞

, χ(η) = C−C∞
Cw−C∞

,

}
, (16)

By applying (16), Equations (2)–(5) yield

∂P
∂η

=
f ′2

k + η
, (17)

P
2k

k + η
=

υn f

υ f

{
f ′′′ +

f ′′

k + η
− f ′

(k + η)2

}
− k

k + η
f ′2 +

k
k + η

f f ′′ +
k

(k + η)2 f f ′ −M f ′ , (18)

(
1 + Rd

k f

kn f

)(
θ′′ +

1
k + η

θ′
)
− Pr

k f

kn f

[
φ3

k
k + η

(
f ′θ − f θ′

)]
+

k f

kn f
Prλ1θ = 0 (19)

χ′′ +

(
1

k + η
+

k
k + η

f Sc

)
χ′ − γScχ = 0, (20)

The parallel boundary conditions become:

| f (0) = 1, f ′(0) = 1 + κ
[

f ′′ (0)− f ′(0)
k

]
, θ(0) = 1, χ(0) = 1,

| f ′(∞) = 0, f ′′ ( ∞) = 0, θ(∞) = 0, χ(∞) = 0.

}
. (21)

By using Equations (17) and (18), the pressure term can be eliminated as

f iv + 2
k+η f ′′′ − 1

(k+η)2 f ′′ + 1
(k+η)3 f ′ + φ1

[
− k

(k+η) ( f ′ f ′′ − f f ′′′ )− k
(k+η)2

(
f ′2 − f f ′′

)
− k

(k+η)3 f f ′ − M
φ2

(
f ′′ + f ′

k+η

)]
= 0,

(22)

when we obtained f (η) as fluid velocity, one can determine pressure from Equation (18).

P =
k + η

2k

(
1
φ1

(
f ′′′ +

f ′′

k + η
− f ′

(k + η)2

)
− k

k + η
f ′2 +

k
k + η

f f ′′ +
1

(k + η)2 f f ′ −M f ′
)

(23)

where

φ1 = (1− φ)2.5

[
1− φ + φ

(
ρs

ρ f

)]
, φ2 = 1− φ + φ

(
ρs

ρ f

)
, φ3 = 1− φ + φ

(
ρcp
)

s(
ρcp
)

f
, φ4 = (1− φ)2.5

[
1− φ + φ

(
ρcp
)

s(
ρcp
)

f

]
.

}
(24)

Dimensionless radius of curvature, Prandtl number, Magnetic parameter, heat genera-
tion parameter, Schmidt number, slip parameters and chemical reaction are:

k = R

√
a

υ f
, Pr =

µ f
(
cp
)

f

κ f
, M =

σB2
0

ρ f a
, λ1 =

Q
a
(
ρcp
)

f
, γ =

k∗1
a

, κ =
L√
a/v

, Sc =
υ f

D
. (25)
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The surface drag coefficient, Nusselt and Sherwood number are taken in the direction
of m, such that

C f = τlm/ρ f u2
w, Num = mqw/k f (Tw − T∞), Sh = mjw/D(Cw − C∞)

Here τlm represented as wall shear stress while qw and jw are heat and mass fluxes at
the wall in the direction of m, defined as

τlm = −
(

µn f

)(∂u
∂l
− u

l + R

)∣∣∣∣
l=0

, qw = −kn f

(
1 +

16σ∗T3
∞

3k f k∗
k f

kn f

)
∂T
∂l

∣∣∣∣
l=0

, jw = −D
∂C
∂l

∣∣∣∣
l=0

C f = −(Rem)
1/2(1− φ)−2.5

(
f ′′ (0)− f ′(0)

k

)
, Num = −(Rem)

1/2 kn f

k f

(
1 + Rd

k f

kn f

)
θ′(0), Sh = −(Rem)

1/2φ′(0)

where the local Reynolds number is defined as Rem = am2/v f .

3. Computational Procedure

This section describes numerical aspects of the technique of quasi-linearization, which
is basically a generalization of the Newton–Raphson method for functional equations. It
provides a sequence of functions and linearizes a nonlinear equation that converges quickly
to the solution of the original non-linear equation. A quasi-linearization technique is used
to overcome certain numerical difficulties in non-linear initial value problems and is much
more efficient for non-linear boundary value problems. In the present study, we discuss
the quasi-linearization of non-linear ordinary differential equations.

3.1. Quasi-Linearization Method

Now applying quasi-linearization with the solutions for sequences of vectors, which
are f k, θk, χk on Equation (22) such that (putting f = Υ):

G
(
Υ(k),Υ′(k),Υ′′ (k),Υ′′′ (k),Υiv(k)

)
= Υiv + 2

k+ηΥ
′′′ − 1

(k+η)2 Υ
′′ + 1

(k+η)3 Υ
′ + φ1

[
− k

(k+η) (Υ
′ Υ′′ −ΥΥ′′′ ) − k

(k+η)2(
Υ′2 −ΥΥ′′

)
− k

(k+η)3 ΥΥ′ − M
φ2

(
Υ′′ + Υ′

k+η

)]
,

(26)

G
(
Υ(k),Υ′(k),Υ′′ (k),Υ′′′ (k),Υiv(k)

)
+
(
Υ(k+1) −Υ(k)

)
∂G

∂Υ(k) +
(
Υ′(k+1) −Υ′(k)

)
∂G

∂Υ′(k)
+
(
Υ′′ (k+1) −Υ′′ (k)

)
∂G

∂Υ′′ (k)

+
(
Υ′′′ (k+1) −Υ′′′ (k)

)
∂G

∂Υ′′′ (k)
+
(
Υiv(k+1) −Υiv(k)

)
∂G

∂Υiv(k) = 0,
(27)

In the above equation, applying central difference approximation to the derivatives
becomes

Υiv(k) + 2
(k+η)

Υ′′′ (k) − 1
(k+η)2 Υ

′′ (k) + 1
(k+η)3 Υ

′(k) + φ1

[
− k

k+η

(
Υ′(k)Υ′′ (k) −Υ(k)Υ′′′ (k)

)
− k

(k+η)2

(
Υ′(k)Υ′′ (k)

−Υ(k)Υ′′′ (k)
)
− k

(k+η)3 Υ
(k)Υ′(k) − M

φ2

(
Υ′(k) + Υ′ (k)

(k+η)

)]
+ φ1

[
k

(k+η)
Υ′′′ (k) + k

(k+η)2 Υ
′′ (k) − k

(k+η)3 Υ
′(k)
](

Υ(k+1)

−Υ(k)
)
+

[
1

(k+η)2 − φ1
k

(k+η)
Υ′′ (k) − 2φ1

k
(k+η)2 Υ

′(k)−φ1
k

(k+η)3 Υ
(k) − Mφ1

φ2

(
1 + 1

(k+η)

)](
Υ′(k+1) −Υ′(k)

)
+

[
− 1

(k+η)2 − φ1
k

(k+η)
Υ′(k) + φ1

k
(k+η)2 Υ

(k)
](

Υ′′ (k+1) −Υ′′ (k)
)
+
[

2
(k+η)

+ φ1
k

(k+η)
Υ(k)

](
Υ′′′ (k+1) −Υ′′′ (k)

)
+
(
Υiv(k+1) −Υiv(k)

)
= 0,


(28)

Simplified as
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φ1
k

(k+η)2 Υ
′2(k) + φ1

k
(k+η)

(
Υ′′′ (k)Υ(k+1) −Υ′′′ (k)Υ(k)

)
+ φ1

k
(k+η)2

(
Υ′′ (k)Υ(k+1) −Υ′′ (k)Υ(k)

)
+ φ1

k
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(
Υ′(k)Υ(k)

−Υ′(k)Υ(k+1)
)
+ φ1

k
(k+η)

(
Υ′(k)Υ′′ (k) −Υ′(k)Υ′′ (k+1)

)
+ 1

(k+η)3 Υ
′(k+1) − φ1

k
(k+η)

Υ′′ (k)Υ′(k+1) − 2φ1
k

(k+η)2 Υ
′(k)Υ′(k+1)

−φ1
k

(k+η)3 Υ
(k)Υ′(k+1) − Mφ1

φ2

(
1 + 1

(k+η)

)
Υ′(k+1) − 1

(k+η)2 Υ
′′ (k+1) + φ1

k
(k+η)2 Υ

(k)Υ′′ (k+1) + 2
(k+η)2 Υ

′′′ (k+1)

+φ1
k

(k+η)
Υ(k)Υ′′′ (k+1) +Υiv(k+1) = 0,


(29)

Procedure Steps

(1) f (0), θ(0) and χ(0) are the initial guesses to assure the boundary conditions, which are
specified in equation.

(2) Set f (1) in Equation (28) to present the solution of the linear system.
(3) We are solving a linear system by means of f (1) forgetting θ(1) and χ(1).
(4) By using new initial guesses that are f (1), θ(1) and χ(1) which converges to f , θ and χ,

repeating this process to create sequences f (k), θ(k) and χ(k).
(5) We are creating four sequences until

max
{∣∣∣∣∣∣ f (k+1) − f (k)

∣∣∣∣∣∣L∞ ,
∣∣∣∣∣∣θ(k+1) − θ(k)

∣∣∣∣∣∣L∞ ,
∣∣∣∣∣∣χ(k+1) − χ(k)

∣∣∣∣∣∣L∞

}
< 10−6

By applying the extrapolation polynomial, one can expand the solution with an order
of accuracy.

4. Results and Discussion

The results and discussion both in tabular and graphical form are presented with their
interpretations for shear stress and non-dimensional velocity, temperature and concentration
fields as well. We took non-dimensional parametric values as κ f = 10, ϕ = M = Sc = γ = 0.1,
Pr = 7, Rd = 0.5, λ = 0.2 for numerical computations. These values were common in the
entire study, figures and tables. f (η) and f ′(η) represent tangential and normal velocities
while θ(η), χ(η) correspond to temperature and concentration fields, respectively.

For the sake of validity of our computational procedure, we equate our numerical
outcomes for f ′(η), for the limiting case (M = 0, φ = 0, Rd = 0, qr = 0), with the ones
presented by Asia et al. [30]. An excellent comparison, as seen in Figure 2, confirms the
correctness of our computational procedure.

Moreover, special effects of different parameters are described in Figures 3–12 on
dimensionless velocities, concentration and temperature curves of nano-fluid flow. The
impacts of all dimensionless physical parameters are scrutinized in the figures and tables.
Figures 3–5 illustrate the changes in the radius of curvature on tangential velocity f (η),
normal velocity f ′(η) and the concentration field χ(η). Both the velocity profiles and
concentration field enhance with an increase in the dimensionless radius of curvature.
Figures 6–8 portray the effects of the magnetic interaction parameter M on velocities and
concentration profiles such that tangential and normal velocities depreciate while the
concentration field enhances as we increase the magnetic parameter, which ensures that
the fluid’s velocity reduces because of the magnetic interaction parameter. In this way,
it acts against the radius of the curvature. The variation in the temperature distribution
against the change in Prandtl number Pr is depicted in Figure 9. The fluid’s temperature
was reduced as we increased the Prandtl number. It has also been noticed here that the
effect of the Prandtl number is responsible for a decrease in the thermal boundary layer.
By keeping other parameters fixed, Figure 10 demonstrates the change in temperature
with the radiation parameter, which shows that the temperature profile increases as the
values of Rd are increased. Figures 11 and 12 indicate the variation in concentration
distribution for Schmidt parameter Sc and chemical reaction parameter γ. It was found
that the concentration of the fluid decreased as Sc and γ increased.
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It is obvious from Table 2 that the dimensionless radius of curvature reduces surface
drag, mass and heat transport, while the Hartmann parameter increases shear stress but
depreciates the mass and heat transferal rates. Furthermore, in the presence of the Prandtl
number, the effect shows that heat transfer is enhanced in Table 3 and depreciates in the
presence of the radiation parameter. Table 4 shows that Schmidt parameter and chemical
reaction parameter γ elevate the mass transport from the stretching sheet.

Table 2. Numerical values of the radius of curvature and Hartmann number for fixed κ f = 10,
M = 0.1, Pr = 7, Sc = 0.1, φ = 0.1, γ = 0.1, Rd = 0.5, λ = 0.2.

κf M −f
′′
(0) −θ

′
(0) −χ

′
(0)

0.1 9.93356 2.6934 3.280395
0.3 3.88908 1.9148 1.651969
0.5 2.73516 1.8277 1.260395
0.7 2.27919 1.8065 1.077154
0.9 2.04465 1.7993 0.96929

1 1.67012 1.7318 0.571286
1.5 1.89177 1.6689 0.570398
2 2.17357 1.5891 0.569365

2.5 2.49816 1.4987 0.5683
3 2.85166 1.4034 0.567278
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Table 3. Effect of the Prandlt number and Radiation parameter for fixed κ f = 10, M = 0.1, Pr = 7,
Sc = 0.1, φ = 0.1, γ = 0.1, Rd = 0.5, λ = 0.2.

Pr Rd −θ
′
(0)

05 1.461766
10 2.222069
15 2.839614
20 3.359658
25 3.815000

0.10 2.076521
0.30 1.916277
0.60 1.728912
0.90 1.585597
0.99 1.548987

Table 4. Effect of the Schmidt number and chemical reaction parameter for fixed κ f = 10, M = 0.1,
Pr = 7, Sc = 0.1, φ = 0.1, γ = 0.1, Rd = 0.5, λ = 0.2.

Sc γ −χ
′
(0)

0.1 0.572105
0.2 0.595779
0.3 0.619490
0.4 0.643226
0.5 0.666975

0.1 0.629969
0.3 0.661002
0.6 0.691290
0.9 0.720873

0.99 0.749786

5. Conclusions

In this paper, we presented a comprehensive computational analysis of a viscous
nanofluid over a curved extending sheet under the impact of an external magnetic field
and thermal radiation. Moreover, we used Newton’s difference technique to numerically
solve the resultant non-linear equations. Taking distinct values of the involved parameters,
we have interpreted the temperature, fluid’s velocity and concentration distribution. The
consequences are explained with the help of tabular and graphical interpretations. We
listed the major consequences of the present work as follows:

• Velocity profiles have shown enhancing behavior for higher values of κ f while de-
creasing for magnetic parameter M.

• Temperature profile θ enhances greater values of Rd.
• Skin friction reduces for larger values of chemical reaction parameter γ.
• The Prandtl number tends to reduce the rate of heat transfer.
• The Schmidt number causes an increase in concentration.

The Quasi linearization technique could be applied to a variety of physical and techni-
cal challenges in the future [41–52].

Author Contributions: Conceptualization, K.A. and S.A. (Sohail Ahmad); methodology, W.J.; soft-
ware, K.A.; validation, E.S.M.T.E.D., H.B. and W.J.; formal analysis, W.J.; investigation, S.A. (Shahzad
Ahmad); resources, S.A. (Shahzad Ahmad); data curation, W.J.; writing—original draft preparation,
S.A. (Sohail Ahmad); writing—review and editing, H.B.; visualization, E.S.M.T.E.D.; supervision,
E.S.M.T.E.D.; project administration, E.S.M.T.E.D.; funding acquisition, W.J. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.



Symmetry 2022, 14, 1991 15 of 17

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The author declares that there is no competing financial and personal relation-
ships interest that can influence the work.

Nomenclature

l : m Cartesian coordinates, [m]
u, v Velocity components, [ms−1]
cp Specific heat, [m2s−2]
p Pressure, [kgm−1s−2]
kn f Thermal conductivity of the nano-fluid, [kgms−3K−1]
T Temperature, [K]
Greek Symbols
µn f Dynamic viscosity, [Nsm−2]
ρn f Density, [kgm−3]
υn f Kinematics viscosity, [m2s−1]
(ρcp)n f Heat capacitance of the nano-fluid, [kgm−1s−2K−1]
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