
Citation: Hu, S.; Zhuang, Y.; Wu, Y.;

Zhang, X.; Dong, X. Numerical Study

of Bearing Capacity of the Pile-

Supported Embankments for the

Flexible Floating, Rigid Floating and

End-Bearing Piles. Symmetry 2022, 14,

1981. https://doi.org/10.3390/

sym14101981

Academic Editor: Victor A. Eremeyev

Received: 12 July 2022

Accepted: 9 September 2022

Published: 22 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Numerical Study of Bearing Capacity of the Pile-Supported
Embankments for the Flexible Floating, Rigid Floating and
End-Bearing Piles
Shunlei Hu 1, Yan Zhuang 2,3,*, Yifan Wu 3, Xidong Zhang 1 and Xiaoqiang Dong 1

1 College of Civil Engineering, Taiyuan University of Technology, Taiyuan 030024, China
2 School of Civil Engineering and Architecture, Hubei University of Technology, Wuhan 430068, China
3 Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education,

School of Civil Engineering, Southeast University, Nanjing 210096, China
* Correspondence: zhuangyan4444@hotmail.com

Abstract: Floating pile-supported embankment involves more complex load transfer mechanisms,
and there are no clear uniform guidelines available for its design. The concepts of flexible floating,
rigid floating and end-bearing pile-supported embankments were proposed in this paper. Based
on three typical field cases, their pile-soil interactions and soil arching effect were examined using
the three-dimensional finite element method. Due to symmetry, only a half-width embankment
model was simulated here. It has been found that the flexible floating piles carry the load mainly
relying on the skin friction, but end-bearing piles rely on the pile tip resistance. The rigid floating
piles were somehow in between. The earth pressure coefficient (K) in the end-bearing pile-supported
embankment reached a maximum of 3.28, greater than Rankine passive values of the earth pressure
coefficient (KP), in which the soil arching was fully developed. The K in the embankment with rigid
floating pile reached 2.21, where soil arching might be partially formed. At the bottom of the flexible
floating pile-supported embankment, the K tended to equal the Rankine active values of the earth
pressure coefficient (Ka), and thus soil arching was insignificant. It has also been found that using
rigid floating piles might significantly improve the bearing capacity of the embankments and was
cost-effective for deep soft soil areas.

Keywords: finite element method; pile-supported embankments; soil arching; flexible floating pile;
rigid floating pile; end-bearing pile

1. Introduction

The piles supporting the embankment usually penetrate through the soft soil standing
on a stiff stratum [1–6], which facilitates the piles to transfer the embankment load as well
as the traffic load to the deep bearing layer. Penetrating through the soft soil may be quite
cost-consuming once the thickness of the soft soil is large, for which the floating piles
provide a choice.

Floating piles are divided into two types, i.e., flexible floating piles and rigid floating
piles, according to the bearing capacity of the soil layer on which the pile tip is located. In
addition, the materials and sizes of the piles need to be considered; flexible floating piles
(Figure 1a), where the pile tip does not reach the stiff stratum, such as the silty clay [7].
The stone piles, cement mixing piles and jet grouting piles are often used for flexible
floating piles [8–10], and the pile caps are usually absent. Unlike the flexible floating
pile, the rigid floating piles (Figure 1b) usually have a tip that reaches the medium-stiff
layer. Pipe and cement mixing piles are common rigid floating piles [11]. The pipe piles
further improve the side friction resistance and boost the bearing capacity. The end-bearing
piles (Figure 1c) are generally constructed with concrete materials [12,13]. However, the
floating piles were not classified by general design standards, and there was no clear
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distinction in engineering. The French guideline [14] only classifies piles into floating
and rigid (end-bearing) piles. It proposes that some findings can be considered as valid
solely for rigid piles lying on a resistant substratum (and in theory does not apply to the
floating piles). The German standard EBGEO [15] suggests that the design of embankments
on floating piles should be further investigated. Similar recommendations were made by
Satibi [16] and van Eekelen et al. [17]. Xu et al. [18], Bhasi and Rajagopal [19], and Pham [20]
investigated the load transfer mechanism of floating piles, respectively, using centrifuge test,
numerical study and analytical solution. The piles whose tips do not reach the firm stratum
were simply regarded as “floating piles” by them, being consistent with some existing
research (e.g., Hong et al. [21]; Yadav et al. [22]; Wang and Zhang [23]; Shen et al. [24]).
Although several studies on this topic have been conducted by many researchers [25–27],
the mechanism of different floating piles to carry load remains uncertain and further studies
need to be performed.
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Figure 1. Illustration of the varied types of piles: (a) flexible floating piles; (b) rigid floating piles;
(c) end-bearing piles.

The soil arching is the fundamental load transfer mechanism involved in the pile-
supported embankment, which has been well recognized in many studies [28–34].
Terzaghi [28] early demonstrated the soil arching by performing the “trapdoor” test.
Hewlett and Randolph [29] proposed that the soil arch in pile-supported embankments is a
semicircle of equal thickness in the two-dimensional (2D) case and a hemispherical shell of
equal thickness in the three-dimensional (3D) case. Zhuang and Cui [30] modified both the
thickness of the arch and the earth pressure coefficient of embankment fill in the Hewlett
and Randolph model, making it more consistent with the actual conditions. Zhuang and
Wang [31] investigated the soil arching in highway pile-supported embankments subjected
to moving vehicle loads. However, most of these studies were conducted on end-bearing
piles or rigid supports. Few studies focus on soil arching in floating pile-supported em-
bankments. The British Standard BS8006 [32] is widely accepted for the design of the
pile-supported embankment, which only roughly describes that floating piles may weaken
the soil arching. The soil arching in the floating pile-supported embankments was explored
in the numerical analysis [19]. However, only the effect of pile length was discussed. There-
fore, a clear classification design guideline for floating piles and their bearing mechanism
requires further investigation.

In this paper, the 3D model was developed to investigate the behavior of a pile-
supported embankment. The concept of the flexible floating pile and the rigid floating
pile was proposed in this study. The type of the piles was distinguished according to
the bearing capacity of the subsoil on which the pile tip locates, the pile dimensions, the
pile material and the piling method. Three typical field cases, including flexible floating
piles, rigid floating piles and end-bearing piles, were investigated in terms of load-bearing
mechanism. The pile-soil interaction and soil arching effect of pile-supported embankments
were examined in detail under different pile types. A guideline for practical engineering is
expected to be provided after this study is performed.
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2. Three Typical Field Cases Studies

The finite element method (FEM) has become robust for analyzing engineering prob-
lems. Abaqus [35] was used for the finite element (FE) analysis of the pile-supported
embankment in this research. To verify the accuracy and reliability of the modeling ap-
proach, three typical field cases were adopted which correspond to flexible floating piles,
rigid floating piles, and end-bearing piles, respectively. Based on the cases mentioned
above, the pile-soil interactions and development of the soil arching for three varied types
of piles were investigated.

2.1. The Flexible Floating Pile
2.1.1. Site Conditions

Jamsawang et al. [8] reported a field test on a pile-supported embankment located at
Station KM6 + 055 of highway No. 3117 in Thailand. The embankment height was 1.5 m
with a 12 m crest width, and the side slope ratio was 1(V): 2(H). The groundwater level was
near the surface of the subsoil. Deep cement mixing (DCM) piles were used with a length of
14 m and a diameter of 0.6 m. Piles were placed in a square pattern and the center-to-center
pile spacing was 1.5 m without the pile caps. They, therefore, were flexible floating piles.

2.1.2. Finite Element Model

The full 3D embankment model usually requires long computation time and good
computer performance [36,37]. Therefore, a simplified 3D slice model of a half-width
embankment was built here (Figure 2). The centerline of the embankment was used as a
boundary of the model due to the symmetry. To minimize the boundary effects, the lateral
(perpendicular to the direction of travel) width of the model was more than three times the
bottom width of the embankment. The dimension of the slice model in the direction of the
traveling was double the net pile spacing (i.e., 3 m). Two rows of piles were simulated in
the traveling direction under a rectangular pattern of the pile placement.
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Figure 2. Finite-element model of flexible floating piles.

In the flexible floating pile model, The DCM pile has a unit weight of 15 kN/m3. The
elastic modulus and the Poisson’s ratio of the pile were 80 MPa and 0.33, respectively. The
FE parameters of embankment fill and subsoil are given in Table 1. The piles were assumed
to be impermeable, while the subsoil above the groundwater table and the embankment fill
were presumed to be highly permeable. They were all discretized using 20-node quadratic
brick elements with reduced integration (C3D20R). The subsoil below the water table was
meshed using a 20-node brick with pore pressure, quadratic displacement, linear pore
pressure and reduced integration (C3D20RP) to simulate the coupled mechanical and
hydraulic behavior of the subsoil. The Modified Cam-clay (MCC) model was adopted for
the response of subsoil, while the Mohr-Coulomb (MC) model was used for describing
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the behavior of the embankment fill. The displacement in the x, y and z directions was
controlled to be 0 at the bottom of the model (z = 0). The displacements normal to the side
planes were set to be zero. Free drainage boundary was applied at the water table surface.
The vertical boundaries and the bottom of the model were impermeable.

Table 1. Parameters of embankment fill and subsoil.

Soil Layer γ (kN/m3) E (MPa) v λ κ c′ (kPa) ϕ′ (◦) k (m/d)

Embankment 20 20 0.33 - - 1 30 -
Fill 20 30 0.33 - - 1 32 -

Soft clay 14 - 0.35 0.18 0.04 1 23 5 × 10−4

Medium stiff clay 16 - 0.15 0.12 0.06 10 25 2.5 × 10−4

Note: γ, unit weight; E, elastic modulus; v, Poisson’s ratio; λ, logarithmic plastic bulk modulus; κ, logarithmic
bulk modulus; c′, effective cohesion; ϕ′, effective friction angle; k, permeability coefficient.

2.1.3. Model Validation

Field tests were conducted on the flexible floating pile-supported embankment and
the embankment settlement and stress were monitored for 235 days initiating from the
construction of the embankment. Figure 3 shows the field measured and FE computed
surface settlement near the centerline of the subgrade in 235 days. The surface settlement
reached 66 mm and 78 mm at the end of construction and 235 days after the construction.
At the same time, the corresponding FE computed settlements were 69.1 mm and 74.3 mm,
respectively, yielding an error of less than 5%.
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Figure 4 shows the subsoil settlement versus depth on the 235th day after construction.
The FE results were in good agreement with the field measurements. It was found that the
settlement of the “soft clay” layer and “medium stiff clay” layer accounts for 75% of the total
subsoil settlement. The settlements of the “soft clay” layer and the “medium-stiff clay” layer
were close, about 30 mm. The FE analysis results were reasonable in comparison with the
field measurements, indicating that the FEM here is capable of simulating the performance
of flexible floating piles.
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2.2. The Rigid Floating Pile
2.2.1. Site Conditions

The construction of an embankment in the northern suburb of Shanghai [11] was
adopted as the case study of rigid floating piles. The embankment was constructed in
55 days, approaching a height of 5.6 m with a side slope ratio of 1(V):1.5(H). The crest width
of the embankment was 35 m. The soil profile of the site from top to bottom was 1.5 m
thick coarse-grained fill, 2.3 m thick silty clay, 10.2 m thick soft silty clay, 2 m thick medium
silty clay, and sandy silty below. The embankment was supported by cast-in-place concrete
pipe piles of having a length of 16 m. The piles ended at a relatively stiff sandy silt layer.
Each pile had an outer diameter of 1.0 m and the net pile spacing was 3.0 m. The thickness
of the pipe pile was 120 mm. A 0.5 m thick reinforced cushion consisting of two 0.25 m
thick gravel sandwiched by a biaxial polypropylene geogrid was placed at the bottom of
the embankment.

2.2.2. Finite Element Model

The model configuration of the rigid floating pile adds reinforcement based on the
flexible floating pile (Figure 5). The reinforcement was modeled using 8-node quadrilat-
eral membrane elements with reduced integration (M3D8R), and the reinforcement was
assumed to be isotropic. The mechanical response of the piles and reinforcement were as-
sumed to follow the linear-elastic model. The tensile strength of the geogrid was 90 kN/m
in both directions. The detailed parameters of the soil layers and piles are shown in Table 2.
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Table 2. Detailed parameters of the soil layers and piles.

Material γ (kN/m3) E (MPa) ϕ′ (◦) v λ κ e1 K × 10−4 (m/d)

Pile 24.0 20,000 - 0.20 - - - -
Embankment 18.5 20 30 0.30 - - - -

Gravel 18.5 20 40 0.30 - - -
Fill 18.5 7 28 0.30 - - - -

Silty clay 20.0 - - 0.35 0.06 0.012 0.87 8.64
Soft silty clay 17.0 - - 0.40 0.15 0.030 1.79 4.32

Medium silty clay 20.5 - - 0.35 0.05 0.010 1.10 4.32
Sandy silt 20.0 - - 0.35 0.03 0.005 0.28 43.2

Note: e1, void ratio at unit pressure.

The surface-to-surface contact interaction was used to define the interaction between
the reinforcement and embankment fill and between the piles and subsoil. The surface-to-
surface contact interaction in Abaqus [35] describes the contact between two deformable
surfaces or between a deformable surface and a rigid surface, called contact pairs. The
contact interaction property was defined as tangential behavior using Coulomb friction
and normal behavior using “Hard” contact and no separation after contact was allowed.
With regard to the friction coefficient µ, µR = tan ϕ f was used for the reinforcement and
embankment filler, while µP = tan(0.7ϕs) was used for pile-soil interaction, where ϕ f is
the effective friction angle of the fill, ϕs is for subsoil.

2.2.3. Model Validation

The field monitoring collected data for 180 days from the start of embankment con-
struction. The settlement was measured using surface settlement plates on the top of the
piles and the subsoil surface near the embankment centerline. It is not surprising that the
largest settlement of the subsoil occurred at the center of the four adjacent piles. At the
end of the embankment construction, the maximum settlements of the pile top and the soil
surface were 14 mm and 63 mm, respectively. At the end of the field monitoring (125 days
after the completion of construction), the measured maximum settlements increased to
19 mm and 87 mm, respectively, due to consolidation. Figure 6 shows the results of field
tests and FE analysis of the settlements on the pile top and subsoil surface. It was found
that the FE computed results of pile top settlements were 12.6 mm and 19.6 mm at the
end of embankment construction and the end of field tests, yielding an underestimation
of 11.1% and an overestimation of 3.1%. The subsoil surface settlements from FE analysis
were 65.8 mm and 85.4 mm, causing an overestimation of 4.4% and an underestimation
of 1.9%. The result demonstrates that the FE modeling performs well for simulating rigid
floating piles.
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2.3. The End-Bearing Pile
2.3.1. Site Conditions

To investigate the performance of the pile-supported and geosynthetic reinforced
embankment built on the soft ground, Rowe and Liu [12] performed a field test used here
for the third study case. The construction site is located 20 km northeast of Paris with four
instrumented sections, and section S4 was selected as the end-bearing pile case study. The
embankment height was 5 m, accompanied with an 8 m crest width and the side slope ratio
of 1(V):1.5(H). The subsoil was as deep as 9.5 m which was divided into seven layers. The
groundwater table was 2 m immediately below the subsoil surface. The piles had a length
of 8.3 m and a diameter of 0.38 m, and they were placed in a square configuration spacing
at 2 m. The geogrid was sandwiched in a 0.55 m thick gravel cushion.

2.3.2. Finite Element Model

For end-bearing piles, the modeling method is the same as that for rigid floating piles.
Figure 7 shows the finite-element model used in the analyses. The detailed parameters of
each sub-layer are given in Table 3. The geogrid was assumed to be isotropic with a tensile
stiffness of 500 kN/m. The properties of the gravel cushion, embankment fill and piles are
given in Table 4.
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Table 3. Parameters of each soil layer.

Soil Layer Material γ (kN/m3) ϕ′ (◦) e0 v λ κ k (m/s)

S1 Clayey
backfill 20.0 30.6 0.75 0.35 0.092 0.014 -

S2 Clayey
backfill 20.0 30.6 1.30 0.36 0.191 0.029 -

S3 Beige clay 14.0 30.6 2.00 0.37 0.308 0.046 8.8 × 10−8

S4 Clayey
gray sand 19.0 30.6 0.70 0.35 0.074 0.011 1.0 × 10−6

S5 Lightly
plastic clay 20.5 27.0 0.90 0.32 0.116 0.017 6.1 × 10−7

S6 Sandy clay 20.5 27.0 0.80 0.32 0.088 0.013 6.1 × 10−7

S7 Gravel 21.0 34.0 0.75 0.31 0.027 0.004 6.6 × 10−5

Note: e0, initial void ratio.

Table 4. Properties of gravel cushion, embankment fill and piles.

Material γ (kN/m3) E (MPa) v c′ (kPa) ϕ′ (◦)

Embankment 18.5 20 0.3 10 30
Gravel (cushion) 20 70 0.3 60 36

Pile 24 20,000 0.2 18,000 -

2.3.3. Model Validation

There was no field data on the pile and soil monitoring for settlement with time,
except for the final settlement in the field measurement from Briançon and Simon [38].
Therefore, the FE computed results were only compared with the final measured settlement,
see Figure 8. It has been found that the final settlements of the pile top and subsoil surface
were 31 mm and 61.2 mm, respectively, which were 10.7% higher and 6.2% lower than the
field measurement, showing a good agreement. Figure 9 shows the variation in vertical
stresses exerted on the center of the subsoil surface enclosed by four adjacent piles with the
elapsed time, including the results of the FEM analysis in this study, the field data and the
original numerical results of Rowe and Liu [12]. The results show that the results of the
FEM analysis in this study well capture the evolution of the field test data.
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3. Results and Discussion
3.1. Pile-Soil Interaction

The different pile-soil interactions lead to the load transfer mechanisms of the three
types of piles remaining different. The distribution of the skin friction and axial force of the
three types of piles were investigated to explore their load-bearing mechanisms.

3.1.1. Skin Friction of the Pile

The consolidation of the subsoil in proceeds and thus settlement occurs under the
embankment load. When the settlement of the pile is less than the subsoil, negative skin
friction applies resistance to subsoil settlement. The reaction load acting on the pile caused
by the resistance may increase pile settlement. When the settlement of the pile is greater
than the surrounding subsoil, the pile imposes positive skin friction on the subsoil, which
is, however, beneficial to restrain the development of pile settlement. For a floating pile,
the settlement of the subsoil around the upper part of the pile is larger than the subsoil,
and thus the negative skin friction generates along the upper surface of the pile. For an
end-bearing pile, the pile movement is small because the pile tip stands on the firm stratum,
and the negative skin friction is usually distributed along the whole length of the pile.

Figure 10 shows the variation in the skin friction of the three types of piles along the
pile length. The skin friction force of the flexible floating pile was the largest, 50% larger
than that of the rigid floating pile and twice that of the end-bearing pile. For flexible and
rigid floating piles, both the negative skin friction in the upper part and the positive skin
friction in the lower part increase with the development of soil consolidation. The floating
pile’s neutral plane (at which the friction resistance is 0) moves downward as consolidation
proceeds. At the completion of consolidation, the neutral plane of the flexible floating
pile reaches a depth equaling 1/3 of its length, and that of the rigid floating pile reaches
0.5 times its length. In the case of end-bearing piles, almost no positive skin friction was
generated along the entire length of the pile. The neutral plane was firstly appearing at the
pile tip when the embankment construction was completed. Then roughly moved upwards
as consolidation proceeds, reaching a depth equaling 3/4 of pile length when the subsoil
consolidation was completed.
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3.1.2. Axial Force Distributions along with the Pile

Axial force plays an important role in investigating the bearing mechanism of pile-
supported embankments. For three types of piles, the axial force increases as soil con-
solidation evolve (as shown in Figure 11). It tends to increase and then decrease along
the pile length, reaching the maximum values at the neutral plane. The flexible floating
pile has the lowest axial force, only 10% of the end-bearing pile. The axial force of rigid
floating piles is 71% of that of end-bearing piles. It has been found that flexible floating pile
induced the largest pile-side skin friction but the lowest axial force. It may mainly depend
on the frictional resistance to resist embankment loads. The end-bearing pile yields the
highest axial force, it mainly relies on the tip resistance to carry the load. The load-carrying
mechanism of rigid floating pile was in between.
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3.2. Development of Soil Arching

Differences in pile-soil interactions between floating and end-bearing piles have im-
plications for the development of soil arching. This section investigated stress reduction
ratio, earth pressure coefficient, and differential settlement in the embankment with varied
piles types.
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3.2.1. Stress Reduction Ratio

Stress reduction ratio (SRR), defined as the ratio of vertical stress exerts on the subsoil
surface over embankment load, is usually used to evaluate the level of load transfer to the
pile (the level to which the soil arching develops). The expression is as follows:

SRR =
σS
γh

(1)

where γ is the unit weight of the embankment, h is the height of the embankment, and σS
is the vertical stress exerts on the subsoil surface.

Figure 12 shows the variation in vertical stresses along with embankment height above
the subsoil at the center of four piles and piles (points A and B in Figure 13) for three
models. The data are acquired when the consolidation is completed. The results show that
in the upper of the embankment, the vertical stresses above the two points were equal to the
self-weight of embankment. With the embankment depth increasing, the vertical stresses
above the subsoil decrease, while the stresses above the piles increase, which benefitted
from the soil arching in the embankment. It has been found that the stress above the rigid
floating and end-bearing piles increased rapidly along with the depth of the embankment,
while the increase in the vertical stress above the flexible floating piles was not as significant
as that in the embankment involving the other two types of piles. It has also been found
that the stress at the subsoil surface of the flexible floating pile (Figure 12a) was close to the
self-weight of embankment with SRR = 0.90, and the arching was insignificant. The rigid
floating pile improved the stress transfer with SRR = 0.61, in which the soil arching might
be partially developed. The end-bearing pile yields an SRR of 0.44 and a full soil arching
was achieved.
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3.2.2. Earth Pressure Coefficient

Figure 14 shows the lateral earth pressure coefficient (K) at the vertical profile through
points A and B (in Figure 13) in the embankment. Where z is the height above the base
of the embankment, and s and a are the pile spacing and the diameter, respectively. The
horizontal stress was considered to be independent of direction. The Rankine active and
passive values of the earth pressure coefficient (Ka and KP) are plotted in Figure 14 using
dotted lines. The formula for calculating K is shown in Equation (2).

K =
σh
σv

(2)

where σh is the horizontal stress at a point in the embankment, σv is the vertical at the point.
It has been found that the K in the embankments involving the rigid floating piles

and end-bearing piles followed a similar evolution trend (Figure 14a). At the surface of
the embankment, the K tended to K0 with the increase in height. In the lower part of
the embankment, the K increases to the extreme value point with the increase in depth,
then decrease with depth. Unusually, the K in the embankment with flexible floating piles
showed a rapid increase with increasing embankment height, which was probably due to
the low-fill embankment. It was observed that the K in the embankment with end-bearing
piles exceeds KP attaining a value of 3.28 at z/(s− a) = 0.5, which might be caused by
the redistribution of stresses because of the soil arching was fully developed. The K in the
embankment with rigid floating pile was 2.21 at z/(s− a) = 0.3, and the soil arching might
be partially generated. The K of the flexible floating pile was close to K0 at the bottom of
the embankment, and almost no arching was generated.
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(a) point A (above the subsoil); (b) point B (above the pile).

Figure 14b shows the evolution of K in the embankment along with a vertical path
above point B. The K for end-bearing piles was close to Ka at the bottom of the embankment
because the soil arching was fully developed. For flexible floating piles, K roughly equaled
to K0 because the arching was absent. The rigid floating piles were in between. It was found
that the K corresponding to the end-bearing pile exceeds the limit values K0 and KP at a
certain height, which may be owing to the small cohesion intercept of the fill material [39].
The results of Zhuang et al. [40] showed that the soil arching had been fully developed
when h/(s − a) > 2.3. Although h/(s − a) reached 2.8 for the rigid floating pile case in this
paper, the arching was not fully mobilized. It may be inferred that to mobilize the full soil
arching in the floating piles supported embankment, a greater magnitude of h/(s − a) may
be required.

Figure 15 shows the large principal stress vectors for the three stages of soil arch
development in the end-bearing pile-supported embankment. It was found that the soil
arching was not instantaneous. The soil arching may initiate immediately after the begin-
ning of the embankment construction. It further developed with the proceeding of the
subsoil consolidation after the embankment construction was completed until a full aching
was attained.
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3.2.3. Differential Settlement

Figure 16 shows the variation in differential settlement between the two paths above
point A and point B with embankment height normalized by (s − a). It has been found
that the differential settlement at the embankment surface was 19.5 mm for the flexible
floating piles, decreasing to 11.0 mm for the rigid floating piles. For the end-bearing piles,
the differential settlement dropped to 0. For rigid floating piles and end-bearing piles, the
differential settlement remains constant in the upper of the embankment, and it begins to
increase at the depths where the outer of the soil arching reach. For flexible floating piles,
the differential settlement on the embankment surface was almost equal to the bottom
because the soil arching was insignificant.
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4. Conclusions

In this paper, the concept of flexible floating piles and rigid floating piles was pro-
posed. The load-bearing mechanism for floating and end-bearing piles embankments were
investigated using the 3D FE analysis. Three typical field cases were adopted to validate
the reliability of the modeling approach. The FE analysis results were compared with the
field test data, and the errors remained less than 12%. It showed that the modeling was
able to simulate well the behavior of the pile-supported embankments with flexible floating
piles, rigid floating piles, and end-bearing piles. Moreover, the following conclusions can
be drawn:

1. The pile tip resistance of flexible floating piles was the lowest, only 10% of that of
end-bearing piles. It means that the flexible floating piles mainly rely on the pile skin
friction to carry the load. End-bearing piles mainly rely on pile tip resistance to carry
the load, which has 50% as much skin friction as flexible floating piles. In comparison,
the load-carrying mechanism of the rigid floating piles was somehow in between.

2. The SRR decreased from 0.90 for flexible floating piles to 0.61 for rigid floating piles
and reached 0.44 for end-bearing piles. The K in the embankment employing end-
bearing pile was 3.28 at z/(s− a) = 0.5, greater than KP, in which the soil arching
was fully developed. The K for rigid floating pile-supported embankment was 2.21 at
z/(s− a) = 0.3, where soil arching might be partially mobilized. At the bottom of the
flexible floating pile-supported embankment, the K tended to equal K0, and thus soil
arching was insignificant.

3. The differential settlement on the surface of the end-bearing pile-supported embank-
ment was 0 mm because the arching was fully developed. The development of
soil arching was initiated once the embankment construction period, and it further
developed with the evolution of soil consolidation until a full arching was mobi-
lized. So, it was essential to consider the soil consolidation in the study of the
pile-supported embankment.

4. The mechanical behavior and bearing mechanism of pile-supported embankments
are significantly different under different pile types. There are two types of floating
piles in the practical engineering, and it is unsafe and uneconomical to design follow
a uniform guideline. It was economical to choose the flexible floating pile when the
thickness of the soft clay was quite high. However, there may be insufficient bearing
capacity. Using the end-bearing pile might significantly improve the bearing capacity
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of the embankment, but it was not cost-effective because of its limited lift compared
to the rigid floating pile.
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