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Abstract: The notion of length-biased distribution can be used to develop adequate models. Length-
biased distribution was known as a special case of weighted distribution. In this work, a new class
of length-biased distribution, namely the two-sided length-biased inverse Gaussian distribution
(TS-LBIG), was introduced. The physical phenomenon of this scenario was described in a case of
cracks developing from two sides. Since the probability density function of the original TS-LBIG
distribution cannot be written in a closed-form expression, its generalization form was further
introduced. Important properties such as the moment-generating function and survival function
cannot be provided. We offered a different approach to solving this problem. Some distributional
properties were investigated. The parameters were estimated by the method of the moment. Monte
Carlo simulation studies were carried out to appraise the performance of the suggested estimators
using bias, variance, and mean square error. An application of a real dataset was presented for
illustration. The results showed that the suggested estimators performed better than the original study.
The proposed distribution provided a more appropriate model than other candidate distributions for
fitting based on Akaike information criterion.

Keywords: method of moment; lifetime distribution; parametrization; re-parameterized distribution;
length-biased distribution

1. Introduction

Recorded observations may not have original distributions when practitioners collect
natural observations according to certain stochastic models. Each observation is taken
with unequal probabilities of recording. Weighted distributions can be adopted in this
situation for selecting appropriate models [1]. One of the most widely known for special
cases of weighted distributions is length-biased distributions. Precisely, let X denote a
non-negative random variable with a probability density function shortly called PDF or
fx(x). The weighted version of X denoted by X, has a PDF defined as

_ w(x)fx(x)
fx,(x) = E[T};)]’

x>0, ey
where w(x) is the weighted function and 0 < E[w(x)] < oco. Different weighted models
are formulated depending on choices of the weight function w(x). In cases of w(x) = x,
the resulting distribution is called length-biased whose PDF is defined by

xfx(x)

flx) = EX] x>0, 2)
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Several versions of length-biased distributions are employed in various applications.
For example, length-biased Birnbaum-Saunders distribution with an application in water
quality was proposed by Leiva et al. [2]. Length-biased weighted Weibull distribution
introduced by Das and Roy [3] was utilized in rainfall data. A generalization of length-
biased Nakagami distribution offered by Abdullahi and Phaphan [4] was applied in heart
attack data. Further, length-biased distributions can be used in percolation theory. Since
percolation models are formulated from different weights and the distribution of a weight
is a non-negative random variable, length-biased distributions can be employed as an
alternative distribution. Some examples in this area were given in [5,6].

The length-biased inverse Gaussian (LBIG), one of special cases of the length-biased
weighted distributions, is frequently used as a lifetime distribution. The LBIG distribution
has been studied by many authors. In the early state, Khattree [7] presented a description of
the inverse Gaussian (IG) and gamma distributions via their length-biased versions. Akman
and Gupta [8] proposed a comparison of several estimators of the mean for IG and LBIG
distributions. Akman and Gupta [9] offered statistical properties of the mixture of the IG
and LBIG distributions. Recently, Naik [10] introduced a convoluted form of length-biased
inverse Gaussian and gamma distributions. Budsaba and Phaphan [11] provided maxi-
mum likelihood estimation for re-parameterized LBIG distribution. The LBIG distribution
has been utilized as a component of mixed distributions. For instance, it was used for
constructing a mixture inverse Gaussian distribution [12], new parametrization of mixture
inverse Gaussian distribution [13], weighted inverse Gaussian distribution [14], Birnbaum-
Saunders distribution [15], re-parametrization of Birnbaum-Saunders distribution [16],
three-parameter crack distribution [17], and two-parameter crack distribution [18].

In a reliability framework, a two-sided model can be described in a situation in
which fatigue cracks evolve from two sides of the studied object. Lisawadi [19] early
introduced two distributions using the parametrization suggested by Ahmed et al. [16],
namely the two-sided Birnbaum-Saunders (TS-BS) and two-sided inverse Gaussian (TS-1G)
distributions. Subsequently, Simmachan et al. [20] presented an alternative distribution
applying the approach of Lisawadi [19] called two-sided length-biased inverse Gaussian
(TS-LBIG) distribution. However, all of the two-sided versions have no closed-form PDFs.
Important distributional properties such as a moment-generating function (MGF) and a
survival function cannot be presented.

This study aims to re-introduce the TS-LBIG distribution originally proposed by
Simmachan et al. [20] in closed-form expression. The reciprocal property is employed for
derivation of the MGE. The resulting MGF is compared to a known MGE. By uniqueness
property, the PDF of the TS-LBIG distribution can be obtained.

The rest of the article is organized as follows: a review of IG and LBIG distributions is
presented in Sections 2 and 3, respectively. The TS-LBIG random variable is described in
Section 4. Reciprocal properties are provided in Section 5. In this section, four propositions
are given. The MGF of TS-LBIG distribution is derived in Section 6. The PDF of TS-LBIG
in closed-form expression is introduced in Section 7. Other distributional properties are
established in Sections 8-11. Parameter estimation by the method of moment is provided
in Section 12. Numerical results consisting of a simulation study and real data application
are shown in Section 13. Finally, conclusions and discussion are reported in Section 14.

2. Inverse Gaussian Distribution

Chikara and Folk [21] studied the variables of the two-parameter inverse Gaussian
distribution which is the continuous probability distribution (0, c0). Suppose X is a random
variable with an inverse Gaussian distribution. Consequently, a PDF can be written in
this formula:

fic(x;u, B) = 2 2u%x

érx—gexp<—ﬁ(x_”)2> ;x>0 3)

0 ; otherwise,
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where y > 0 is a location parameter or a mean, and 8 > 0 is a shape or scale parameter.
The two parameters are called classical parameters. However, this research pays attention
for studying the re-parameterized version of IG distribution. The parametrization was
originally presented by Ahmed et al. [16] in the form of the Birnbaum-Saunders distribution
(BS). The BS distribution was combined from IG and LBIG distributions. Precisely,

fes(x;A,0) = %fIG(x} A B) + %fLBIG(x} A 0), “4)

where fgs, fic and f] pjc are the PDFs of the Birnbaum-Saunders, inverse Gaussian and
length-biased inverse Gaussian distributions, respectively. The new form of the distribution
parameters (A and 6) is called non-classical parameters, where A > 0 and 6 > 0 represent
the thickness of the machine element and nominal treatment pressure on the machine
element, respectively. The interrelations between (y, ) and (A, 0) are as follows.

A—ée—ﬁE = A6, and B = A6 (5)
_]/l, _‘B,H_ 7 - .

From Equations (3) and (5), the PDF of non-classical IG distribution, denoted as

f1c(A,0), can be written in this form:
2
exp[—%(ﬁ—/\\/g) ] ;x>0 ©)

0 ; otherwise.

NI

fIc;(x;)t,G) = 9\;\277'[(2)

3. Length-Biased Inverse Gaussian Distribution

By the definition of a length-biased distribution defined in Equation (2), the length-
biased inverse Gaussian distribution can be explained as follows. Let X be an inverse
Gaussian random variable with parameters A and 6 or X ~ IG(A,6). The PDF of X is
denoted as frpic(A,0). As the relations between the classical parameters and non-classical
parameters, the expected value or the first moment of X is E[X] = u = A6. Therefore,
the length-biased version of X can be expressed as

1 2
freic(x;A,0) = ﬁ(g) exP[-%(ﬁ—A\/E)] ;x>0 -

0 ; otherwise.

4. TS-LBIG Random Variable

In this section, the TS-LBIG random variable () introduced by Simmachan et al. [20] is
described. Let X be a non-negative continuous random variable and let F(x) = Fypjg(x, A, 6)
denote the distribution function of the breakdown time moment 7 for one-sided loading.
The parameters A and 6 were previously defined. Let Y = k/7 be the random variable
denoted as a crack speed. Under the object consideration, a crack expands from two sides
with the same distribution function of the time to approach the length k. The random vari-
ables from both sides, 71 and 1, are supposed to be independent and identically distributed.
The crack speed for the two-sided situation is definded as

k k 1 1
n+n_+_%+>_x 8)
T T T )

The breakdown moment of the interested object is defined as the following
random variable

A oy T
Yi+Y, k(%+%) T T X’
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5. Reciprocal Properties

Proposition 1. If the random variable T > 0 has the probability density function f(x), then the
reciprocal random variable 1/ T has the probability density function f1,.(x) = x 2 f;(1/x).

Proof of Proposition 1. For the reciprocal random variable 1/7, the distribution function
is given by

Fa(x) = p(,l[gx> - P(rzi> - 1—P<rgi> - 1—&(3{),

and applying the chain rule, the density function is

firnt) = B = -B(2) = -[£(3)] (%) = x2%(5) ©

Proposition 2. If random variable T > 0 has LBIG(A, 0) distribution, then the reciprocal random
variable 1/t is IG[A, 1/ ()\29)] distributed.

Proof of Proposition 2. By Proposition 1,

fiex) = x° fLB,G( A, 9)

x—29—1/2,1/2

_ Lo p-172-172)?
= T exp{ 2(/\0 X 0 X )

-3/2

x 2
B m”’“{ 5 (1o - m)}

x—3/2 /\29
- NerT exp{ < \/ 1/ A26> }
A/ 1 /e =\
= 7\/277[ x 3/269(}7{_2(/\ P - 1/(/\29)> }

= ficlx; A, 1/(A20)). O

Proposition 3. If the random variable T > 0 has IG(A, 0) distribution, then the reciprocal random
variable 1/ is LBIG[A, 1/ (A20)] distributed.
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Proof of Proposition 3. By Proposition 1,

fie(x) = x_zflc(l; A, 9)

X

- ’wzle/zexp{_;(wl/le/z_g1/2x1/2>2}
V 4TT

2
_ 1 _ 1 [1/(A20) [ x
= —\/2771(1//\29)1/236 l/ZEXP{—Z </\ X - 1/()\29)> }

= fisiclx; A, 1/(A%0)]. -

Proposition 4. If the random variable T > 0 has IG[2A, 1/ (A20)] distribution, then the reciprocal
random variable 1/t is LBIG[2A,0/4)] distributed.

Proof of Proposition 4. Applying Proposition 1,

fi(x) = x7*fig (i 27, 1/(/\29))

2
7T

2
2 ap 1 X [
V2r(220)1/2" ex”{ 2(”\/ 2~V x
2
0/9)Y2 1( [x [6/4
7\/5 X exp —5 ﬁ—ZA -

= freiclx; 2A, 6/4]. O

6. Moment-Generating Function for TS-LBIG Distribution

Theorem 1. If the random variables 171, 7 ~ LBIG(A, 0), then the moment-generating function
of X = Tl_l + 1, ! is given as

Mx(t) = exp{b\ll \/1— /\2;9] } ,

2
where 0 < t < %.
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Proof of Theorem 1. We know that a moment-generating function (MGF) of IG(A, 8) of a
random variable T is defined as

Yrc(t) = Mc(t) = exp{)\ {1 —Vi- zet} } :
Now, we have two independent LBIG random variables 7; and 1. That is,

71 ~ LBIG(A,0) and 1 ~ LBIG(A, ).

Initially, we find the MGF of the random variable X = 7~ Ty T, 1. According to
Proposition 2, if the random variable T > 0 has LBIG(A, 0) distribution, then the reciprocal
random variable 1/7 is IG[A,1/(A%6)] distributed. Therefore,

My (1) = M (1) = Mig(t) = exp{/\[l ~ —2<A126)t] } .

Hence,

Mx(t) = E(eX) = E(J(%*é))

- efui i E])

By uniqueness property, it is implied that X = 7, ' + 1, | ~ IG[2A,1/(A20)].

Theorem 2. If a random variable Y ~ TS-LBIG(A, ), the moment generating function of Y is

given as
My(t) = (1 —2<Z)t> o exp{Z)t ll —4/1 —2(2);%] } .

Proof of Theorem 2. By Theorem 1, it is known that X ~ IG[2A,1/(A%6)]. To find the
MGEF of the TS-LBIG random variable Y, the reciprocal of X is considered. Let Y =1/X =
(7,1 + 75 1] 1. We know that a MGF of LBIG|A, §] distribution is defined as

Migic(tA,0) = (1—20t) "2 exp {A[1 — (1 —26t)/7]}. (10)

According to Proposition 4, Y ~ LBIG[2A, 6/4]. Therefore, the moment-generating
function of Y is given by

My (1) = <1—2<Z)t>_1/2exp{2?t ll— 1-2(2” } |



Symmetry 2022, 14, 1965

7 of 17

Most importantly, by uniqueness property, it is indicated that Y ~ TS-LBIG(A, 0) ~
LBIG[2A,0/4].

7. The Probability Density Function of TS-LBIG Distribution

Theorem 3. Define X as a random variable of the TS-LBIG distribution. Then, the corresponding
probability density function (PDF) of X is given by

frs-LiG(x;A,0) = 9\/2271 (Z) : exp [—; (A\/E— 2\/§> 2] : (11)

Proof of Theorem 3. By Theorem 2, we know that TS-LBIG(A,0) ~ LBIG[2A,6/4]. We
start with Equation (7), which is the original form of LBIG distribution, f;p;c(x;A,0).
Substituting Equation (7) by the parameter A to be 2A and 6 to be 6/4, the probability
density function of the TS-LBIG distribution is

. _ 1 4 1 [ x
frs-ic(xA,0) = fi\/27f<?‘ exp|—3(21y/ £ \/%
4

1
o)
2

O

Several shapes of the PDF for the TS-LBIG distribution are illustrated in Figures 1 and 2
for various parameter values. The different shapes indicate that the TS-LBIG distribution
is right-skewed and unimodal. Moreover, this distribution is a family of asymmetric
distributions which are useful for skewed data analysis.

theta=2

Distributions
— lambda=8
— lambda=7
— lambda=6

lambda=5
- - lambda=4

0.25
1

0.20
Il

Density

0.00
|

x value

Figure 1. PDFs for the TS-LBIG distribution for several values of A(lambda).
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lambda=2

i Distributions
— theta=3
— theta=2
— theta=1
theta=0.5
- = theta=0.2

25
1

Density
15

1.0

%?

0.0

x value

Figure 2. PDFs for the TS-LBIG distribution for several values of 8(theta).

8. The Cumulative Density Function of TS-LBIG Distribution

Theorem 4. Let X be a random variable of the TS-LBIG distribution. The cumulative density
function (CDF) of X is given by

Frs.LBIG(x ( Ja- V/>-—exp (41)® [ ( v[*‘AV/>1 (13)

where ®(x) is the standard normal distribution function.

Proof of Theorem 4. The CDF of LBIG distribution is

Fusa(x (/ J)-apm l(/+¢¢>] (14)

Hence, the CDF of TS-LBIG is
[x [x
FTS—LBIG(x) = @( Il —2A ) —exp(4}\) ( = +2A )] ’
1 1
0
(VC+WCN' 15)

ooy n?) -emtae

where ®(x) is the standard normal distribution function. g

m
m

9. The Survival Function of TS-LBIG Distribution
Theorem 5. Let X be a random variable of the TS-LBIG distribution with parameters A and 6.

The survival function of X is obtained as:
STS—LBIG( =1- < \/7 \/7> +€Xp 4/\ ( \/7+)\\/7>‘| 16)

where O (x) is the standard normal distribution function.




Symmetry 2022, 14, 1965

90f17

Proof of Theorem 5. Let X be a continuous random variable with a cumulative density
function F(x) on the interval [0, 00). The survival function of X can be written in this form:

:/'oof(t)dt = 1—F(x) (17)

Inserting Equation (13) into Equation (17) leads to the survival function of TS-LBIG distri-
bution in equation:

Srs.pic(x) =1— @ ([ \f>+exp4A [ (fmf)] (18)

where ®(x) is the standard normal distribution function. O

10. The Hazard Rate Function of TS-LBIG Distribution

Theorem 6. Let X be a random variable of the TS-LBIG distribution with parameters A and 6.
The hazard rate function of X is given by

(1) v [ 4(1E-2y8)
1-o <\f A\f>+e><p4/\ ( ([—H\f))

where O (x) is the standard normal distribution function.

hrs-rBiG(x) = (19)

Proof of Theorem 6. Let X be an absolutely continuous non-negative random variable
with the probability density function f(x) and the survival function S(x); then, the hazard
rate function of X can be defined as:

W
"= Sy

o (1) e[ A (1E23)

= (20)

1- @ ([ A\f>+exp4A ((\fu\f))

where ®(x) is the standard normal distribution function. g

11. The Mean and the Variance of TS-LBIG Distribution

From [22],1let Y ~ IG(x;A,0) and Z ~ LB(x;A,0); then, the rth moment of Z for
r=1,2,3,...1s given by
1
—E[z"H]. 21
GEZ ) e

Hence, the first four raw moments of the LBIG distribution are

E[z'] =

E[Z] = 6(A+1)

E[Z?] = 6*(A2+3A+3) 2
E[Z°] = 63(A%+6A%+15) +15) 22
E[Z* = 60*(A* 41073 +45A2 +105A + 105).

Let X ~ TS-LBIG. Therefore, the first four raw moments of TS-LBIG distribution are
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EX] = 9(2r+1)
2
E[X2] = (g) (4A2 4 6A + 3)
3 23
E[X}] = (g) (8A3 + 24A2 + 301 + 5) 23)
o\ 4
E[xY = (1) (16A* + 80A3 + 180A2 -+ 210 + 105)
Therefore, the mean of TS-LBIG distribution is
0
E[X] = ;(2A+1), (24)
and the variance of TS-LBIG distribution is
Var(X) = E(X?)—[E(X)]?
= L4A2460+3)— [Z02A+ 1)2}
4/\292 2 2 2 2 2
— +%\9 +30° _ 4)A°0 +146A9 +0 (25)
_ 2A0%426?
= 6
— A46%

8

12. Parameter Estimation by the Method of Moments for the TS-LBIG Distribution

Recall that the rth raw population moment is equal to the rth raw sample moment.

Q(2A+1) = lix (26)
4 =1
0 2(4A2+6/\+3) = lixz (27)
4 =
From Equation (26) and letting ¥ = % Y. 4 xi, we obtain
22r+1) = =z
2004+60 = 4x
200 = 4x -6 (28)
A T—0
A= 5L

Substituting Equation (28) into Equation (27) and letting T = % Y x%, we obtain

A0 6 (55) ' 36"

4% 9216394- 0)+362 -
Bvas el i) 29)
02 +16%2 +46x = 16T
62 + 430 + 1652 — 16T = 0.
From ax? +bx+c¢=0
—b+ Vb2 —4ac
X=— = (30)
2a
where a = 1, b = 4%, c = 165> — 16T = 16(x> — T).
. _A4% 2 _ 72 _
ho —AEE /1632 — 64(x ) 1)

2
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Since 0 is positive parameter, hence

b —4x+\/16f;—64m
4%4@

= 2842V -3%2 +4T
= 2(VaT 37 - ).

(32)

Next, substituting Equation (32) into Equation (28)

4x_z(¢m_x)

A=
4(mﬂz)

(33)

13. Numerical Results
13.1. Simulation Study

In this section, the Monte Carlo simulation to test the performance of the suggested
estimators of the TS-LBIG distribution parameters is presented. Different values of the
true parameters are considered. All 60 scenarios are the combination of sample size
(n) = 10,50 and 100, A = 1,3,5 and 10, and 8 = 0.5,1, 3,5 and 10. The proposed estimators,
A and , are compared to the estimators presented by Simmachan et al. [20], A and 8, via
bias, MSE and variance. The random numbers of the TS-LBIG distribution are generated via
the composition method using the “twoCrack” package [23] in R [24], and the replications
are repeated 1000 times in each scenario. The parameter estimates with their bias, MSE and
variance are reported in Tables 1-6. For easier consideration, bar charts are created and
presented in Figures 3 and 4. The blue and yellow bars represent the proposed method and
the method of Simmachan et al. [20], respectively. It reveals that the bias, MSE and variance
become smaller as the sample size increases and the estimates become closer to the true
value of parameters. For bias consideration, the estimators of A give over-estimates for both
methods. The bias of the proposed estimator is slightly smaller than that of the original
estimator. On the other hand, the estimators of § provide mostly under-estimates for both
methods. The bias of the proposed estimator is much smaller than that of the original
estimator. MSE and variance indicators have similar behavior. For parameter A, the MSE
and variance of the proposed estimator are slightly smaller than those of the original
estimator. For parameter 6, however, the MSE and variance of the proposed estimator are
much smaller than those of the original estimator. Interestingly, the bias, MSE and variance
of the proposed estimators are superior to those of the estimators from the previous study.

Table 1. The average estimates, the bias, the mean squared errors, and the simulated variance of the
proposed estimators A and @ for n = 10.

A

A 0 A 0 Bias (1) Bias () MSE (1) MSE (@) Var(A) Var ()
0.5 1.722 0.430 0.722 —0.070  2.355 0.057 1.834 0.052

1 1.784 0.837 0784 —-0.163 2.120 0.251 1.505 0.224

3 1.716 2.534 0716  —0.466  1.696 2.094 1.183 1.877

5 1.675 4.280 0.675 —0.720  1.649 5.289 1.193 4.770

10 1.682 8.615 0682 —138  1.893 23.492 1.428 21.575

3 0.5 4.526 0.442 1526  —0.058 12.504 0.052 10.174 0.049
1 4.881 0.838 1.881 —0.162  14.427 0.218 10.889 0.192

3 4.536 2.604 1536  —0.39%  9.135 1.940 6.775 1.783

5 4.587 4.361 1587  —0.639 11.243 5.205 8.723 4.797

—_
o

4.586 8.640 1586  —1.360  9.841 22.347 7.325 20.498
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Table 1. Cont.

A 0 A 0 Bias (1) Bias () MSE (A1) MSE (8) Var(A) Var(8)
5 0.5 7504 0451 2504 —0.049 28831 0.063 22562  0.060
1 7746 0875 2746  —0.125 40752 0220 33211  0.205
3 7519 2657 2519 0343 32710 1.823 26367 1705
5 7239 4482 2239 —0518 22589 4973 17575  4.705
10 7498 8666 2498 —1334 25350 19.060 19.109  17.281
10 0.5 14.842 0436  4.842 —0.064 100511 0.051  77.067  0.047
1 14.325 0887 4325 —0.113 85940 0191 67235 0.178
3 14980 2656 4980 —0344 154657 1975 129.858  1.857
5 15466 4376 5466 —0.624 163.500 5.670 133.620 5280
10 14174 9105 4174 —0.895 106910 18.675 89.488 17.873

Table 2. The average estimates, the bias, the mean squared errors, and the simulated variance of the

original estimators of A and 8 for n = 10.

A 0 A b Bias (1) Bias () MSE (1) MSE (8) Var (A) Var(8)
1 0.5 1.827 4000 0827 3500 2444 17495 1760 5244
1 1.887 1928  0.887 0928 2220 1962 1433  1.102
3 1.821 0657  0.821 2343 1790 5616 1117  0.125
5 1781 0397 0781 —4603 1739 21231 1129  0.045
10 1788 0203 0788 —9.797 1980 9598  1.359  0.012
3 0.5 4581 0654 1581 0154 12573 0130 10074  0.107
1 4933 0310 1933 —0690 14515 0500 10.779  0.024
3 4590 0108  1.590 —2.892 9210 8368  6.682  0.003
5 4641 0065 1641 —4935 11318 24359 8624  0.001
10 4640 0032 1640 —9.968 9917 99354 7229  0.000
5 0.5 7541 0262 2541 —0238 28888 0077 22432  0.021
1 7782 0127 2782  —0.873 40.821 0767  33.081  0.004
3 7555  0.043 2555 —2957 32773 8746 26245  0.000
5 7276 0026 2276 —4974 22650 24745 17470  0.000
10 7534 0012 2534 —9988 25422 99.751 19.001  0.000
10 0.5 14.862  0.066  4.862 —0.434 100579 0.189  76.944  0.001
1 14.345  0.034 4345 0966 86.000 0934 67121  0.000
3 15000 0011 5000 —2989 154718 8933  129.720  0.000
5 15486  0.007 5486 —4993 163.566 24.934 133471  0.000
10 14195  0.003 4195 —9.997 106960 99.931  89.366  0.000

Table 3. The average estimates, the bias, the mean squared errors, and the simulated variance of the

proposed estimators A and @ for n = 50.

A

A 0 A b Bias (A) Bias (8) MSE (1) MSE () Var(A) Var ()
0.5 1130 0485 0130 —0015 0142 0017 0125  0.017
1 1120 0964 0120 —0.036 0127 0058 0113  0.057
3 1141 288 0141 —0.114 0138 0525 0119 0512
5 1138 4832 0138 0168 0150  1.627 0131 1599
10 1143 9580 0143 —0420 0136 5899 0116 5722
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Table 3. Cont.

A 0 A 0 Bias (1) Bias () MSE (A1) MSE (8) Var(A) Var(8)
3 0.5 3285 0484 0285 0016 0705 0012 0623  0.012
1 3251 0979 0251 —0021 0725 0052 0661  0.052
3 3298 2905 0298 —0.095 0743 0469  0.654  0.460
5 3205 482 0295 —0178 0792 1320 0705  1.289
10 3232 9.820 0232 —0.180 0.677 5197 0623  5.165
5 0.5 5393 0488 0393 —0012 1.694 0012 1539 0011
1 5443 0970 0443 —0.030 1.873 0050  1.677  0.049
3 5404 2926 0404 —0.074 1.842 0414 1678  0.408
5 5432 4853 0432 —0147 1758 1177 1571  1.156
10 5403 9724 0403 —0276 1654 4850 1492 4774
10 0.5 10729 0488 0729 —0.012 6058 0011 5527  0.010
1 10667 0983  0.667 —0017 6356  0.044 5910  0.044
3 10692 2935  0.692 —0.065 5969 0372 5490  0.368
5 10.809  4.841  0.809 —0.159 6479  1.085 5824  1.059
10 10.628  9.843  0.628 —0.157 5947 4176 5553 4151

Table 4. The average estimates, the bias, the mean squared errors, and the simulated variance of the
original estimators of A and 6 for n = 50.

A 0 A b Bias (A) Bias (§) MSE (A) MSE () Var (A) Var(8)
1 0.5 1251 4600 0251 4100 0175 18484 0112  1.670
1 1241 2319 0241 1319 0159 2121 0101  0.383
3 1260 0755 0260 —2245 0174 5082 0106  0.040
5 1258 0458 0258 —4542 0184 20645 0118  0.017
10 1263 0226 0263 —9.774 0173 95541  0.104  0.003
3 0.5 3346 0721 0346 0221 0726 0076 0607  0.028
1 3312 0365 0312 —0.635 0741 0410  0.644  0.007
3 3358 0120 0358 —2.880 0765 8297  0.637  0.001
5 3355  0.073 0355 —4927 0.813 24280  0.687  0.000
10 3293 0.037 0293 —9.963 0.692 99.267  0.606  0.000
5 05 5433 0281 0433 —0219 1709 0052 1521  0.004
1 5483  0.140 0483 —0860 1.891 0741 1658  0.001
3 5445  0.047 0445 2953 1857 8721  1.659  0.000
5 5473  0.028 0473 —4972 1776 24721 1553  0.000
10 5444 0014 0444 —998 1670 99.719 1473  0.000
10 0.5 10751  0.074 0751 —0426 6072 0182 5508  0.000
1 10690  0.037  0.690 —0963 6365 0927 588  0.000
3 10714 0012 0714 —2988 5981 8926 5471  0.000
5 10831  0.007  0.831 —4993 6495 24926 5804  0.000

—_
o

10.650 0.004 0.650  —9.996  5.956 99.925 5.534 0.000
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Table 5. The average estimates, the bias, the mean squared errors, and the simulated variance of the

proposed estimators A and @ for n = 100.

A

A 0 A 0 Bias (1) Bias () MSE (1) MSE (@) Var(A) Var ()
0.5 1.064 0495 0064 —0005 0065 0009 0061  0.009
1 1.068 0982  0.068 —0018 0064 0032 0059  0.032
3 1.064 2951  0.064 —0.049 0063 0297 0059 0295
5 1072 4923 0072 —0077 0063 0875 0058  0.869
10 1072  9.843 0072 -0157 0.068  3.525 0062  3.501
3 0.5 3134 0492 0134 —0.008 0308 0006 0290  0.006
1 3145 0983 0145 —0017 0321  0.027 0300  0.027
3 3148 2941 0148 —0.059 0301 0218 0279 0214
5 3113 4969 0113 —0.031 0320 0726 0307  0.725
10 3115 9933 0115 0067 0329 2863 0316  2.858
5 0.5 5200 0493 0200 —0.007 0746 0006 0706  0.006
1 5152 099 0152 —0.004 0747 0024 0724  0.024
3 5233 2950 0233 —0050 0861 0226 0806  0.223
5 5226 4912 0226 —0088 0760 0613 0709  0.606
10 5238  9.807 0238 —0.193 0817 2506 0760  2.469
10 05 10310 0496 0310 —0.004 2513 0005 2416  0.005
1 10402 0984 0402 —0.016 2662 0022 2500  0.021
3 10407 2954 0407 —0.046 2832 0205  2.666  0.203
5 10336 4948 0336 —0.052 2688 0558 2575  0.556
10 10393  9.832 0393 —0.168 2532 2165 2377 2136

Table 6. The average estimates, the bias, the mean squared errors, and the simulated variance of the

original estimators of A and 8 for n = 100.

a

A 0 A 0 Bias (1) Bias () MSE (1) MSE (@) Var(A) Var ()
0.5 1187  4.656  0.187 4156  0.089  18.0944  0.054  0.820
1 1191 2326 0191 1326 0089 1954 0053  0.19
3 1187 0780  0.187 —2220 0.087 4953 0052  0.024
5 1194 0462 0194 —4538 0.089 20603  0.051  0.008
10 1195 0231 0195 9769 0.093 95427  0.055  0.002
3 0.5 3195 0736 0195 0236 0319 0071 0281  0.015
1 3206 0367 0206 —0.633 0333 0404 0291  0.004
3 3209 0122 0209 2878 0315 8284 0271  0.000
5 3175 0074 0175 —4926 0329 24264 0298  0.000
10 3176 0037 0176 —9.963 0338 99260 0307  0.000
5 0.5 5241 0284 0241 —0216 0755  0.048  0.697  0.002
1 5193  0.144 0193 —0856 0752 0734 0714  0.001
3 5274 0047 0274 2953 0871 8719 0796  0.000
5 5267  0.028 0267 —4972 0771 24718 0700  0.000
10 5278 0014 0278 —9986 0828 99.717 0751  0.000
10 05 10333 0075 0333 —0425 2518 0180 2407  0.000
1 10424 0037 0424 0963 2671 0927 2491  0.000
3 10430  0.012 0430 2988 2841 8925 2656  0.000
5 10359  0.008 0359  —4992 2694 24925 2565  0.000
10 10416  0.004 0416 —9.996 2541  99.925 2368  0.000
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Figure 3. Bar chart for the bias of estimator A(lambda) and 6(theta).
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13.2. llustrative Examples

In this section, the suggested distribution is implemented via a real dataset. The follow-
ing data are collected from the BackBlaze data center [25], and they present the lifetime of
the hard drives (in days) containing only the model ST8000DMO002 in December 2017: 490,
497,521, 394, 489, 323, 376, 319, 431, 484, 547, 383, 534 and 316. This dataset was analyzed
by Chananet and Phaphan [26], and the result indicated that the lifetime of the hard drives
follow the right skewed distribution. Consequently, five right skewed distributions—two-
parameter crack [18], Birnbaum-Saunders [16], inverse Gaussian [17], length-biased inverse
Gaussian [17], and the proposed two-sided length-biased inverse Gaussian—are selected
for goodness of fit comparison. The parameters of the TS-LBIG distribution are estimated
by the suggested estimators. The parameters of other candidate distributions are estimated
via the maximum likelihood estimation. The “nlminb” function in R [24] is employed for
maximizing their likelihood functions. The Akaike information criterion (AIC) is used
as an assessment criterion; hence, the best model is the one that provides the minimum
AIC. As the result in Table 7 indicates, the TS-LBIG distribution gives the minimum AIC.
This indicates that the proposed distribution is the best of the candidate distributions
by considering at the value of AIC. Hence, by Equations (24) and (25), the average and
standard deviation of the lifetime of the hard drives are 436 and 80.15877 days, respectively.

Table 7. The MLE of the model parameters for the hard drive failure dataset, and AIC measure.

Estimate Parameters

Fitting Dist. Y 0 AIC
TCR 110.9891 0.1000 13.39908
BS 0.001 0.100 67.6742
IG 0.001 0.001 93.44156
LBIG 26.79801 15.68458 9.106067
TS-LBIG 14.77663 57.08065 7.748027

14. Conclusions and Discussion

In this article, a new form of the TS-LBIG distribution is introduced, since the orig-
inal version offered by Simmachan et al. [20] does not present a closed-form PDF. This
distribution is a right-skewed distribution. Some distributional properties of this distribu-
tion were studied, and its two parameters were estimated using the method of moment.
Sixty combination scenarios are used to construct the simulation study in assessing the
performance of the proposed method. An application of the TS-LBIG distribution was
implemented in the lifetime of the hard drives. Results show that the proposed estimators
are more efficient than the Simmachan et al. [20] estimators. The original study dealing
with the indirect method of parameter estimation affects the parameter estimates far from
the true values, especially the parameter 6. This is different from the proposed estimators
that dealt with the direct method. The TS-LBIG distribution gives a better fit than the
other candidate distributions in terms of AIC. Our contribution provides an alternative
right-skewed distribution that can be applied in other aspects such as survival analysis
and forestry.

For the future directions of this work, other methods of parameter estimation could be
considered. Confidence intervals of the parameters could be also examined. Additionally,
the concept of the two-sided model could be extended to generate a new distribution.
Moreover, other applications of the TS-LBIG distribution should be applied.
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