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Abstract: The notion of length-biased distribution can be used to develop adequate models. Length-
biased distribution was known as a special case of weighted distribution. In this work, a new class
of length-biased distribution, namely the two-sided length-biased inverse Gaussian distribution
(TS-LBIG), was introduced. The physical phenomenon of this scenario was described in a case of
cracks developing from two sides. Since the probability density function of the original TS-LBIG
distribution cannot be written in a closed-form expression, its generalization form was further
introduced. Important properties such as the moment-generating function and survival function
cannot be provided. We offered a different approach to solving this problem. Some distributional
properties were investigated. The parameters were estimated by the method of the moment. Monte
Carlo simulation studies were carried out to appraise the performance of the suggested estimators
using bias, variance, and mean square error. An application of a real dataset was presented for
illustration. The results showed that the suggested estimators performed better than the original study.
The proposed distribution provided a more appropriate model than other candidate distributions for
fitting based on Akaike information criterion.

Keywords: method of moment; lifetime distribution; parametrization; re-parameterized distribution;
length-biased distribution

1. Introduction

Recorded observations may not have original distributions when practitioners collect
natural observations according to certain stochastic models. Each observation is taken
with unequal probabilities of recording. Weighted distributions can be adopted in this
situation for selecting appropriate models [1]. One of the most widely known for special
cases of weighted distributions is length-biased distributions. Precisely, let X denote a
non-negative random variable with a probability density function shortly called PDF or
fX(x). The weighted version of X denoted by Xw has a PDF defined as

fXw(x) =
w(x) fX(x)

E[w(x)]
, x > 0, (1)

where w(x) is the weighted function and 0 < E[w(x)] < ∞. Different weighted models
are formulated depending on choices of the weight function w(x). In cases of w(x) = x,
the resulting distribution is called length-biased whose PDF is defined by

f (x) =
x fX(x)
E[X]

, x > 0, (2)
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Several versions of length-biased distributions are employed in various applications.
For example, length-biased Birnbaum–Saunders distribution with an application in water
quality was proposed by Leiva et al. [2]. Length-biased weighted Weibull distribution
introduced by Das and Roy [3] was utilized in rainfall data. A generalization of length-
biased Nakagami distribution offered by Abdullahi and Phaphan [4] was applied in heart
attack data. Further, length-biased distributions can be used in percolation theory. Since
percolation models are formulated from different weights and the distribution of a weight
is a non-negative random variable, length-biased distributions can be employed as an
alternative distribution. Some examples in this area were given in [5,6].

The length-biased inverse Gaussian (LBIG), one of special cases of the length-biased
weighted distributions, is frequently used as a lifetime distribution. The LBIG distribution
has been studied by many authors. In the early state, Khattree [7] presented a description of
the inverse Gaussian (IG) and gamma distributions via their length-biased versions. Akman
and Gupta [8] proposed a comparison of several estimators of the mean for IG and LBIG
distributions. Akman and Gupta [9] offered statistical properties of the mixture of the IG
and LBIG distributions. Recently, Naik [10] introduced a convoluted form of length-biased
inverse Gaussian and gamma distributions. Budsaba and Phaphan [11] provided maxi-
mum likelihood estimation for re-parameterized LBIG distribution. The LBIG distribution
has been utilized as a component of mixed distributions. For instance, it was used for
constructing a mixture inverse Gaussian distribution [12], new parametrization of mixture
inverse Gaussian distribution [13], weighted inverse Gaussian distribution [14], Birnbaum–
Saunders distribution [15], re-parametrization of Birnbaum–Saunders distribution [16],
three-parameter crack distribution [17], and two-parameter crack distribution [18].

In a reliability framework, a two-sided model can be described in a situation in
which fatigue cracks evolve from two sides of the studied object. Lisawadi [19] early
introduced two distributions using the parametrization suggested by Ahmed et al. [16],
namely the two-sided Birnbaum–Saunders (TS-BS) and two-sided inverse Gaussian (TS-IG)
distributions. Subsequently, Simmachan et al. [20] presented an alternative distribution
applying the approach of Lisawadi [19] called two-sided length-biased inverse Gaussian
(TS-LBIG) distribution. However, all of the two-sided versions have no closed-form PDFs.
Important distributional properties such as a moment-generating function (MGF) and a
survival function cannot be presented.

This study aims to re-introduce the TS-LBIG distribution originally proposed by
Simmachan et al. [20] in closed-form expression. The reciprocal property is employed for
derivation of the MGF. The resulting MGF is compared to a known MGF. By uniqueness
property, the PDF of the TS-LBIG distribution can be obtained.

The rest of the article is organized as follows: a review of IG and LBIG distributions is
presented in Sections 2 and 3, respectively. The TS-LBIG random variable is described in
Section 4. Reciprocal properties are provided in Section 5. In this section, four propositions
are given. The MGF of TS-LBIG distribution is derived in Section 6. The PDF of TS-LBIG
in closed-form expression is introduced in Section 7. Other distributional properties are
established in Sections 8–11. Parameter estimation by the method of moment is provided
in Section 12. Numerical results consisting of a simulation study and real data application
are shown in Section 13. Finally, conclusions and discussion are reported in Section 14.

2. Inverse Gaussian Distribution

Chikara and Folk [21] studied the variables of the two-parameter inverse Gaussian
distribution which is the continuous probability distribution (0, ∞). Suppose X is a random
variable with an inverse Gaussian distribution. Consequently, a PDF can be written in
this formula:

f IG(x; µ, β) =


√

β
2π x−

3
2 exp

(
− β(x−µ)2

2µ2x

)
; x > 0

0 ; otherwise,
(3)
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where µ > 0 is a location parameter or a mean, and β > 0 is a shape or scale parameter.
The two parameters are called classical parameters. However, this research pays attention
for studying the re-parameterized version of IG distribution. The parametrization was
originally presented by Ahmed et al. [16] in the form of the Birnbaum–Saunders distribution
(BS). The BS distribution was combined from IG and LBIG distributions. Precisely,

fBS(x; λ, θ) =
1
2

f IG(x; λ, θ) +
1
2

fLBIG(x; λ, θ), (4)

where fBS, f IG and fLBIG are the PDFs of the Birnbaum–Saunders, inverse Gaussian and
length-biased inverse Gaussian distributions, respectively. The new form of the distribution
parameters (λ and θ) is called non-classical parameters, where λ > 0 and θ > 0 represent
the thickness of the machine element and nominal treatment pressure on the machine
element, respectively. The interrelations between (µ, β) and (λ, θ) are as follows.

λ =
β

µ
, θ =

µ2

β
, µ = λθ, and β = λ2θ. (5)

From Equations (3) and (5), the PDF of non-classical IG distribution, denoted as
f IG(λ, θ), can be written in this form:

f IG(x; λ, θ) =


λ

θ
√

2π

(
θ
x

) 3
2 exp

[
− 1

2

(√
x
θ − λ

√
θ
x

)2
]

; x > 0

0 ; otherwise.
(6)

3. Length-Biased Inverse Gaussian Distribution

By the definition of a length-biased distribution defined in Equation (2), the length-
biased inverse Gaussian distribution can be explained as follows. Let X be an inverse
Gaussian random variable with parameters λ and θ or X ∼ IG(λ, θ). The PDF of X is
denoted as fLBIG(λ, θ). As the relations between the classical parameters and non-classical
parameters, the expected value or the first moment of X is E[X] = µ = λθ. Therefore,
the length-biased version of X can be expressed as

fLBIG(x; λ, θ) =


1

θ
√

2π

(
θ
x

) 1
2 exp

[
− 1

2

(√
x
θ − λ

√
θ
x

)2
]

; x > 0

0 ; otherwise.
(7)

4. TS-LBIG Random Variable

In this section, the TS-LBIG random variable (τ) introduced by Simmachan et al. [20] is
described. Let X be a non-negative continuous random variable and let F(x) = FLBIG(x, λ, θ)
denote the distribution function of the breakdown time moment τ for one-sided loading.
The parameters λ and θ were previously defined. Let Y = k/τ be the random variable
denoted as a crack speed. Under the object consideration, a crack expands from two sides
with the same distribution function of the time to approach the length k. The random vari-
ables from both sides, τ1 and τ2, are supposed to be independent and identically distributed.
The crack speed for the two-sided situation is definded as

Y1 + Y2 =
k
τ1

+
k
τ2

= k
(

1
τ1

+
1
τ2

)
= X. (8)

The breakdown moment of the interested object is defined as the following
random variable

τ =
k

Y1 + Y2
=

k

k
(

1
τ1
+ 1

τ2

) =

[(
1
τ1

+
1
τ2

)]−1
=

1
X

. (9)
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5. Reciprocal Properties

Proposition 1. If the random variable τ > 0 has the probability density function fτ(x), then the
reciprocal random variable 1/τ has the probability density function f1/τ(x) = x−2 fτ(1/x).

Proof of Proposition 1. For the reciprocal random variable 1/τ, the distribution function
is given by

F1/τ(x) = P
(

1
τ
≤ x

)
= P

(
τ ≥ 1

x

)
= 1− P

(
τ ≤ 1

x

)
= 1− Fτ

(
1
x

)
,

and applying the chain rule, the density function is

f1/τ(x) = F
′
1/τ(x) = −F

′
τ

(
1
x

)
= −

[
fτ

(
1
x

)]
·
(
− 1

x2

)
= x−2 fτ

(
1
x

)
. �

Proposition 2. If random variable τ > 0 has LBIG(λ, θ) distribution, then the reciprocal random
variable 1/τ is IG[λ, 1/(λ2θ)] distributed.

Proof of Proposition 2. By Proposition 1,

f1/τ(x) = x−2 fLBIG

(
1
x

; λ, θ

)

=
x−2θ−1/2x1/2
√

2π
exp
{
−1

2

(
λθ1/2x1/2 − θ−1/2x−1/2

)2
}

=
x−3/2
√

2πθ
exp

{
−1

2

(
λ
√

θx− 1√
θx

)2
}

=
x−3/2
√

2πθ
exp

−1
2

(
λ

√
1/(λ2θ)

x
−
√

x
1/(λ2θ)

)2


=
λ(1/λ2θ)1/2
√

2π
x−3/2exp

−1
2

(
λ

√
1/(λ2θ)

x
−
√

x
1/(λ2θ)

)2


= f IG[x; λ, 1/(λ2θ)]. �

Proposition 3. If the random variable τ > 0 has IG(λ, θ) distribution, then the reciprocal random
variable 1/τ is LBIG[λ, 1/(λ2θ)] distributed.
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Proof of Proposition 3. By Proposition 1,

f1/τ(x) = x−2 f IG

(
1
x

; λ, θ

)

=
λθ2x−1/2
√

2π
exp
{
−1

2

(
λθ1/2x1/2 − θ−1/2x−1/2

)2
}

=
1√

2π(1/λ2θ)1/2
x−1/2exp

−1
2

(
λ

√
1/(λ2θ)

x
−
√

x
1/(λ2θ)

)2


= fLBIG[x; λ, 1/(λ2θ)]. �

Proposition 4. If the random variable τ > 0 has IG[2λ, 1/(λ2θ)] distribution, then the reciprocal
random variable 1/τ is LBIG[2λ, θ/4)] distributed.

Proof of Proposition 4. Applying Proposition 1,

f1/τ(x) = x−2 f IG

(
1
x

; 2λ, 1/(λ2θ)

)

=
2λ√

2π(λ2θ)1/2
x−1/2exp

{
−1

2

(
2λ(1/λ2θ)1/2x1/2 − (1/λ2θ)−1/2x−1/2

)2
}

=
2λ√

2π(λ2θ)1/2
x−1/2exp

−1
2

(
2λ

√
x

λ2θ
−
√

λ2θ

x

)2


=
(θ/4)1/2
√

2π
x−1/2exp

−1
2

(√
x

θ/4
− 2λ

√
θ/4

x

)2


= fLBIG[x; 2λ, θ/4]. �

6. Moment-Generating Function for TS-LBIG Distribution

Theorem 1. If the random variables τ1, τ2 ∼ LBIG(λ, θ), then the moment-generating function
of X = τ−1

1 + τ−1
2 is given as

MX(t) = exp

{
2λ

[
1−

√
1− 2t

λ2θ

]}
,

where 0 < t < λ2θ
2 .
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Proof of Theorem 1. We know that a moment-generating function (MGF) of IG(λ, θ) of a
random variable τ is defined as

ψIG(t) = Mτ(t) = exp
{

λ
[
1−
√

1− 2θt
]}
·

Now, we have two independent LBIG random variables τ1 and τ2. That is,

τ1 ∼ LBIG(λ, θ) and τ2 ∼ LBIG(λ, θ).

Initially, we find the MGF of the random variable X = τ−1
1 + τ−1

2 . According to
Proposition 2, if the random variable τ > 0 has LBIG(λ, θ) distribution, then the reciprocal
random variable 1/τ is IG[λ, 1/(λ2θ)] distributed. Therefore,

M 1
τ1
(t) = M 1

τ2
(t) = MIG(t) = exp

{
λ

[
1−

√
1− 2

(
1

λ2θ

)
t

]}
·

Hence,

MX(t) = E
(

etX
)

= E
(

et
(

1
τ1
+ 1

τ2

))

= E
(

e
t

τ1

)
E
(

e
t

τ2

)
= M 1

τ1
(t)×M 1

τ2
(t)

= exp

{
λ

[
1−

√
1− 2t

λ2θ

]}
× exp

{
λ

[
1−

√
1− 2t

λ2θ

]}

= exp

{
2λ

[
1−

√
1− 2t

λ2θ

]}
·

�

By uniqueness property, it is implied that X = τ−1
1 + τ−1

2 ∼ IG[2λ, 1/(λ2θ)].

Theorem 2. If a random variable Y ∼ TS-LBIG(λ, θ), the moment generating function of Y is
given as

MY(t) =
(

1− 2
(

θ

4

)
t
)−1/2

exp

{
2λ

[
1−

√
1− 2

(
θ

4

)
t

]}
·

Proof of Theorem 2. By Theorem 1, it is known that X ∼ IG[2λ, 1/(λ2θ)]. To find the
MGF of the TS-LBIG random variable Y, the reciprocal of X is considered. Let Y = 1/X =
[τ−1

1 + τ−1
2 ]−1. We know that a MGF of LBIG[λ, θ] distribution is defined as

MLBIG(t; λ, θ) = (1− 2θt)−1/2 exp
{

λ[1− (1− 2θt)1/2]
}

. (10)

According to Proposition 4, Y ∼ LBIG[2λ, θ/4]. Therefore, the moment-generating
function of Y is given by

MY(t) =
(

1− 2
(

θ

4

)
t
)−1/2

exp

{
2λ

[
1−

√
1− 2

(
θ

4

)
t

]}
·

�
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Most importantly, by uniqueness property, it is indicated that Y ∼ TS-LBIG(λ, θ) ∼
LBIG[2λ, θ/4].

7. The Probability Density Function of TS-LBIG Distribution

Theorem 3. Define X as a random variable of the TS-LBIG distribution. Then, the corresponding
probability density function (PDF) of X is given by

fTS-LBIG(x; λ, θ) =
2

θ
√

2π

(
θ

x

) 1
2

exp

−1
2

(
λ

√
θ

x
− 2
√

x
θ

)2
. (11)

Proof of Theorem 3. By Theorem 2, we know that TS-LBIG(λ, θ) ∼ LBIG[2λ, θ/4]. We
start with Equation (7), which is the original form of LBIG distribution, fLBIG(x; λ, θ).
Substituting Equation (7) by the parameter λ to be 2λ and θ to be θ/4, the probability
density function of the TS-LBIG distribution is

fTS-LBIG(x; λ, θ) = 1
θ
4

√
2π

(
θ
4
x

) 1
2

exp

[
− 1

2

(
2λ

√
θ
4
x −

√
x
θ
4

)2
]

= 4
θ
√

2π

(
θ

4x

) 1
2 exp

[
− 1

2

(
2λ
√

θ
4x −

√
4x
θ

)2
]

= 2
θ
√

2π

(
θ
x

) 1
2 exp

[
− 1

2

(
λ
√

θ
x − 2

√
x
θ

)2
]

.

(12)

�

Several shapes of the PDF for the TS-LBIG distribution are illustrated in Figures 1 and 2
for various parameter values. The different shapes indicate that the TS-LBIG distribution
is right-skewed and unimodal. Moreover, this distribution is a family of asymmetric
distributions which are useful for skewed data analysis.
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Figure 1. PDFs for the TS-LBIG distribution for several values of λ(lambda).
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Figure 2. PDFs for the TS-LBIG distribution for several values of θ(theta).

8. The Cumulative Density Function of TS-LBIG Distribution

Theorem 4. Let X be a random variable of the TS-LBIG distribution. The cumulative density
function (CDF) of X is given by

FTS-LBIG(x) = Φ

(
2
√

x
θ
− λ

√
θ

x

)
− exp(4λ)Φ

[
−
(

2
√

x
θ
+ λ

√
θ

x

)]
, (13)

where Φ(x) is the standard normal distribution function.

Proof of Theorem 4. The CDF of LBIG distribution is

FLBIG(x) = Φ

(√
x
θ
− λ

√
θ

x

)
− exp(2λ)Φ

[
−
(√

x
θ
+ λ

√
θ

x

)]
. (14)

Hence, the CDF of TS-LBIG is

FTS-LBIG(x) = Φ

√ x
θ
4

− 2λ

√
θ
4
x

− exp(4λ)Φ

−
√ x

θ
4

+ 2λ

√
θ
4
x

,

= Φ

(
2
√

x
θ
− λ

√
θ

x

)
− exp(4λ)Φ

[
−
(

2
√

x
θ
+ λ

√
θ

x

)]
, (15)

where Φ(x) is the standard normal distribution function. �

9. The Survival Function of TS-LBIG Distribution

Theorem 5. Let X be a random variable of the TS-LBIG distribution with parameters λ and θ.
The survival function of X is obtained as:

STS-LBIG(x) = 1−Φ

(
2
√

x
θ
− λ

√
θ

x

)
+ exp(4λ)Φ

[
−
(

2
√

x
θ
+ λ

√
θ

x

)]
, (16)

where Φ(x) is the standard normal distribution function.
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Proof of Theorem 5. Let X be a continuous random variable with a cumulative density
function F(x) on the interval [0, ∞). The survival function of X can be written in this form:

S(x) =
∫ ∞

x
f (t)dt = 1− F(x) (17)

Inserting Equation (13) into Equation (17) leads to the survival function of TS-LBIG distri-
bution in equation:

STS-LBIG(x) = 1−Φ

(
2
√

x
θ
− λ

√
θ

x

)
+ exp(4λ)Φ

[
−
(

2
√

x
θ
+ λ

√
θ

x

)]
, (18)

where Φ(x) is the standard normal distribution function. �

10. The Hazard Rate Function of TS-LBIG Distribution

Theorem 6. Let X be a random variable of the TS-LBIG distribution with parameters λ and θ.
The hazard rate function of X is given by

hTS-LBIG(x) =

2
θ
√

2π

(
θ
x

) 1
2 exp

[
− 1

2

(
λ
√

θ
x − 2

√
x
θ

)2
]

1−Φ
(

2
√

x
θ − λ

√
θ
x

)
+ exp(4λ)Φ

(
−
(

2
√

x
θ + λ

√
θ
x

)) , (19)

where Φ(x) is the standard normal distribution function.

Proof of Theorem 6. Let X be an absolutely continuous non-negative random variable
with the probability density function f (x) and the survival function S(x); then, the hazard
rate function of X can be defined as:

h(x) =
f (x)
S(x)

,

=

2
θ
√

2π

(
θ
x

) 1
2 exp

[
− 1

2

(
λ
√

θ
x − 2

√
x
θ

)2
]

1−Φ
(

2
√

x
θ − λ

√
θ
x

)
+ exp(4λ)Φ

(
−
(

2
√

x
θ + λ

√
θ
x

)) , (20)

where Φ(x) is the standard normal distribution function. �

11. The Mean and the Variance of TS-LBIG Distribution

From [22], let Y ∼ IG(x; λ, θ) and Z ∼ LB(x; λ, θ); then, the rth moment of Z for
r = 1, 2, 3, . . . is given by

E[Zr] =
1

λθ
E[Zr+1]. (21)

Hence, the first four raw moments of the LBIG distribution are

E[Z] = θ(λ + 1)
E[Z2] = θ2(λ2 + 3λ + 3)
E[Z3] = θ3(λ3 + 6λ2 + 15λ + 15)
E[Z4] = θ4(λ4 + 10λ3 + 45λ2 + 105λ + 105).

(22)

Let X ∼ TS-LBIG. Therefore, the first four raw moments of TS-LBIG distribution are
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E[X] = θ
4 (2λ + 1)

E[X2] =
(

θ
4

)2
(4λ2 + 6λ + 3)

E[X3] =
(

θ
4

)3
(8λ3 + 24λ2 + 30λ + 5)

E[X4] =
(

θ
4

)4
(16λ4 + 80λ3 + 180λ2 + 210λ + 105).

(23)

Therefore, the mean of TS-LBIG distribution is

E[X] =
θ

4
(2λ + 1), (24)

and the variance of TS-LBIG distribution is

Var(X) = E(X2)− [E(X)]2

= θ2

16 (4λ2 + 6λ + 3)−
[

θ2

16 (2λ + 1)2
]

= 4λ2θ2+6λθ2+3θ2

16 − 4λ2θ2+4λθ2+θ2

16
= 2λθ2+2θ2

16
= λθ2+θ2

8 .

(25)

12. Parameter Estimation by the Method of Moments for the TS-LBIG Distribution

Recall that the rth raw population moment is equal to the rth raw sample moment.

θ

4
(2λ + 1) =

1
n

n

∑
i=1

xi (26)(
θ

4

)2
(4λ2 + 6λ + 3) =

1
n

n

∑
i=1

x2
i (27)

From Equation (26) and letting x̄ = 1
n ∑n

i=1 xi, we obtain

θ
4 (2λ + 1) = x̄

2λθ + θ = 4x̄
2λθ = 4x̄− θ

λ̂ = 4x̄−θ
2θ .

(28)

Substituting Equation (28) into Equation (27) and letting T = 1
n ∑n

i=1 x2
i , we obtain

4( 4x̄−θ
2θ )

2
θ2+6( 4x̄−θ

2θ )
2
θ2+3θ2

16 = T
(4x̄−θ)2+3θ(4x̄−θ)+3θ2

16 = T
θ2 + 16x̄2 + 4θx̄ = 16T

θ2 + 4x̄θ + 16x̄2 − 16T = 0.

(29)

From ax2 + bx + c = 0

x =
−b±

√
b2 − 4ac

2a
, (30)

where a = 1, b = 4x̄, c = 16x̄2 − 16T = 16(x̄2 − T).

θ̂ =
−4x̄±

√
16x̄2 − 64(x̄2 − T)

2
. (31)
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Since θ̂ is positive parameter, hence

θ̂ =
−4x̄+
√

16x̄2−64(x̄2−T)
2

= −4x̄+4
√

x̄2−4x̄2+4T
2

= −2x̄ + 2
√
−3x̄2 + 4T

= 2
(√

4T − 3x̄2 − x̄
)

.

(32)

Next, substituting Equation (32) into Equation (28)

λ̂ =
4x̄− 2

(√
4T − 3x̄2 − x̄

)
4
(√

4T − 3x̄2 − x̄
) . (33)

13. Numerical Results
13.1. Simulation Study

In this section, the Monte Carlo simulation to test the performance of the suggested
estimators of the TS-LBIG distribution parameters is presented. Different values of the
true parameters are considered. All 60 scenarios are the combination of sample size
(n) = 10, 50 and 100, λ = 1, 3, 5 and 10, and θ = 0.5, 1, 3, 5 and 10. The proposed estimators,
λ̂ and θ̂, are compared to the estimators presented by Simmachan et al. [20], λ̃ and θ̃, via
bias, MSE and variance. The random numbers of the TS-LBIG distribution are generated via
the composition method using the “twoCrack” package [23] in R [24], and the replications
are repeated 1000 times in each scenario. The parameter estimates with their bias, MSE and
variance are reported in Tables 1–6. For easier consideration, bar charts are created and
presented in Figures 3 and 4. The blue and yellow bars represent the proposed method and
the method of Simmachan et al. [20], respectively. It reveals that the bias, MSE and variance
become smaller as the sample size increases and the estimates become closer to the true
value of parameters. For bias consideration, the estimators of λ give over-estimates for both
methods. The bias of the proposed estimator is slightly smaller than that of the original
estimator. On the other hand, the estimators of θ provide mostly under-estimates for both
methods. The bias of the proposed estimator is much smaller than that of the original
estimator. MSE and variance indicators have similar behavior. For parameter λ, the MSE
and variance of the proposed estimator are slightly smaller than those of the original
estimator. For parameter θ, however, the MSE and variance of the proposed estimator are
much smaller than those of the original estimator. Interestingly, the bias, MSE and variance
of the proposed estimators are superior to those of the estimators from the previous study.

Table 1. The average estimates, the bias, the mean squared errors, and the simulated variance of the
proposed estimators λ̂ and θ̂ for n = 10.

λ θ λ̂ θ̂ Bias (λ̂) Bias (θ̂) MSE (λ̂) MSE (θ̂) Var (λ̂) Var (θ̂)

1 0.5 1.722 0.430 0.722 −0.070 2.355 0.057 1.834 0.052
1 1.784 0.837 0.784 −0.163 2.120 0.251 1.505 0.224
3 1.716 2.534 0.716 −0.466 1.696 2.094 1.183 1.877
5 1.675 4.280 0.675 −0.720 1.649 5.289 1.193 4.770
10 1.682 8.615 0.682 −1.385 1.893 23.492 1.428 21.575

3 0.5 4.526 0.442 1.526 −0.058 12.504 0.052 10.174 0.049
1 4.881 0.838 1.881 −0.162 14.427 0.218 10.889 0.192
3 4.536 2.604 1.536 −0.396 9.135 1.940 6.775 1.783
5 4.587 4.361 1.587 −0.639 11.243 5.205 8.723 4.797
10 4.586 8.640 1.586 −1.360 9.841 22.347 7.325 20.498
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Table 1. Cont.

λ θ λ̂ θ̂ Bias (λ̂) Bias (θ̂) MSE (λ̂) MSE (θ̂) Var (λ̂) Var (θ̂)

5 0.5 7.504 0.451 2.504 −0.049 28.831 0.063 22.562 0.060
1 7.746 0.875 2.746 −0.125 40.752 0.220 33.211 0.205
3 7.519 2.657 2.519 −0.343 32.710 1.823 26.367 1.705
5 7.239 4.482 2.239 −0.518 22.589 4.973 17.575 4.705
10 7.498 8.666 2.498 −1.334 25.350 19.060 19.109 17.281

10 0.5 14.842 0.436 4.842 −0.064 100.511 0.051 77.067 0.047
1 14.325 0.887 4.325 −0.113 85.940 0.191 67.235 0.178
3 14.980 2.656 4.980 −0.344 154.657 1.975 129.858 1.857
5 15.466 4.376 5.466 −0.624 163.500 5.670 133.620 5.280
10 14.174 9.105 4.174 −0.895 106.910 18.675 89.488 17.873

Table 2. The average estimates, the bias, the mean squared errors, and the simulated variance of the
original estimators of λ̃ and θ̃ for n = 10.

λ θ λ̂ θ̂ Bias (λ̂) Bias (θ̂) MSE (λ̂) MSE (θ̂) Var (λ̂) Var (θ̂)

1 0.5 1.827 4.000 0.827 3.500 2.444 17.495 1.760 5.244
1 1.887 1.928 0.887 0.928 2.220 1.962 1.433 1.102
3 1.821 0.657 0.821 −2.343 1.790 5.616 1.117 0.125
5 1.781 0.397 0.781 −4.603 1.739 21.231 1.129 0.045
10 1.788 0.203 0.788 −9.797 1.980 95.986 1.359 0.012

3 0.5 4.581 0.654 1.581 0.154 12.573 0.130 10.074 0.107
1 4.933 0.310 1.933 −0.690 14.515 0.500 10.779 0.024
3 4.590 0.108 1.590 −2.892 9.210 8.368 6.682 0.003
5 4.641 0.065 1.641 −4.935 11.318 24.359 8.624 0.001
10 4.640 0.032 1.640 −9.968 9.917 99.354 7.229 0.000

5 0.5 7.541 0.262 2.541 −0.238 28.888 0.077 22.432 0.021
1 7.782 0.127 2.782 −0.873 40.821 0.767 33.081 0.004
3 7.555 0.043 2.555 −2.957 32.773 8.746 26.245 0.000
5 7.276 0.026 2.276 −4.974 22.650 24.745 17.470 0.000
10 7.534 0.012 2.534 −9.988 25.422 99.751 19.001 0.000

10 0.5 14.862 0.066 4.862 −0.434 100.579 0.189 76.944 0.001
1 14.345 0.034 4.345 −0.966 86.000 0.934 67.121 0.000
3 15.000 0.011 5.000 −2.989 154.718 8.933 129.720 0.000
5 15.486 0.007 5.486 −4.993 163.566 24.934 133.471 0.000
10 14.195 0.003 4.195 −9.997 106.960 99.931 89.366 0.000

Table 3. The average estimates, the bias, the mean squared errors, and the simulated variance of the
proposed estimators λ̂ and θ̂ for n = 50.

λ θ λ̂ θ̂ Bias (λ̂) Bias (θ̂) MSE (λ̂) MSE (θ̂) Var (λ̂) Var (θ̂)

1 0.5 1.130 0.485 0.130 −0.015 0.142 0.017 0.125 0.017
1 1.120 0.964 0.120 −0.036 0.127 0.058 0.113 0.057
3 1.141 2.886 0.141 −0.114 0.138 0.525 0.119 0.512
5 1.138 4.832 0.138 −0.168 0.150 1.627 0.131 1.599
10 1.143 9.580 0.143 −0.420 0.136 5.899 0.116 5.722
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Table 3. Cont.

λ θ λ̂ θ̂ Bias (λ̂) Bias (θ̂) MSE (λ̂) MSE (θ̂) Var (λ̂) Var (θ̂)

3 0.5 3.285 0.484 0.285 −0.016 0.705 0.012 0.623 0.012
1 3.251 0.979 0.251 −0.021 0.725 0.052 0.661 0.052
3 3.298 2.905 0.298 −0.095 0.743 0.469 0.654 0.460
5 3.295 4.822 0.295 −0.178 0.792 1.320 0.705 1.289
10 3.232 9.820 0.232 −0.180 0.677 5.197 0.623 5.165

5 0.5 5.393 0.488 0.393 −0.012 1.694 0.012 1.539 0.011
1 5.443 0.970 0.443 −0.030 1.873 0.050 1.677 0.049
3 5.404 2.926 0.404 −0.074 1.842 0.414 1.678 0.408
5 5.432 4.853 0.432 −0.147 1.758 1.177 1.571 1.156
10 5.403 9.724 0.403 −0.276 1.654 4.850 1.492 4.774

10 0.5 10.729 0.488 0.729 −0.012 6.058 0.011 5.527 0.010
1 10.667 0.983 0.667 −0.017 6.356 0.044 5.910 0.044
3 10.692 2.935 0.692 −0.065 5.969 0.372 5.490 0.368
5 10.809 4.841 0.809 −0.159 6.479 1.085 5.824 1.059
10 10.628 9.843 0.628 −0.157 5.947 4.176 5.553 4.151

Table 4. The average estimates, the bias, the mean squared errors, and the simulated variance of the
original estimators of λ̃ and θ̃ for n = 50.

λ θ λ̂ θ̂ Bias (λ̂) Bias (θ̂) MSE (λ̂) MSE (θ̂) Var (λ̂) Var (θ̂)

1 0.5 1.251 4.600 0.251 4.100 0.175 18.484 0.112 1.670
1 1.241 2.319 0.241 1.319 0.159 2.121 0.101 0.383
3 1.260 0.755 0.260 −2.245 0.174 5.082 0.106 0.040
5 1.258 0.458 0.258 −4.542 0.184 20.645 0.118 0.017
10 1.263 0.226 0.263 −9.774 0.173 95.541 0.104 0.003

3 0.5 3.346 0.721 0.346 0.221 0.726 0.076 0.607 0.028
1 3.312 0.365 0.312 −0.635 0.741 0.410 0.644 0.007
3 3.358 0.120 0.358 −2.880 0.765 8.297 0.637 0.001
5 3.355 0.073 0.355 −4.927 0.813 24.280 0.687 0.000
10 3.293 0.037 0.293 −9.963 0.692 99.267 0.606 0.000

5 0.5 5.433 0.281 0.433 −0.219 1.709 0.052 1.521 0.004
1 5.483 0.140 0.483 −0.860 1.891 0.741 1.658 0.001
3 5.445 0.047 0.445 −2.953 1.857 8.721 1.659 0.000
5 5.473 0.028 0.473 −4.972 1.776 24.721 1.553 0.000
10 5.444 0.014 0.444 −9.986 1.670 99.719 1.473 0.000

10 0.5 10.751 0.074 0.751 −0.426 6.072 0.182 5.508 0.000
1 10.690 0.037 0.690 −0.963 6.365 0.927 5.889 0.000
3 10.714 0.012 0.714 −2.988 5.981 8.926 5.471 0.000
5 10.831 0.007 0.831 −4.993 6.495 24.926 5.804 0.000
10 10.650 0.004 0.650 −9.996 5.956 99.925 5.534 0.000



Symmetry 2022, 14, 1965 14 of 17

Table 5. The average estimates, the bias, the mean squared errors, and the simulated variance of the
proposed estimators λ̂ and θ̂ for n = 100.

λ θ λ̂ θ̂ Bias (λ̂) Bias (θ̂) MSE (λ̂) MSE (θ̂) Var (λ̂) Var (θ̂)

1 0.5 1.064 0.495 0.064 −0.005 0.065 0.009 0.061 0.009
1 1.068 0.982 0.068 −0.018 0.064 0.032 0.059 0.032
3 1.064 2.951 0.064 −0.049 0.063 0.297 0.059 0.295
5 1.072 4.923 0.072 −0.077 0.063 0.875 0.058 0.869
10 1.072 9.843 0.072 −0.157 0.068 3.525 0.062 3.501

3 0.5 3.134 0.492 0.134 −0.008 0.308 0.006 0.290 0.006
1 3.145 0.983 0.145 −0.017 0.321 0.027 0.300 0.027
3 3.148 2.941 0.148 −0.059 0.301 0.218 0.279 0.214
5 3.113 4.969 0.113 −0.031 0.320 0.726 0.307 0.725
10 3.115 9.933 0.115 −0.067 0.329 2.863 0.316 2.858

5 0.5 5.200 0.493 0.200 −0.007 0.746 0.006 0.706 0.006
1 5.152 0.996 0.152 −0.004 0.747 0.024 0.724 0.024
3 5.233 2.950 0.233 −0.050 0.861 0.226 0.806 0.223
5 5.226 4.912 0.226 −0.088 0.760 0.613 0.709 0.606
10 5.238 9.807 0.238 −0.193 0.817 2.506 0.760 2.469

10 0.5 10.310 0.496 0.310 −0.004 2.513 0.005 2.416 0.005
1 10.402 0.984 0.402 −0.016 2.662 0.022 2.500 0.021
3 10.407 2.954 0.407 −0.046 2.832 0.205 2.666 0.203
5 10.336 4.948 0.336 −0.052 2.688 0.558 2.575 0.556
10 10.393 9.832 0.393 −0.168 2.532 2.165 2.377 2.136

Table 6. The average estimates, the bias, the mean squared errors, and the simulated variance of the
original estimators of λ̃ and θ̃ for n = 100.

λ θ λ̂ θ̂ Bias (λ̂) Bias (θ̂) MSE (λ̂) MSE (θ̂) Var (λ̂) Var (θ̂)

1 0.5 1.187 4.656 0.187 4.156 0.089 18.094 0.054 0.820
1 1.191 2.326 0.191 1.326 0.089 1.954 0.053 0.196
3 1.187 0.780 0.187 −2.220 0.087 4.953 0.052 0.024
5 1.194 0.462 0.194 −4.538 0.089 20.603 0.051 0.008
10 1.195 0.231 0.195 −9.769 0.093 95.427 0.055 0.002

3 0.5 3.195 0.736 0.195 0.236 0.319 0.071 0.281 0.015
1 3.206 0.367 0.206 −0.633 0.333 0.404 0.291 0.004
3 3.209 0.122 0.209 −2.878 0.315 8.284 0.271 0.000
5 3.175 0.074 0.175 −4.926 0.329 24.264 0.298 0.000
10 3.176 0.037 0.176 −9.963 0.338 99.260 0.307 0.000

5 0.5 5.241 0.284 0.241 −0.216 0.755 0.048 0.697 0.002
1 5.193 0.144 0.193 −0.856 0.752 0.734 0.714 0.001
3 5.274 0.047 0.274 −2.953 0.871 8.719 0.796 0.000
5 5.267 0.028 0.267 −4.972 0.771 24.718 0.700 0.000
10 5.278 0.014 0.278 −9.986 0.828 99.717 0.751 0.000

10 0.5 10.333 0.075 0.333 −0.425 2.518 0.180 2.407 0.000
1 10.424 0.037 0.424 −0.963 2.671 0.927 2.491 0.000
3 10.430 0.012 0.430 −2.988 2.841 8.925 2.656 0.000
5 10.359 0.008 0.359 −4.992 2.694 24.925 2.565 0.000
10 10.416 0.004 0.416 −9.996 2.541 99.925 2.368 0.000
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Figure 3. Bar chart for the bias of estimator λ(lambda) and θ(theta).
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13.2. Illustrative Examples

In this section, the suggested distribution is implemented via a real dataset. The follow-
ing data are collected from the BackBlaze data center [25], and they present the lifetime of
the hard drives (in days) containing only the model ST8000DM002 in December 2017: 490,
497, 521, 394, 489, 323, 376, 319, 431, 484, 547, 383, 534 and 316. This dataset was analyzed
by Chananet and Phaphan [26], and the result indicated that the lifetime of the hard drives
follow the right skewed distribution. Consequently, five right skewed distributions—two-
parameter crack [18], Birnbaum–Saunders [16], inverse Gaussian [17], length-biased inverse
Gaussian [17], and the proposed two-sided length-biased inverse Gaussian—are selected
for goodness of fit comparison. The parameters of the TS-LBIG distribution are estimated
by the suggested estimators. The parameters of other candidate distributions are estimated
via the maximum likelihood estimation. The “nlminb” function in R [24] is employed for
maximizing their likelihood functions. The Akaike information criterion (AIC) is used
as an assessment criterion; hence, the best model is the one that provides the minimum
AIC. As the result in Table 7 indicates, the TS-LBIG distribution gives the minimum AIC.
This indicates that the proposed distribution is the best of the candidate distributions
by considering at the value of AIC. Hence, by Equations (24) and (25), the average and
standard deviation of the lifetime of the hard drives are 436 and 80.15877 days, respectively.

Table 7. The MLE of the model parameters for the hard drive failure dataset, and AIC measure.

Fitting Dist.
Estimate Parameters

AIC
λ θ

TCR 110.9891 0.1000 13.39908

BS 0.001 0.100 67.6742

IG 0.001 0.001 93.44156

LBIG 26.79801 15.68458 9.106067

TS-LBIG 14.77663 57.08065 7.748027

14. Conclusions and Discussion

In this article, a new form of the TS-LBIG distribution is introduced, since the orig-
inal version offered by Simmachan et al. [20] does not present a closed-form PDF. This
distribution is a right-skewed distribution. Some distributional properties of this distribu-
tion were studied, and its two parameters were estimated using the method of moment.
Sixty combination scenarios are used to construct the simulation study in assessing the
performance of the proposed method. An application of the TS-LBIG distribution was
implemented in the lifetime of the hard drives. Results show that the proposed estimators
are more efficient than the Simmachan et al. [20] estimators. The original study dealing
with the indirect method of parameter estimation affects the parameter estimates far from
the true values, especially the parameter θ. This is different from the proposed estimators
that dealt with the direct method. The TS-LBIG distribution gives a better fit than the
other candidate distributions in terms of AIC. Our contribution provides an alternative
right-skewed distribution that can be applied in other aspects such as survival analysis
and forestry.

For the future directions of this work, other methods of parameter estimation could be
considered. Confidence intervals of the parameters could be also examined. Additionally,
the concept of the two-sided model could be extended to generate a new distribution.
Moreover, other applications of the TS-LBIG distribution should be applied.
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