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Abstract: In this paper, some fractional Leindler and Hardy-type inequalities and their reversed will
be proved by using integration by parts and Holder inequality on conformable fractional calculus. As
a special case, some classical integral inequalities will be obtained. Symmetrical properties play an
essential role in determining the correct methods to solve inequalities. The new fractional inequalities
in special cases yield some recent relevance, which also provide new estimates on inequalities of
these type.

Keywords: fractional Hardy’s inequality; conformable fractional integral; conformable fractional
derivative; Holder inequality

1. Introduction

The Hardy discrete inequality is known as

[e°]

2 %if(z) S<ni1>”ifn(s), n>1. 1)
s=1

s=1 i=1

where f; is a nonnegative sequence. Leindler, in [1,2], obtains some generalizations of the
inequality (1) by using a new weighted function. Specifically, Leindler, in [1], proved the
inequalities:

ilum kilfac) Sn"ilzﬂ"(r) kfu(k) (), @
and ; ;
L ue) (L) <w Epe( L) 16, 3

where n > 1 and u(s) > 0.
Copson in [3], established discrete new inequalities (see [4]). Particularly, one of them

is presented as
2| L fk)

n [e¢]
>n" Y (sf(s))", for0<n <1, 4)
s=1 \k=s s=1
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where {f;} is a nonnegative sequence. Leindler [2] proved the reverse of inequalities (2)
and (3). Particularly, he proved that

o

u(s)(if(k)) Zn”iul‘”(5)<iﬂ(k)> (), )
=1 k=1 s=1 k=s

S

and
o0

Y () (km f(k)> > " il;ﬂ"(s) (kz y(n)) £(s), ©)
—3 s= =1

s=1

where 0 < n < 1.

A fascinating variation of the inequalities of Hardy-Copson, was presented via Leindler [5].
Indeed, Leindler [5] extended the above-mentioned inequalities and demonstrated that if
Yo u(i) <oo,m>T1and 0 <k < 1, then

(9]

© u(s) (&) N .
s—;(qj( )k (EV(Of(z)) S(lk) Y ul(s)(¥(s)) kfn(s), @)

5 s=1

where ¥s = Y72 (i), if 1 < k < n, we find

= }l(S) = . . ! n n oo ko
; (¥ (s)) (i_zsy(l)f(l)> = <k1> S;u(s)(‘P(s» kfn(s). ®)

In recent years, a lot of work has been published for fractional inequalities, the subject has
become an active field of research, and several authors were interested in proving inequalities
of fractional type by using the Riemann-Liouville and Caputo derivative, see [6-8], for more
details about fractional-type inequalities.

In [9,10], the authors expanded fractional calculus to conformable calculus and gave a
new definition of the derivative with the base properties of the calculus based on the new
definition of derivatives and integrals. During the last few years, by using conformable
fractional calculus, authors proved some integral inequalities, such as Hardy’s inequal-
ity [11], Hermite-Hadamard’s inequality [12-17], Opial’s inequality [18,19], Steffensen’s
inequality [20], and Chebyshev’s inequality [21]. Additionally, over several decads, many
generalizations, extensions and refinements of other types of integral inequalities have
been studied we refer the reader to the papers [22-26].

The main question that arises now is: is it possible to prove new & conformable
fractional calculus. Therefore, it is natural to look at new fractional inequalities and give
an affirmative answer to the above question. In particular, in this paper, we will prove
the fractional forms of the Leindler and classical Hardy-type inequalities. The paper is
coordinated as: In Section 2, we discuss the preliminaries and basic concepts of conformable
fractional calculus, which will be required in proving our main Results. In Section 3,
we introduce some fractional Leindler inequalities with their extensions. In Section 4,
we demonstrate some reversed fractional Leindler inequalities with their extensions, in
addition to sections of Results and Discussion and Conclusions and Future Work.

2. Preliminaries and Basic Concepts

In this part, we show the basics of conformable fractional integral and derivative of
order a € (0, 1], that will be used in this paper (see [9,10]).

Definition 1. The conformable fractional derivative of order o of g : [0,00) — R, is defined by

Dag(x) — lim g(x +€x1—o¢) _g(x),

e—0 €

Vx>0, 0<wa <1, and Dog(0) = lim,_,g+ Dag(x).
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Assume a € (0,1], and g, h be a-differentiable at x, then

Dy (gh) = gDyh + hD,g, 9)
further if h(x) # 0, then
hDyg — gDyl
o) - 105 30 o

Remark 1. For a differentiable function g, then

d
Dag(x) = x17% ‘Z(xx)

Definition 2. The conformable fractional integral of order a of g : [0,00) — R, is defined by

X

Lg(x) = [ g(s)dos = [ s Tg(s)ds, (1)
Vx > 0and « € (0,1].

Lemma 1 (Integration by parts formula). Suppose the two functions u, v : [0,00) — R are
a-differentiable and o € (0, 1], then for any d > 0,

d d d
/O U(t)Dav(F)dat = u(t)v(t)|o—/0 () Dt (£)dat. (12)

Lemma 2 (Holder inequality). Let g, h: [0,00) — Rand 0 < a < 1.Then for any d > 0,

[ snoia < ( lsorae) ([ mora)” 03)

at 1/n+1/m = 1 (where existing the integrals).

The Hardy conformable fractional operator is defined as

Hf() = [ f0d, (14)

and its dual . -
Hf(x) = [ ft)dut (15)

Through our paper, we consider that the given integrals exist (are finite, i.e., convergent).

3. Fractional Leindler-Type Inequalities

Here, we will prove some fractional Leindler-type inequalities and their extensions for
a-differentiable functions and obtain the classical ones at & = 1.

Theorem 1. Ifn > 1and Q(y) := f;o 0(t)dqt, then

| 0@H )y <t [0 ) (1) )y (16)
Proof. Using the integration by parts Formula (12) on [;~ 6(y)H" f (y)day, with

u(y) = H"f(y), and v(y) = =¥ (y),
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we find that
J) 0 )y = —H @YW 0 [ HT ) 0H ) ¥ )y
= [Ty ) H F) T Gy -

where
H f(o0) < 00, H f(0) =0, ¥ (c0) =0and ¥(0) <

From (14), we obtain: /

Hf(y) =y""'fy).

Substituting into (17), we have

Jewr s =n [T f \Pﬁyf T H T f(y)day. (18)

n

Using Holder inequality (13) over the right part of (18) by indices n/(n — 1) and n,
then

PO O

n 1/n w1
n(/ow<f(y)‘f;£fl)> daV) (/Ooo((g(y))nn]Hnlf(y))ldaO B

thus

R AL R Wy

([Cowmsoy) >0

This leads to

| e H )y < [0 )Y ()" 1)y

which is the wanted inequality (16). O

1-1/n

as

then

Remark 2. If « =1, in Theorem 1, we obtain the inequality:

./:09(]/) (/(;yf(t)dtydy <" '/0'°° 0" (y) (/yoo(?(t)dt> "1 (y)dy. (19)

Remark 3. If 0(y) = 1/y", in Theorem 1, we obtain the inequality:

b (; /oyf(t)d“t) iy < <n - ,JC)n | () " (20)

which is the a-fractional Hardy inequality.
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Remark 4. As a result, if &« = 1 in (20), we obtain the classical Hardy inequality:

/( /f(tdt) dy<< )/f 1)

Theorem 2. If ®(y) := [ 6(t)dyt and n > 1, we find that
/O 0(y)H f(y)day < n" /O 01" ()" () f" (y)day- (22)

Proof. Using the integration by parts Formula (12) on fo vy f (y)day, with

u(y) = H f(y) and o(y) = (y),

we have
| ewH fwdw = H fow)|—n [Ty fH ey,
—n [ yl*“H FOH f) @)y, 3)
where

H f(00) =0, H f(0) < o0, ®(00) < 00 and ®(0) = 0.

From (15), we obtain /
H* f(y) = —y* " f ().

Substituting into (23), we have

;o ey = [ VS 0 T .

Using the Holder inequality (13) over the right part of (24) by indices nn/(n — 1) and n,
we find that

1/n
© Fy)o(y)
9()Hf()daé< ( ) )
Jy o ey < 7 ey )
x ( I <<9<y>>”r”H*”‘1f<y>) Hdw)

([ s} )

/(;m 0(y)H f(y)day < n" /Ooo 01" ()" (y) f" (y)day,

which is the wanted inequality (22). O

n—1
n

Then,

thus

Remark 5. If « =1, in Theorem 2, we achieve the inequality:

oo ([ sa) ay <o [Torn ([Towar) srwa e
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Remark 6. If 6(y) = 1, in Theorem 2, we arrive at the inequality:

L (nt) oy < (2)" [0 )", 26)

which is the a-fractional Hardy inequality.

Remark 7. Asaresult, if &« = 1, in (26), we obtain the Hardy inequality:

L7 rae) ay <o [ ar)as @)
Theorem 3. Ifn > 1and 0 < k < 1, then
® 0) \n n \" e 0y .

where

¥(y) = /ym 6(¢)dut and A(y) = /y O()F(£)dat.

0

Proof. Employing the formula of integration by parts (12) on fooo ‘ﬁk((yy)) A" (y)duy, with

1-k
u(y) = A"(y) and v(y) = _‘Yl 7(;/),

Dau(y) = ny'=“A" 1 (y)A'(y) and Dyo(y) = 0(y)¥ ¥ (y),

[00)

=00 pngey = M OYH)

© ny! A () A (y) ¥R (y)
1—k + /o

1—k Au-

0

we get

Ooo q?k((yy)) N'(ydey = 7 /Ow y AT )y e f ()Y () day,

hence

n—1

® ) an o =Y W) (6 N T e
0 ka(y)/\ (]/)doc]/ ] *k/o ( 9@)))”,—71 (‘-Ifk(y)) A 1(]/)d1x]/- (29)
Yr(y

Using the Holder inequality (13) over the right part of (29) by indices n/n — 1 and n,
we find that
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© 0y) \n
Jy ey N ey
< (e<y>w”<y>f<y>(§k(g’y>))"> day)
(00 ) )
><(/o ((Yk(y)> A l(y)> Aoy
(kg (6 o
o ([Tewr o) ([ gesar i)
So, we have
= 0(y) T (ko "
([ g wtia)” < ([ owe o)’
hence
g G(y) An( )d <( n )n/me( )‘I;n k( )fn()
o ¥y M ET=R)
which is the wanted inequality (28). O
Remark 8. If o =1, in Theorem 3, we obtain:
© 0y (¥ !
) (/O 9(t)f(t)dt> dy§< ) Tk TS (30)
where ¥ (y f 0(t)dt,0 <k <landn > 1.
Theorem 4. If n >k —1and 1 <k <n, then
© 0(Y) o n \" [ 0y)
0 lIfk(y>CD (]/)dﬂéyé (k—l) /0 kanw)f (y)da}// (31)

where

¥(y) = /;Q(t)datand ®(y) = /yme(t)f(t)dat.

Proof. Employing the formula of integration by parts (12) on fo

d> (y)day, with

\yk
1—k
u(y) = @"(y) and ofy) = — ),
also )
Dati(y) = ny' " “®" ()@ (y) and Dyo(y) = 0(y)¥ (),

we have

© 0(y) ., o)L et ()@ ()R (y)

0 Wy T WY = TR 0+/0 1—k An-

Byusing

®(00) = 0, D(0) < o0, ¥(c0) = 0, ¥(0) < 0, d (y) = —y* 6(y)f(y) and k > 1,
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and noting
B tLo() f(t) dt
lim ¥ 7 (y)®(y) = lim ~* I § E ! ,
Y Y (F(y) ™
~ lim —y“’l(i( )f ()
e Ly (y)) T lyrle(y)
) )
= jm, k—1 -0
we find,

Ooo ﬁlc(i/;) " (y)day < /Ooo y R )y ) f() Y ()day,

then

~ 0(y) n eV W) (0 \ T
0 Tk(y)q)(y)d“ygk—l/o (9(,,))""1 ( ) " Hy)day. (32
YE(y)

Using Holder inequality (13) over the right part of (32) by indices n/(n — 1) and n,

then
Y) o
0 Ty E (y)day,
< 0°° (9 ¥ y)f(y)(lﬁgé/;))_”) day)
()" e N
AL (35) 1<y>) dy|

- 1</ 0y ¥ (y) " (y)da )’1</()”j,f(yy))cp"<y>day)”l.

Therefore, we have

( ooo ‘I(jk((yy)) q’n(y)day)i < T ( /()OOG(y)‘I’"‘k(y)f"(y)day> ,

==

and hence

* G(y) n n n oo e "
o () T Y= (k—l) /O ()" (1) f" (v)duy,

which is the wanted inequality (31). O

Remark 9. From Theorem 4, we find that if y*~10(y) f (y) and y* 16 (y) are continuous on [0, c0)
exchanged either by:

G v 10W)f(y), y*16(y) is continuous on (0,00) and limy e (¥ (y)) fly) =0;
(i) limye ¥ (y) " (y) = 0;

then (31) is also true.
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Remark 10. If « = 1, in Theorem 4, we find:

ol ([Comswa) ar< () [T,

wherel <k < nand ¥(y) = f;o o(t)dt.

4. Reversed Fractional Leindler Inequalities

In this section, we will deduce some reversed fractional inequalities and some frac-
tional extensions.

Theorem 5. If ¥(y) := fyooe(t)datando <n<1,then

| O @)y = 0" [0 () (1) (). 4
Proof. Using the integration by parts Formula (12) on [~ 0(y)y" f (y)day, with

u(y) = H"f(y) and o(y) = —¥(y),

and we obtain

/:0 0()H" f(y)day = —H"fF(y)¥ (v) |5 + /Ow ny " H" L f(y)H f(y)¥ (y)dauy.

By usin
Y ® H f(c0) < 0o, H f(0) =0, ¥(c0) =0and ¥(0) < oo,

and from (14), we get
Hf(y) =y f(y),

so, we obtain

| O@H @y = n [y )y @)Y W),

then
1

/OOOG(y)H”f(y)day =n /OOO (M) ",

which can be reformed in the shape

([ owmsway) = ( / w(M)w) @)
Using Holder’s inequality

/Ooo g)h(y)duy < (/Ooo g (y)dw) ’ (/OOO hb(y)d,xy) g

witha=1/n,b=1/(1—-n),

) = Jig  and ) = 01 () 1 ),

we get
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(s~ (e ).

Jo 18WhW)lday = ¥" (1) (y) g1

T ()

: (/ooo (6" H () ) ll"day)n_l,

then

(y)H" = £ (y)duy

([ (Bt ) = ([ o)
x (/()W(G(y)H”f(y))day)nl-
Substituting (37) into (35), we obtain

*© n " n fooo ¥ (y) " (]/)Glin(y)dtxy
O(y)H"f(y)day ) > -,
([ owssway) = (=0 H £ (1)) day) "

Thus
| 0@ Fday =0 [0 ) ) W)y,

which is the wanted inequality (34). O

Remark 11. If « = 1, in Theorem 5, we get the inequality:

n

/ooo 0(y) </oyf (t)df> gz /000 o) </y°° o) dt) Jrdy

Remark 12. If 6(y) = 1/y" and n > «, in Theorem 5, we get the inequality:

I (foyf ;t)d“t> > (n - a) n | ()

which is the fractional reversed Hardy inequality.

Remark 13. If o = 1in (39), we get the reversed Hardy inequality:

/00o <f°yfy(t)dt>ndy > (n - 1)n /Ooof”(y)dy-

Theorem 6. If 0 < n < 1and ®(y) := OyG(t)dat, then

|0 fday =0 [0 @)@ (1) (1) dy.

(36)

(37)

(38)

(39)

(40)

(41)

Proof. Employing the formula of integration by parts (12) on [;° G(y)y*n f(y)dyy, with

u(y) = H' f(y) and v(y) = O(y),
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we obtain

[e0)

ey fiy = 5 @] = [Tt H fH f) ey,

0

Since
H f(o0) = 0, H f(0) < o0, D(c0) < co and (0) = 0,

and from (15), we find that
H ' f(y) =~y f ),
so - . - o
| 0WH fday =n [Ty HT f@) @)y,

then )

o [ Pn n "

Ji e ey = [ o

0

which can be reformed in the shape

(/{;oo G(y)H*nf(y)d,xy)n =n" (/:o (M) nday) : (42)

Similar to the proof of Theorem 5, we obtain

/ooo 0(y)H f(y)day > n" /00o 0" ()" (y) f" (y)day,

which is the wanted inequality (41). O

Remark 14. If a« =1, in Theorem 6, we find:

[Tow ([ sa) ay = [Tor([fowar) s @

Remark 15. If 6(y) = 1and n > w, in Theorem 6, we find:

(7 pwdat) day = () [ )
Jo \Jy Jo

since (n/a)" > 1, then

/OOO ( /yoof (t)dfxt>nday > /Ooo(y”‘f (v))"day, (44)

which is the fractional reversed Hardy inequality.

Remark 16. If « = 1in (44), we have the reversed Hardy inequality:

/OOO (/yoof(t)df) ndy > /Ooo(yf(y))”dy- (45)

Theorem 7. If k <0 <n <1, then

> 0(y)
0o Y&(y)

O (y)day = <1f k) /0 ) T’?_(y ()y)f”(y)day, (46)
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where
o0

¥(y) = /y 6(t)dut and Q(y) = /Oy 0() ()t

Proof. Employing the formula of integration by parts (12) on fooo ;,’k((yy)) O"(y)dyy, with

u(y) = Q"(y)¥ *(y) and o(y) = —¥(y),

where

then

[e0]

* 0(y) Q" (y)day = —‘Iflfk(y)Qn(y)‘

0 ¥k(y) 0

[Ty (n0 )0 )R ) )Y 1) ¥ )y

Since
Q'(y) =y W) f(y), ¥ (y) = —y* 10(y), Q(o0) < 00, Q(0) =0, ¥(0) < o0 and ¥(0) = 0.
We find that
© 0(Y) ~n _
0 ‘I’k(]/)Q W)dey =
[ oY 0" ) +k [T,
Then
®© 09 " o0 -~ n—1
0 \Pk((yy))ﬂ W)y = 7 /O 0 WO Q" (v)day,

which can be reformed in the shape

(F sigporunma) = (+5) (/000 (W<f)<(yy>){§ggl>”n)(y));day> "_

Using Holder’s inequality

/Ooo g(y)h(y)day < ( /0 ) g”(y)day> : < /0 N hb(y)d“y> !,

witha =1/nand b =1/(1 — n) where

_ W) f(y)" _( 8y = aew
g(y)—,{,n(k,l)(y)m(l,n)(y) andh(y)—< ) Q (y),

we have
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°° G(y )" 0(y) \'" o
/oqul)(y ,y)<1¥k(y)) Q (y)duy

()

thus
(Aw(w“éﬁéiggluw)i%”)nz(Awigmﬁ?dw>
([ (o)
then
(. . ﬁk(?;) 0”(y)day)n > (1 - k>n ( A Qéi)fn(;y)) dw)
([ (oo™
Hence,

© 0(Y) An n \" 0y y)
; Tk(y)Q (y)day2< > /0 duy,

which the wanted inequality (46). O

Remark 17. If « =1, in Theorem 7, we obtain:

° 9(y) < / y n
o) dy> (1) [ gt
o i) U MO ) 7
where ¥ (y f O(t)dtandk <0 <n < 1.
Theorem 8. Ifn <k—1and0 <n <1 <k, then
© 6y < n )"/‘” 0(y) o
D" > duy,
o Wiy VW= mT) e O
where - .
Y(y) = / 0(t)dut and (y) = / 0(1) f()dat.
y y
Proof. Employing the formula of integration by parts (12) on fooo ‘gk(](vy)) D" (y)dyy, with

1-k
u(y) = ®"(y) and v(y) = _‘I’l _(ky),

(47)

(48)
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then
Dau(y) = ny'=*®@"~1(y)@ (y) and Dyo(y) = 0(y)¥ ¥ (y).
We find that
© 8(y) ., " (y) ¥ K (y) [~
" (Y)dyy = ——2 =)
00 1—zxq>n—1 o' ‘Fl_k
L /0 ny (y)_ WY W)y
Since

!

@ (y) = —y* 0(y) f(y), ®(c0) = 0, ®(0) < 00, ¥(c0) =0, ¥(0) < ccand k > 1,

and noting that

y—ree nf(y)
We find that
~ G(V) n n o 1— 1 1 -
P y)day < " (y)yt e 1K (y)d,y.
Wy < |y W)y 0) (1) ¥ (1) day
Then
* 0 y) L0t
IX - T le y
0 (y —1/ (y)day

which can be reformed in the shape

(f ety ) = () (fom <‘If"<k(f>(<yy)>f<r§z<)l)nﬂ><y> ) id“y) |

Using Holder’s inequality

witha=1/n,b=1/(1-n),

_ OW)f(y)" _ (9 =1 aw
g(y)—w(kq)(y)@n(m)(y) and h(y)—< ) > ()

then
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VRS
S
3
oQ
R,
S
[
=
<
N——
3
I
-~

o0 Oy f(y)" AN
/O (‘Im(kl)(y)q)n(ln)(y)) dﬂéy) ’

since, we have

([ o) = (c23) ([ (St o)

Since
(F sewm) = () (f ¥eg7as)
(o)
Hence

© 0(Y) n n \" ey (y)
0= (g) o

which is the desired inequality (48). [

Remark 18. In Theorem 8, we get that if y*~10(y) f(y) and y*~18(y) is continuous on [0, c0)
replaced either by:

—
—

G v 10()f(y), y*10(y) is continuous on (0, 00) and limy_eo *w)
(i) limyeo Y17 *(y)@" (y) = 0;
then (48) is also true.

Remark 19. If a« = 1, in Theorem 8, we obtain the inequality:

o (o) ar= (1) [T w6

where ¥ (y) = fyoo O(t)dtand 0 <n <1<k
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5. Results and Discussion

It is great to take a look at the obtained number of new Leindler and Hardy-type
inequalities by the utilization of the conformable factional calculus. We generalize a
number of those inequalities to a general fractional form, and also get the a-fractional
Hardy inequality:

LG <*W>ndw < (2 ) L ()

as a result, if « = 1 we obtain the classical Hardy inequality:

LG o) w< (55) [T rwa

Furthermore, we also get the inequality:

A (/;f Wwf)ndw < (&) [T s day,

which is the a-fractional Hardy inequality, and as a result, if « = 1, we get the Hardy inequality:

/Ooo (/wa(t)dt>ndy <n" /Ooo(yf(y))”dy

In addition to this, we also extend our reversed inequalities to the fractional shape.

6. Conclusions and Future Work

In this study, we established certain fractional inequalities of Leindler’s type by
employing the conformable fractional calculus. The technique is based on the applications
of well-known inequalities and new tools from conformable fractional calculus. The results
established in this paper give some contribution in the field of fractional calculus and
fractional inequalities of Leindler’ type. From these results, some work directions remain
open, for example:

e  Extending these results to other types of integral fractional operators, which contains
as particular cases many of those reported in the literature.

*  Obtain new results for other well-known inequalities, such as Opial, Hilbert, Copson,
among others.
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