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Abstract: In this paper, a three-parameter subspace conjugate gradient method is proposed for solving
large-scale unconstrained optimization problems. By minimizing the quadratic approximate model
of the objective function on a new special three-dimensional subspace, the embedded parameters
are determined and the corresponding algorithm is obtained. The global convergence result of a
given method for general nonlinear functions is established under mild assumptions. In numerical
experiments, the proposed algorithm is compared with SMCG_NLS and SMCG_Conic, which shows
that the given algorithm is robust and efficient.
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1. Introduction

The conjugate gradient method is one of the most important methods used for solving
large-scale unconstrained problems, because of its simple structure, lower computation,
storage, fast convergence, etc. The general unconstrained optimization problem is as fol-
lows:

min
x∈Rn

f (x), (1)

where f : Rn → R is continuously differentiable. The function value of f (x) at xk is denoted
as fk, and its gradient is expressed as gk. Let αk be the step size; we have the following
iteration form for conjugate gradient method:

xk+1 = xk + αkdk, k ≥ 0, (2)

where dk is the search direction, which has the form of

dk+1 =

{
−gk+1, if k = 0,
−gk+1 + βkdk, if k ≥ 1,

(3)

where βk ∈ R, referred to as the conjugate parameter. For different selections of βk, there
are several well-known nonlinear conjugate gradient methods [1–6]:

βHS
k =

gT
k+1yk

dT
k yk

, βFR
k =

‖gk+1‖2

‖gk‖2 , βPRP
k =

gT
k+1yk

‖gk‖2 ,

βDY
k =

‖gk+1‖2

dT
k gk

, βLS
k =

gT
k+1yk

−dT
k gk

, βCD
k =

‖gk+1‖2

−dT
k gk

,
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where ‖ · ‖ represents the Euclidean norm, and yk = gk+1 − gk.
The step size αk can be obtained in different ways. Zhang and Hager [7] proposed an

effective non-monotone Wolfe line search as follows:

f (xk + αkdk) ≤ Ck + δαkgT
k dk, (4)

gT
k+1dk ≥ σgT

k dk. (5)

The Ck in the formula (4) is the convex combination of f0, f1, · · · , fk. 0 < δ < σ <
1, C0 = f0, Q0 = 1, Ck+1 and Qk+1 are updated by the following rule:

Ck+1 =
ηkQkCk + fk+1

Qk+1
, Qk+1 = ηkQk + 1. (6)

where 0 ≤ ηmin ≤ ηk ≤ ηmax ≤ 1.
The generalized non-monotone line search in [8] is composed of formula (5) and

f (xk + αkdk) ≤ f (xk + αkdk) + ηk + δαkgT
k dk, (7)

where 0 < δ < σ < 1, and

ηk =

{
0, if k = 0,
min

{
1

(k lg(k/n+12) , Ck − f (xk)
}

, if k ≥ 1.
(8)

For large-scaled optimization problems, some researchers have been looking for more
efficient algorithms. In 1995, Yuan and Stoer [9] first proposed the method of embedding
subspace technology into the conjugate gradient algorithm framework, namely the two-
dimensional subspace minimization conjugate gradient method (SMCG for short). The
search direction is calculated by minimizing the quadratic approximation model on the
two-dimensional subspace Ωk+1 = Span{gk+1, sk}, namely

dk+1 = µkgk+1 + νksk,

where µk and νk are parameters, and sk = xk+1 − xk. Analogously, the calculation of the
search direction is directly extended to Span{gk+1, sk, sk−1}. By this way, we can avoid
solving the sub-problem in the total space, which can reduce the computation and storage
cost immensely.

Inspired by SMCG, some researchers began to investigate the algorithm of the con-
jugate gradient method combined with subspace technology. Dai et al. [10] focused
on the analysis of the subspace minimization conjugate gradient method proposed by
Yuan and Stoer [9] and integrated SMCG with Barzilai–Borwein [11], a new Barzilai–
Borwein conjugate gradient method (BBCG for short) was proposed. In the subspace
Ωk+1 = Span{gk+1, sk}, Li et al. [12] discussed the case where the search direction was
generated by minimizing the conic model when the non-quadratic state of the objec-
tive function was stronger. Wang et al. [13] changed the conic model of [12] into the
tensor model. Zhao et al. [14] discussed the case of regularization model. Andrei [15]
further expanded the search direction, developed it into a three-dimensional subspace
Ωk+1 = Span{−gk+1, sk, yk}, and proposed a new SMCG method (TTS). Inspired by An-
drei, Yang et al. [16] carried out a similar study. They applied the subspace minimization
technique to another special three-dimensional subspace Ωk+1 = Span{gk+1, sk, sk−1}, and
obtained a new SMCG method (STT). On the same subspace, Li et al. [17] further studied
Yang’s results, analyzed the more complex three parameters, and proposed a new subspace
minimization conjugate gradient method (SMCG_NLS). Yao et al. [18] proposed a new
three-dimensional subspace Ωk+1 = Span{gk+1, sk, gk} and obtained the TCGS method by
using the modified secant equation.
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According to [19], it can be seen that the key to embedding subspace technology
into the conjugate gradient method is to construct an appropriate subspace, select an
approximate model, and estimate the terms of the Hessian matrix. The subspace Ωk+1 =
Span{−gk+1, sk, yk} contains the gradient of the two iteration points. If the difference
between the two gradient points is too large, the direction of the gradient change yk and
its value will be affected. We consider making appropriate corrections to the gradient
changes of the two iteration points, and then combine the current iteration point gradient
with the previous search direction to form a new three-dimensional subspace, and whether
this subspace is valuable for research. This paper is taking its as the breakthrough point
for research.

In this paper, to avoid the situation in which the changes of the gradient yk = gk+1− gk
dominate the subspace Span{gk+1, dk, yk}, inspired by [20], we construct a similar subspace
Ωk+1 = Span{gk+1, sk, y∗k} in which y∗k = gk+1 −

‖gk+1‖
‖gk‖

gk, and then, by solving the optimal
solution of an approximate model of the objective function in the given subspace to gain
the corresponding parameters and algorithm. It can be shown that the obtained method is
a global convergent and has nice numerical performance.

The rest of this paper is organized as follows: in Section 2, the search direction
constructed on a new special three-dimensional subspace Ωk+1 is presented, and the esti-
mations of matrix-vector production are given. In Section 3, The proposed algorithm and
its properties under two necessary assumptions are described in detail. In Section 4, we
establish the global convergence of our proposed algorithm under mild conditions. In Sec-
tion 5, we compare the proposed method numerically with algorithms SMCG_NLS [17] and
SMCG_Conic [12]. Finally, in Section 6, we conclude this paper and highlight future work.

2. Search Direction and Step Size

The main content of this section is to introduce four search direction models and the
selections of initial step sizes on the newly spanned three-dimensional subspace.

2.1. Direction Choice Model

Inspired by [20], in this paper, the gradient change yk = gk+1 − gk is replaced by
y∗k = gk+1 −

‖gk+1‖
‖gk‖

gk. Then, the search directions are constructed in the three-dimensional
subspace Ωk+1 = Span{gk+1, sk, y∗k}.

From [10], we know that the approximate model used plays two roles: one is to
approximate the original objective function in the subspace Ωk+1; the other one is to
make the search direction dk+1 obtained by the approximate model descend, so that the
original objective function declines along this direction. On our proposed subspace Ωk+1 =
Span{gk+1, sk, y∗k}, we consider the approximate model of the objective function as

min
d∈Ωk+1

φk+1(d) = gT
k+1d +

1
2

dT Bk+1d, (9)

where Bk+1 is a symmetric positive definite approximation matrix of the Hessian matrix,
satisfying Bk+1sk = yk.

Obviously, there are three dimensions in the subspace Ωk+1 = Span{gk+1, sk, y∗k} that
we are considering.

Situation I: dim(Ωk+1) = 3.
When the dimension is 3, it is easy to know that gk+1, sk, y∗k are not collinear. The

form of the search direction is of the following form

dk+1 = µkgk+1 + νksk + γky∗k , (10)

where µk, νk and γk are undetermined parameters. Substituting (10) into (9) and simplify-
ing, we have
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min
(µ,ν,γ)


 ‖gk+1‖2

gT
k+1sk

gT
k+1y∗k

T µ
ν
γ

+
1
2

 µ
ν
γ

T ρk+1 gT
k+1yk wk

gT
k+1yk sT

k yk yT
k y∗k

wk yT
k y∗k $k

 µ
ν
γ


, (11)

where ρk+1 = gT
k+1Bk+1gk+1, $k = gT

k+1Bk+1y∗k , wk = (y∗k )
T Bk+1y∗k . Set

Dk+1 =

 ρk+1 gT
k+1yk wk

gT
k+1yk sT

k yk yT
k y∗k

wk yT
k y∗k $k

.

Thus, (11) can be summarized as

min
(µ,ν,γ)


 ‖gk+1‖2

gT
k+1sk

gT
k+1y∗k

T µ
ν
γ

+
1
2

 µ
ν
γ

T

Dk+1

 µ
ν
γ


.

Under some mild conditions, we can prove that Dk+1 is positive definite, which will
be discussed in Lemma 1. When Dk+1 is positive definite, by calculation and simplification,
the only solution of (11) is µk

νk
γk

 = − 1
4k+1

 χ θ1 θ2
θ1 θ θ3
θ2 θ3 ω

 ‖gk+1‖2

gT
k+1sk

gT
k+1y∗k

, (12)

where

4k+1 = |Dk+1| = ρk+1χ + wkθ2 + gT
k+1ykθ1,

χ = $k(sT
k yk)− (yT

k y∗k )
2,

ω = ρk+1(sT
k yk)− (gT

k+1yk)
2,

θ1 = wk(yT
k y∗k )− $k(gT

k+1yk),

θ = $kρk+1 − w2
k ,

θ2 = (yT
k y∗k )(gT

k+1yk)− wk(sT
k yk),

θ3 = wk(gT
k+1yk)− ρk+1(yT

k y∗k ).

In order to avoid the matrix-vector multiplication, we need to estimate ρk+1, $k and
wk. Before estimating ρk+1, we first estimate $k, wk.

For $k, we get

$k = (y∗k )
T Bk+1y∗k

=

(
(y∗k )

T Bk+1y∗k sT
k Bk+1sk

((y∗k )
T Bk+1sk)2

)(
((y∗k )

T Bk+1sk)
2

sT
k Bk+1sk

)

=

∥∥∥∥B
1
2
k+1yk

∥∥∥∥2∥∥∥∥B
1
2
k+1sk

∥∥∥∥2

((
B

1
2
k+1y∗k

)T(
B

1
2
k+1sk

))2
(yT

k y∗k )
2

sT
k yk

=
1

cos2
〈

B
1
2
k+1y∗k , B

1
2
k+1sk

〉 (yT
k y∗k )

2

sT
k yk

.
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Based on the analysis of [9], cos2
〈

B
1
2
k+1y∗k , B

1
2
k+1sk

〉
is desirable, which shows that $k

can have the following estimation:

$k = 2
(yT

k y∗k )
2

sT
k yk

. (13)

which also means that
$ksT

k yk − (yT
k y∗k )

2 = (yT
k y∗k )

2.

In order for the experiment to have a better numerical effect, we amended $k as

$k =
(yT

k y∗k )
2

sT
k yk

+ λk, (14)

where

λk = max

{
(yT

k y∗k )
2

sT
k yk

, 0.1‖y∗k‖
2

}
.

Obviously, $0 > 0. Consider the following matrix,(
sT

k yk yT
k y∗k

yT
k y∗k $k

)
. (15)

From (13) and $0 > 0, it can be known that the sub-matrix (15) is positive definite,
inspired by the BBCG method [11], for wk, we take

wk = ζk
gT

k+1y∗k‖yk‖2

sT
k yk

, (16)

where

ζk =

{
max{0.9ζk−1, 1.2}, if αk > 1,
min{1.1ζk−1, 1.75}, otherwise,

(17)

where ζ0 = 1.5, ζk ∈ [1.2, 1.75).
Now, we estimate ρk+1. Since Dk+1 is positive definite, it is easy to know ∆k+1 > 0,

therefore

ρk+1 ≥
−wkθ2 − gT

k+1ykθ1

χ
. (18)

Note that the right-hand side of (18) is nk. Combining with (12), (14) and (16), we have

nk =
1

mk

(
w2

k
$k

+
(gT

k+1yk)
2

sT
k yk

−
2wk(gT

k+1yk)(yT
k y∗k )

$k(sT
k yk)

)
, with mk = 1−

(yT
k y∗k )

2

$k(sT
k yk)

. (19)

According to (14), we know that mk ≥ 1/2.
In order to ensure that (18) holds, we estimate the parameter ρk+1 by taking

ρk+1 = ζk max{nk, K}, (20)

where K = K1‖gk+1‖2, K1 = max
{
‖yk‖2

sT
k yk

, 4‖yk‖4‖y∗k‖
2

$k(sT
k yk)2

}
, and ρ0 ∈ (0, 1). Through the

debugging of the algorithm, we find that the numerical experiment effect of ζk using the
adaptive value of (17) is better than that of ζk with a fixed value, so ζk also uses (17).

In summary, we find that when the following conditions are satisfied, the search
direction dk+1 is calculated by (10) and (12).
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ξ3 ≤
‖sk‖2

‖gk+1‖2 , (21)

ξ1 ≤
sT

k yk

‖sk‖2 ≤
‖yk‖2

sT
k yk

≤ ξ2, (22)

ξ1 ≤
$k
‖y∗k‖2 ,

4‖yk‖4‖y∗k‖
2

$k(sT
k yk)2

≤ ξ2, (23)

where ξ1, ξ2, ξ3 are positive constants.
Now, let us prove that Dk+1 is positive definite.

Lemma 1. Assuming that the conditions (21)–(23) hold, and ρk+1 is calculated by (20), the matrix
Dk+1 in (10) is positive definite.

Proof of Lemma 1. Using mathematical induction, it is easy to know ρ0 ∈ (0, 1), ρk+1 ≥
ξkK > 0 from (18); for ρk+1 >

‖gk+1‖2‖yk‖2

sT
k yk

, therefore

4k+1 = |Dk+1| = ρk+1χ + wkθ2 + gT
k+1ykθ1 > 0.

So the proof is over.

Situation II: dim(Ωk+1) = 2.
In this case, the form of the search direction dk+1 is as follows:

dk+1 = µkgk+1 + νksk, (24)

where µk, νk are undetermined parameters. Substituting (24) into (9), we get

min
(µ,ν)

{(
‖gk+1‖2

gT
k+1sk

)T(
µ
ν

)
+

1
2

(
µ
ν

)T(
ρk+1 gT

k+1yk
gT

k+1yk sT
k yk

)(
µ
ν

)}
. (25)

where ρk+1 = gT
k+1Bk+1gk+1, if it satisfies

4k+1 = ρk+1(sT
k yk)− (gT

k+1yk)
2 > 0.

Then the unique solution of the problem (25) is(
µk
νk

)
=

1
4k+1

(
(gT

k+1yk)(gT
k+1sk)− (sT

k yk)‖gk+1‖2

(gT
k+1yk)‖gk+1‖2 − ρk+1(gT

k+1sk)

)
. (26)

Combined with BBCG, there is

ρk+1 = ζk
‖gk+1‖2‖yk‖2

sT
k yk

, (27)

where ζk in (27) is the same as (17).
Obviously, under certain conditions, the HS direction can be regarded as a special case

of formula (24). Taking into account the finite termination of the HS method, in order to
make our algorithm have good properties, when the following conditions hold,

ξ1 ≤
sT

k yk

‖sk‖2 , (28)

|gT
k+1ykgT

k+1dk|
dT

k yk‖gk+1‖2
≤ ξ4, (29)
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where ξ4 ∈ [0, 1). We consider

dk+1 = −gk+1 + βkdk. (30)

In summary, for the case where the dimension of the subspace is 2; if only condition (22)
is true, dk+1 is calculated by (24). When inequalities (28) and (29) hold, dk+1 is calculated
from (30).

According to the above analysis, dk+1 is calculated by (24) when only condition (22) is
true for the case of the 2-subspace dimension. When conditions (28) and (29) hold, dk+1 is
calculated by (30).

Situation III: dim(Ωk+1) = 1.
When all conditions (21), (22), and (23) are not valid, we choose the negative gradient

as the search direction, i.e.,
dk+1 = −gk+1. (31)

2.2. Selection of Initial Step Size

Considering that the selections of initial step sizes will also have an impact on the
algorithm, we choose the initial step size selection method of SMCG_NLS [17], which is
also a subspace algorithm.

According to [21], we know that

tk =

∣∣∣∣∣∣
2
(

fk − fk+1 + gT
k+1sk

)
sT

k yk
− 1

∣∣∣∣∣∣, (32)

which indicates how close the objective function is to the quadratic function on the line
segment formed between the current iteration point and the previous iteration point. Based
on [22], we know that the following condition indicates that the objective function is close
to a quadratic function:

tk ≤ λ1 or max{tk, tk−1} ≤ λ2, (33)

where 0 < λ1 < λ2.
Case I: when the search direction is calculated by Equations (10), or (24) or (30), the

initial step size is α
(0)
k = 1.

Case II: when dk+1 = −gk+1, the initial step size is

α̃k =

{
max{min{α(BB2)

k , ϑmax}, ϑmin}, if gT
k+1sk ≥ 0,

max{min{α(BB1)
k , ϑmax}, ϑmin}, if gT

k+1sk < 0,
(34)

where α
(BB1)
k = ‖sk‖2

sT
k yk

, α
(BB2)
k =

sT
k yk
‖yk‖2 .

3. The Obtained Algorithm and Descent Property

This section describes the obtained algorithm and its descending properties under two
necessary assumptions in detail.

3.1. The Obtained Algorithm

The main content of this section is to introduce our proposed algorithm and give two
necessary assumptions. Before introducing the algorithm, we first introduce the restart
method we use to restart the proposed algorithm, and then describe the proposed algorithm
in detail.

According to [23], set
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rk =
2( fk+1 − fk)

gT
k+1sk + gT

k sk
,

If rk is close to 1, then the one-dimensional line search function is close to the quadratic
function. Similar to [21], if in multiple consecutive iterations, |rk − 1| ≤ ξ5, we restart
the search direction along −gk+1. In addition, we restart our algorithm if the number of
consecutive uses of CG directions reaches the MaxRestart threshold.

Now, the details of the three-term subspace conjugate gradient method (TSCG for
short) is given as follows:

Algorithm 1: TSCG Alogrithm

1. Given x0 ∈ Rn, α
(0)
0 , ε > 0, 0 < δ < σ < 1, ξ1, ξ2, ξ3, ξ4, ξ5, ξ6, λ1, λ2 ∈ [0, 1), MaxRestart,

MinQuad. Let C0 = f0, Q0 = 1, IterRestart := 0, Numgrad := 0, IterQuad := 0,
Numcongrad := 0, and k := 0.

2. When ‖gk‖ ≤ ε, stop; otherwise, let d0 := −g0, Numgrad = 1.

3. If k = 0, go to step 4. If dk+1 = −gk+1, via (34) Compute α
(0)
k ; otherwise, α

(0)
k = 1.

4. Calculate the step size αk by (7) and (5).
5. Update xk+1 with (2). When ‖gk‖ ≤ ε, stop; otherwise, let IterRestart = IterRestart + 1. If
|rk − 1| ≤ ξ5 or | fk+1 − fk − (gT

k+1sk + gT
k sk) ≤ ξ6/6, IterQuad = IterQuad + 1; otherwise,

IterQuad = 0.
6. Calculate the search direction dk+1.

(a) If the conditions (21), (22) and (23) hold, calculate dk+1 by (10) and (12), and then perform
step 7;

(b) If the condition (22) holds, calculate dk+1 by (24) and (26), and then perform step 7;
(c) If the condition (28) and (29) hold, calculate dk+1 by (30), and then perform step 7;
(d) Otherwise, calculate dk+1 from (31), and then perform step 7.

7. Update Qk+1 and Ck+1 by (6).
8. Calculate ηk+1 by (8), and set k := k + 1, and go to step 1.

3.2. Descent Properties of Search Direction

In this subsection, we discuss the descent properties of the given algorithm, in which
it will be proved that the proposed algorithm (TSCG) fulfills sufficient descent conditions
in all cases. Now, we first introduce some common assumptions on the objective function.

Assumption 1. The objective function f : Rn → R is continuous differentiable and has a lower
bound on Rn.

Assumption 2. The gradient function g is Lipschitz continuous on the bounded level set Θ =
{x ∈ Rn : f (x) ≤ f (x0)}; that is, there exists constant L > 0, such that

‖g(x)− g(y)‖ ≤ L‖x− y‖, ∀ x, y ∈ Θ.

That is: ‖yk‖ ≤ L‖sk‖.

Lemma 2. If the search direction dk+1 is generated by (10) or (24), then

gT
k+1dk+1 ≤ −

‖gk+1‖4

ρk+1
, (35)

holds.

Proof of Lemma 2. We only need to discuss the situation of search direction in relation
to ρk+1.
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Case I: if dk+1 is generated by (24), the proof is similar to [22], so the proof process
is omitted.

Case II: when dk+1 is calculated by (10) and (12), we have

gT
k+1dk+1 =

 ‖gk+1‖2

gT
k+1sk

gT
k+1y∗k

T µk
νk
γk



= − 1
4k+1

 ‖gk+1‖2

gT
k+1sk

gT
k+1y∗k

T χ θ1 θ2
θ1 θ θ3
θ2 θ3 ω

 ‖gk+1‖2

gT
k+1sk

gT
k+1y∗k


= −‖gk+1‖4

4k+1
ϕ(x, y),

where ϕ(x, y) is the binary quadratic function of variables
gT

k+1y∗k
‖gk+1‖2 and

gT
k+1sk
‖gk+1‖2 represented

as x and y, and its simplified form is expressed as

ϕ(x, y) = ωx2 + 2θ3xy + θy2 + 2θ2x + 2θ1y + χ.

From Lemma 1, it is easy to get ω > 0, ωθ − θ2
3 = 4k+1ρk+1 > 0; that is

ϕ(x, y)min =
4k+1
ρk+1

.

Therefore, we have

gT
k+1dk+1 ≤ −

‖gk+1‖4

4k+1
ϕ(x, y)min ≤ −

‖gk+1‖4

ρk+1
.

Thus, that is the end of the proof.

Lemma 3. Assume that dk+1 is generated by the algorithm TSCG. there exists a constant c1 > 0,
such that

gT
k+1dk+1 ≤ −c1‖gk+1‖2. (36)

Proof of Lemma 3. As for the four forms of the constituent directions, we discuss them
separately.

Case I: if dk+1 = −gk+1, let c1 = 1
2 , then (36) holds.

Case II: when the search direction is binomial, namely, we first discuss the situation
given by (30). When dk+1 is determined by (30), combined with (28) and (29), for βk = βHS

k ,
we have

gT
k+1dk+1 = −‖gk+1‖2 + βkgT

k+1dk

≤ −‖gk+1‖2 +
|(gT

k+1yk)(gT
k+1dk)|

dT
k yk

≤ −‖gk+1‖2 + ξ4‖gk+1‖2

≤ −(1− ξ4)‖gk+1‖2.

Case III: now, we discuss another case where the search direction is a binomial; that
is, the situation where the search direction is generated by (24). Combining (22) and
(27), obviously

ρk+1 ≤ ζk
‖gk+1‖2‖yk‖2

sT
k yk

≤ 2ξ2‖gk+1‖2.
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In combination with the above formula and (35), it can be obtained

gT
k+1dk+1 ≤ −

1
2ξ2
‖gk+1‖2.

Case IV: when the search direction is trinomial; that is, dk+1 is given by (10) and
(12). Consider Lemma 2 and use (20), (21), and χ > 0, we first prove that ρk+1 has an
upper bound:

|nk| =

∣∣∣∣∣∣∣
(

w2
k

$k
+

(gT
k+1yk)

2

sT
k yk

− 2wk(gT
k+1yk)(yT

k y∗k )
$k(sT

k yk)
)

mk

∣∣∣∣∣∣∣
≤

∣∣∣∣∣
(

4‖yk‖4‖y∗k‖
2

$k(sT
k yk)2 + ‖yk‖2

sT
k yk

)
‖gk+1‖2 + 2 wk√

$k

gT
k+1yk√
sT

k yk

yT
k y∗k√

$ksT
k yk

∣∣∣∣∣
mk

≤

(
2K1‖gk+1‖2 + 2 |wk |√

$k

|gT
k+1yk |√
sT

k yk

)
mk

≤ (2K + 2
√

K
√

K)
mk

≤ 8K.

The ρk in the root of the above second inequality is $k.
Combining the conditions (22) and (23), it is easy to know that K1 in (20) has an upper

bound, namely

K1 = max

{
‖yk‖2

sT
k yk

, 4
‖yk‖4‖y∗k‖

2

$k(sT
k yk)2

}
≤ ξ2.

There is

ρk+1 = ζk max{nk, K} ≤ 16K = 16K1‖gk+1‖2 ≤ 16ξ2‖gk+1‖2.

Finally, according to Lemma 2, we have

gT
k+1dk+1 ≤ −

‖gk+1‖4

ρk+1
≤ − 1

16ξ2
‖gk+1‖2.

In summary, the value of c1, satisfying (36), is

c1 = min
{

1
2

,
1

2ξ2
, (1− ξ4),

1
16ξ2

}
.

Then the proof is complete.

Lemma 4. If the search direction dk+1 is calculated by TSCG, then there exists a constant c2 > 0,
such that

‖dk+1‖ ≤ c2‖gk+1‖. (37)

Proof of Lemma 4. Similar to Lemma 3, we discuss four cases of search directions, respec-
tively.

Case I: if dk+1 = −gk+1, let c2 = 1, then (37) is true.
Case II: if dk+1 is calculated by (30), according to Assumption 2 and the condition (28),

we have
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‖dk+1‖ = ‖ − gk+1 + βHS
k dk‖

≤ ‖gk+1‖+
‖gk+1‖‖yk‖‖dk‖

dT
k yk

≤
(

1 +
L
ξ1

)
‖gk+1‖.

Case III: if dk+1 is calculated by (24) and (26), then, combining (22) and (27), and the
Cauchy inequality, we deduce

4k+1 = ρk+1(sT
k yk)− (gT

k+1yk)
2

≥ ξ1‖sk‖2

(
ρk+1 −

(gT
k+1yk)

2

sT
k yk

)

≥ 1
5

ξ1‖sk‖2 ‖gk+1‖2‖yk‖2

sT
k yk

.

(38)

Combining the above equation, (27), the Cauchy inequality, and the triangle inequality,
we can get

‖dk+1‖ = ‖µkgk+1 + νksk‖

≤ 1
4k+1

(|gT
k+1yk||gT

k+1sk|‖gk+1‖+ |gT
k+1yk|‖gk+1‖2 + |ρk+1(gT

k+1sk)|‖sk‖)

≤ 1
4k+1

(
2‖sk‖‖yk‖+

ρk+1‖sk‖2

‖gk+1‖2

)
‖gk+1‖3

≤
5sT

k yk

ξ1‖sk‖2‖yk‖2

(
2‖sk‖‖yk‖+

ρk+1‖sk‖2

‖gk+1‖2

)
‖gk+1‖

≤
(

10sT
k yk

ξ1‖sk‖‖yk‖
+

10
ξ1

)
‖gk+1‖

≤ 20
ξ1
‖gk+1‖.

Case IV: when the search direction is three; that is, the search direction is calculated
by (10) and (12). Similar to Case III, let us first derive the lower bound of4k+1. According
to (16), (18) and (20), we have

4k+1 = ρk+1χ + wkθ2 + gT
k+1ykθ1

= χ

(
ρk+1 −

−wkθ2 − gT
k+1ykθ1

χ

)
= χ(ρk+1 − nk)

≥ χ(1.2 max{nk, K} − nk)

≥ 1
5

χK.

Let us write χ1 = $k(sT
k yk), and combine that with mk ≥ 1

2 , we have χ = χ1mk ≥
1
2 χ1 > 0, therefore

4k+1 ≥
1

10
χ1K.
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Then

‖dk+1‖ = ‖µkgk+1 + νksk + γky∗k‖

=
1
4k+1

 ‖gk+1‖2

|gT
k+1sk|
|gT

k+1y∗k |

T |χ| |θ1| |θ2|
|θ1| |θ| |θ3|
|θ2| |θ3| |ω|

 ‖gk+1‖
‖sk‖
‖y∗k‖


≤ ‖gk+1‖
4k+1

(χ1‖gk+1‖2 + 4ak
√

χ1K1‖gk+1‖2 + 2bk
√

χ1(K + ρk+1) + ckρk+1)

≤ 10‖gk+1‖
χ1K

(χ1‖gk+1‖2 + 4ak
√

χ1K1‖gk+1‖2 + 2bk
√

χ1(K + ρk+1) + ckρk+1)

= ‖gk+1‖
(

10
K1

+
40√
K1

ak√
χ1

+ 340× bk√
χ1

+ 160× ck
χ1

)
,

where ak =
√

$k‖sk‖+
√

sT
k yk‖y∗k‖, bk = ‖sk‖‖y∗k‖, ck = $k‖sk‖2 + sT

k yk‖y∗k‖
2. From (20),

(22) and (23), through calculation and simplification, we obtain

ξ1 ≤
‖yk‖2

sT
k yk

≤ K1,

ak√
χ1
≤ 2√

ξ1
,

bk√
χ1
≤ 1

ξ1
,

ck
χ1
≤ 2

ξ1
.

According to the above results, it can be further deduced

‖dk+1‖ ≤
750
ξ1
‖gk+1‖.

According to the four cases of the above analyses, the value of c2 that satisfies (38) is

c2 = max
{

1, 1 +
L
ξ1

,
20
ξ1

,
750
ξ1

}
,

The proof is ended.

4. Convergence Analysis

The global convergence of the algorithm for general functions is proven in this section.

Lemma 5. Suppose αk is generated by line search (7) and (5), and satisfies Assumption 2, then

αk ≥
(1− σ)|gT

k dk|
L‖dk‖2 . (39)

Proof of Lemma 5. By line search conditions (7) and (5), we have

(σ− 1)gT
k dk ≤ (gk+1 − gk)

Tdk = yT
k dk ≤ ‖yk‖‖dk‖ ≤ αkL‖dk‖2.

We notice that σ < 1, gT
k dk < 0, and (39) holds immediately.

Theorem 1. Suppose Assumption 1 and Assumption 2 are satisfied, and sequence xk is generated
by algorithm TSCG, then

lim inf
k→∞

‖gk‖ = 0. (40)
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Proof of Theorem 1. According to (5) and (39), there is

δαkgT
k dk = −

(1− σ)δ

L

(
gT

k dk

‖dk‖

)2

≤ −
(1− σ)δc2

3
Lc2

4
‖gk‖2.

(41)

Combining (41) and (7), we get

−
(1− σ)δc2

3
Lc2

4
‖gk‖2 ≤ fk + ηk − fk+1. (42)

Clearly
fk + ηk − fk+1 ≥ 0. (43)

The above equation with lim
k→∞

ηk = 0 is equivalent to

lim inf
k→∞

( fk − fk+1) ≥ lim inf
k→∞

( fk + ηk − fk+1) + lim inf
k→∞

(−ηk) = l ≥ 0.

Suppose l > 0, for ε = min
{

1, l
2

}
> 0, for any k > N, there exists N > 0, then

fk+1 < fk −
ε

k
. (44)

Combining with (44) and ∑+∞
k=N+1

1
k = +∞, then lim

k→∞
fk = −∞. This contradicts

Assumption 1 that fk on Rn has a lower bound. Therefore,

lim inf
k→∞

( fk + ηk − fk+1) = l = 0.

In combination with the above equation, (42) and lim
k→∞

ηk = 0, then (40) is true. The

proof is complete.

5. Numerical Results

In this section, we compare the numerical performance of the TSCG algorithm with
SMCG_NLS [17] and SMCG_Conic [12] algorithms, both of which are subspace minimiza-
tion algorithms, through numerical experiments to prove the effectiveness of the proposed
TSCG algorithm. Performance profiles of Dolan and Moré [24] were used to test the perfor-
mance of the method. Our test functions were derived from 67 functions in [25], as shown
in Table 1. It was programmed and run on a Windows 10 PC with a 1.80-GHz CPU and
16.00 GB memory, 64-bit operating system. We set the termination criteria as: ‖gk‖ ≤ ε,
or when the number of iterations of the program exceeded 200,000, and exited when one
of them was true. The dimensions of the variables of the test function were 10,000 and
12,000 respectively.

The following shows the selection of parameters and some tags and numerical ex-
periments. The initial step size of the first iteration in this paper uses the adaptive strat-
egy of [26].

α
(0)
0 =



1.0, if ‖x0‖∞ < 10−30 and ‖ f0‖∞ < 10−30,
2 | f0|
‖g0‖

, if ‖x0‖∞ < 10−30 and ‖ f0‖∞ ≥ 10−30,

min
{

1.0, ‖x0‖∞
‖g0‖∞

}
, if ‖x0‖∞ ≥ 10−30 and ‖g0‖∞ < 107,

min
{

1.0, max
{
‖x0‖∞
‖g0‖∞

, 1
‖g0‖∞

}}
, if ‖x0‖∞ ≥ 10−30 and ‖g0‖∞ ≥ 107,

where ‖ · ‖∞ represents the infinite norm.
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Table 1. The test problems.

No. Test Problems No. Test Problems

1 Extended Freudenstein & Roth function 35 NONDIA function (CUTE)
2 Extended Trigonometric function 36 DQDRTIC function (CUTE)
3 Extended Rosenbrock function 37 EG2 function (CUTE)
4 Generalized Rosenbrock function 38 DIXMAANA - DIXMAANL functions
5 Extended White & Holst function 39 Partial Perturbed Quadratic function
6 Extended Beale function 40 Broyden Tridiagonal function
7 Extended Penalty function 41 Almost Perturbed Quadratic function
8 Perturbed Quadratic function 42 Perturbed Tridiagonal Quadratic function
9 Diagonal 1 function 43 Staircase 1 function

10 Diagonal 3 function 44 Staircase 2 function
11 Extended Tridiagonal 1 function 45 LIARWHD function (CUTE)
12 Full Hessian FH3 function 46 POWER function (CUTE)
13 Generalized Tridiagonal 2 function 47 ENGVAL1 function (CUTE)
14 Diagonal 5 function 48 CRAGGLVY function (CUTE)
15 Extended Himmelblau function 49 EDENSCH function (CUTE)
16 Generalized White & Holst function 50 CUBE function (CUTE)
17 Extended PSC1 function 51 BDEXP function (CUTE)
18 Extended Powell function 52 NONSCOMP function (CUTE)
19 Full Hessian FH2 function 53 VARDIM function (CUTE)
20 Extended Maratos function 54 SINQUAD function (CUTE)
21 Extended Cliff function 55 Extended DENSCHNB function (CUTE)
22 Perturbed quadratic diagonal function 2 56 Extended DENSCHNF function (CUTE)
23 Extended Wood function 57 LIARWHD function (CUTE)
24 Extended Hiebert function 58 COSINE function (CUTE)
25 Quadratic QF1 function 59 SINE function:83
26 Extended quadratic penalty QP1 function 60 Generalized Quartic function
27 Extended quadratic penalty QP2 function 61 Diagonal 7 function
28 Quadratic QF2 function 62 Diagonal 8 function

29 Extended quadratic exponential EP1 func-
tion 63 Extended TET function:(Three exponential

terms)
30 Extended Tridiagonal 2 function 64 SINCOS function
31 FLETCHCR function (CUTE) 65 Diagonal 9 function
32 TRIDIA function (CUTE) 66 HIMMELBG function (CUTE)
33 ARGLINB function (CUTE) 67 HIMMELH function (CUTE)
34 ARWHEAD function (CUTE)

The parameters of SMCG_NLS and SMCG_Conic algorithms are selected according to
the values selected in the original paper. The parameters of the TSCG algorithm proposed
by us are selected as follows.

ε = 10−6, δ = 0.001, σ = 0.9999, ξ1 = 10−7, ξ2 = 106, ξ3 = 10−4, ξ4 = 0.875,
ξ5 = 10−8, ξ6 = 10−12, λ1 = 10−5, λ2 = 0.06, ϑmin = 10−30, ϑmax = 1030.
The relevant tags of this article are as follows:

• Ni: the number of iterations.
• Nf: the number of function evaluations.
• Ng: the number of gradient evaluations.
• CPU: the running time of the algorithm (in seconds).

Now, we compare the algorithm TSCG in this paper with SMCG_NLS [17] and
SMCG_Conic [12] in numerical diagrams. The performance comparison diagrams of
Ni, Ng, Nf and CPU correspond to Figures 1–4 respectively. According to Figures 1 and 2,
it is found that the robustness and stability of TSCG are significantly better than that of
SMCG_NLS and SMCG_Conic in terms of the number of iterations and the total number
of gradient calculations. Overall, SMCG_NLS has better robustness and stability than
SMCG_Conic. From Figure 3, we know that both TSCG and SMCG_NLS are superior to
SMCG_Conic, and TSCG begins to be better than SMCG_NLS when τ ≥ 14.3231, even
when factor τ ≤ 14.3231, the total calculated by the function TSCG does not perform as well
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as SMCG_NLS. Figure 4 shows that TSCG and SMCG_NLS are better than SMCG_Conic in
terms of the robustness and stability of running time. In general, TSCG is almost better than
SMCG_NLS in terms of robustness and stability, only when factor 2.6328 ≤ τ ≤ 7.6472,
TSCG is inferior to SMCG_NLS.

Figure 1. Performance profiles of the number of iterations (Ni).

Figure 2. Performance profiles of the gradient (Ng).
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Figure 3. Performance profiles of the function (Nf).

Figure 4. Performance profiles of CPU time (CPU).

6. Conclusions and Prospect

In order to obtain a more efficient and robust conjugate gradient algorithm for solv-
ing the unconstrained optimization problem, by constructing a new three-dimensional
subspace Ωk+1 = Span{gk+1, sk, y∗k}, and solving the sub-problem of a quadratic approxi-
mate model of the objective function in the given subspace, we obtained a new three-term
conjugate gradient method (TSCG). The global convergence of the TSCG method for gen-
eral functions is established under mild conditions. Numerical results show that TSCG
has better performance than SMCG_NLS and SMCG_Conic, both of which are subspace
algorithms, for a given test set.

As for the research of the subspace algorithm, the main content of our future work
is to continue to study the estimation of terms, including Hessian matrix, to discuss
whether it can be extended to the constrained optimization algorithm, and consider the
application of the algorithm to image restoration, image segmentation, and path planning
of engineering problems.
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