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Abstract: In this paper, a three-parameter subspace conjugate gradient method is proposed for solving
large-scale unconstrained optimization problems. By minimizing the quadratic approximate model
of the objective function on a new special three-dimensional subspace, the embedded parameters
are determined and the corresponding algorithm is obtained. The global convergence result of a
given method for general nonlinear functions is established under mild assumptions. In numerical
experiments, the proposed algorithm is compared with SMCG_NLS and SMCG_Conic, which shows
that the given algorithm is robust and efficient.

Keywords: unconstrained optimization; conjugate gradient method; subspace method; quadratic model

1. Introduction

The conjugate gradient method is one of the most important methods used for solving
large-scale unconstrained problems, because of its simple structure, lower computation,
storage, fast convergence, etc. The general unconstrained optimization problem is as fol-
lows:

min f(x), 1

min f(x) 0
where f : R" — Ris continuously differentiable. The function value of f(x) at x; is denoted
as fi, and its gradient is expressed as gi. Let ay be the step size; we have the following
iteration form for conjugate gradient method:

X1 = X + agdy, k>0, 2)

where d; is the search direction, which has the form of

diy1 = {

where B € R, referred to as the conjugate parameter. For different selections of By, there
are several well-known nonlinear conjugate gradient methods [1-6]:

if k=0,

—&k+1/
if k>1, ®)

—8k+1 + Brdk,

T T
HS _ k1 Yk BER — Igx+111? PRP _ 8k+1Yk
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where || - || represents the Euclidean norm, and v, = gx11 — Sk
The step size aj can be obtained in different ways. Zhang and Hager [7] proposed an
effective non-monotone Wolfe line search as follows:

F(xx + agdy) < Cp + daygi dy, (4)

8tk > ogldy. 5)

The Cy in the formula (4) is the convex combination of fo, f1, -+, fx- 0 < 6 < 0 <
1,Co = fo, Qo =1, Cxsq and Qyq are updated by the following rule:

Co— M QikCr + frs1
1l =

0 ; Qr1 = mQr + 1. (6)
k1

where 0 < #in < 11k < Hmax < 1
The generalized non-monotone line search in [8] is composed of formula (5) and

f o+ agdy) < f(xp + axdy) + 175 + gy di, @)

where0 < § < 0 < 1,and

{ 0 if k=0, "
Mk = . .
mm{(klg(lc%f Ck—f(xk)}, if k> 1.

For large-scaled optimization problems, some researchers have been looking for more
efficient algorithms. In 1995, Yuan and Stoer [9] first proposed the method of embedding
subspace technology into the conjugate gradient algorithm framework, namely the two-
dimensional subspace minimization conjugate gradient method (SMCG for short). The
search direction is calculated by minimizing the quadratic approximation model on the
two-dimensional subspace (.1 = Span{gx.1,x}, namely

dks1 = Pk8k+1 T+ VkSks

where pj and v are parameters, and s = x;1 — x;. Analogously, the calculation of the
search direction is directly extended to Span{gx.1,sk, sx_1}. By this way, we can avoid
solving the sub-problem in the total space, which can reduce the computation and storage
cost immensely.

Inspired by SMCG, some researchers began to investigate the algorithm of the con-
jugate gradient method combined with subspace technology. Dai et al. [10] focused
on the analysis of the subspace minimization conjugate gradient method proposed by
Yuan and Stoer [9] and integrated SMCG with Barzilai-Borwein [11], a new Barzilai-
Borwein conjugate gradient method (BBCG for short) was proposed. In the subspace
Q1 = Span{gi.1,sr}, Lietal. [12] discussed the case where the search direction was
generated by minimizing the conic model when the non-quadratic state of the objec-
tive function was stronger. Wang et al. [13] changed the conic model of [12] into the
tensor model. Zhao et al. [14] discussed the case of regularization model. Andrei [15]
further expanded the search direction, developed it into a three-dimensional subspace
Q1 = Span{—gx+1, Sk, Yk }, and proposed a new SMCG method (TTS). Inspired by An-
drei, Yang et al. [16] carried out a similar study. They applied the subspace minimization
technique to another special three-dimensional subspace O ;1 = Span{gx.1, Sk, Sk_1}, and
obtained a new SMCG method (STT). On the same subspace, Li et al. [17] further studied
Yang's results, analyzed the more complex three parameters, and proposed a new subspace
minimization conjugate gradient method (SMCG_NLS). Yao et al. [18] proposed a new
three-dimensional subspace O 11 = Span{gxi1, Sk, gk} and obtained the TCGS method by
using the modified secant equation.
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According to [19], it can be seen that the key to embedding subspace technology
into the conjugate gradient method is to construct an appropriate subspace, select an
approximate model, and estimate the terms of the Hessian matrix. The subspace (Y1 =
Span{—gk.1,Sk, Yk} contains the gradient of the two iteration points. If the difference
between the two gradient points is too large, the direction of the gradient change yx and
its value will be affected. We consider making appropriate corrections to the gradient
changes of the two iteration points, and then combine the current iteration point gradient
with the previous search direction to form a new three-dimensional subspace, and whether
this subspace is valuable for research. This paper is taking its as the breakthrough point
for research.

In this paper, to avoid the situation in which the changes of the gradient y; = g1 — g«
dominate the subspace Span{gy. 1, dx, v}, inspired by [20], we construct a similar subspace

Oyy1 = Span{gyi1,5k v } in which i = giyq — Hﬁgﬁ” gk, and then, by solving the optimal

solution of an approximate model of the objective function in the given subspace to gain
the corresponding parameters and algorithm. It can be shown that the obtained method is
a global convergent and has nice numerical performance.

The rest of this paper is organized as follows: in Section 2, the search direction
constructed on a new special three-dimensional subspace () ; is presented, and the esti-
mations of matrix-vector production are given. In Section 3, The proposed algorithm and
its properties under two necessary assumptions are described in detail. In Section 4, we
establish the global convergence of our proposed algorithm under mild conditions. In Sec-
tion 5, we compare the proposed method numerically with algorithms SMCG_NLS [17] and
SMCG_Conic [12]. Finally, in Section 6, we conclude this paper and highlight future work.

2. Search Direction and Step Size

The main content of this section is to introduce four search direction models and the
selections of initial step sizes on the newly spanned three-dimensional subspace.

2.1. Direction Choice Model
Inspired by [20], in this paper, the gradient change yx = gx+1 — gk is replaced by

Y = 8k+1 — gl 8k Then, the search directions are constructed in the three-dimensional

18l
subspace Q1 = Span{gii1, sk Y }-

From [10], we know that the approximate model used plays two roles: one is to
approximate the original objective function in the subspace (), 1; the other one is to
make the search direction dj_ 1 obtained by the approximate model descend, so that the
original objective function declines along this direction. On our proposed subspace (Y1 =
Span{gi+1, 5k Y }, we consider the approximate model of the objective function as

1
: T T
min d) = d+ -d' Byqd, 9
ean Pr1(d) = 8ri1 5@ Drt1 9
where By, 1 is a symmetric positive definite approximation matrix of the Hessian matrix,
satisfying By 15k = Y.

Obviously, there are three dimensions in the subspace (1 = Span{gi1, sk, y; } that
we are considering.

Situation I: dim(();, 1) = 3.
When the dimension is 3, it is easy to know that g; 1, si, y; are not collinear. The
form of the search direction is of the following form

diy1 = Hi&k+1 + ViSk + ViV (10)

where py, vx and v, are undetermined parameters. Substituting (10) into (9) and simplify-
ing, we have
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T T
. ||8%<+1 |12 p 1 H f;kﬂ g;%lyk 1TUk i
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where o1 = g{ 1 Brr18kr1, 0k = 8y Braryis wi = (v¢) T Berayg- Set

f%k-&—l g;?itlyk ij)k
Dy = | SV StV vive |-
Wy YiVr o Ok

Thus, (11) can be summarized as

T T
Igk+1ll? m\ [ H z
(min) ng+1Sk v |+ > v D | v
o Stk Y 0% v

Under some mild conditions, we can prove that Dy is positive definite, which will
be discussed in Lemma 1. When Dy is positive definite, by calculation and simplification,
the only solution of (11) is

Mk 1 x 61 0 nglg+1H2
Tk 1\ 6, 65 w 81&1%

Ags1 = |Diy1| = prsrx + wib + gh1vib1,
x = ox(siyk) — (wivi)?,
w = prs1(5Eyi) — (81vi)?
01 = wi (v vi) — ok (1),
0 = 0kor11 — Wi,
_ T, * T T
02 = (Vi i) (8kr1Yk) — Wk (S, k),
03 = wi (8¢ 1Y) — Prs1 (VL VE)-

where

In order to avoid the matrix-vector multiplication, we need to estimate py, 1, 0 and
wy. Before estimating oy 1, we first estimate gy, wy.
For gy, we get

ok = (v§) " Bes1vi

_ () TBeiayisi Besask \ [ (i) TBiyisk)?
((vg TBk+1Sk) ST Bjey15k

2
1
k+13/k Bl?ﬂsk (yTy;)?
(s Y ()
(Bk+1yk> (Bk+1sk>
1 (viw)?

1 1 T
2/ n2 .x np2 S Yk
cos <Bk+1yk’ Bk+15k>
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1 1
Based on the analysis of [9], cosz<Bk2 Y B +1sk> is desirable, which shows that g
can have the following estimation:
(v
s

y;)z'
Eyk

0 = 2 (13)

which also means that

oest vk — (Wi vi)* = (vivi)>.

In order for the experiment to have a better numerical effect, we amended g as

T,,%\2
0 = (y"Ty ) + Ak (14)
S Yk

T,,%\2
A= m{ (ykyyk) , o.1||y;|2}.

where

T
Skk

Obviously, gg > 0. Consider the following matrix,

( slgyli y;{yi ) (15)
YilVr Gk

From (13) and g9 > 0, it can be known that the sub-matrix (15) is positive definite,
inspired by the BBCG method [11], for wy, we take

kngHyZHkaz
7

Wy = g T (16)
Sk Yk
where
[ = { max{09%y, 12}, if > 1, )
k= min{1.1{;_q, 1.75}, otherwise,

where (o = 1.5, {; € [1.2, 1.75).
Now, we estimate py 1. Since Dy is positive definite, it is easy to know A, > 0,
therefore

—wib2 — g1, 1Yk
X .
Note that the right-hand side of (18) is n1;. Combining with (12), (14) and (16), we have

Pk+1 = (18)

T,,%\2
, withmy, =1 — M (19)
ok (s, k)

o L (w,% L 8Ea)® 2008y (1)

my \ ok LYk (st k)

According to (14), we know that my > 1/2.
In order to ensure that (18) holds, we estimate the parameter py 1 by taking

Pk+1 = Crmax{ng, K}, (20)

2 4114,%112
where K = Ki||ges1l% K1 = max{ ‘LZT"JL , 74‘5’2!{5‘5’)‘2“
debugging of the algorithm, we find that the numerical experiment effect of {; using the
adaptive value of (17) is better than that of {j with a fixed value, so i also uses (17).

In summary, we find that when the following conditions are satisfied, the search

direction dy., 1 is calculated by (10) and (12).

}, and pg € (0,1). Through the
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el
< , (21)
% = Toena P
STue [yl
< k kI <
O ol = sy = 22
4 4 * (12
oo AnlE )

el ox(sfyx)?
where ¢1, ¢», ¢3 are positive constants.
Now, let us prove that Dy is positive definite.

Lemma 1. Assuming that the conditions (21)—(23) hold, and py 1 is calculated by (20), the matrix
Dy.y1 in (10) is positive definite.

Proof of Lemma 1. Using mathematical induction, it is easy to know py € (0,1), Ok+1 =
2 2
¢xK > 0 from (18); for pr11 > %, therefore
k Yk

Ags1 = |Disa| = prsax + wiba + g 1yx01 > 0.

So the proof is over. [

Situation II: dim(Q), 1) = 2.
In this case, the form of the search direction dy  is as follows:

dk11 = Wk8k+1 + VkSks (24)

where py, i are undetermined parameters. Substituting (24) into (9), we get

T T
min ( Hg]lg-l-lH2 ) ( p >+1< p ) ( i1 g;f%lyk )( p ) e
() Ek+1%k v 2\ v Sk+1¥c Sk Yk v

where py1 = g{ +1Br+18k11, if it satisfies

D1 = pm(s]?yk) - (81&1%)2 > 0.

Then the unique solution of the problem (25) is

( M ) _ 1 ( (841 ¥) (&Fs18%) — (s lIgrrll® ) 26)
Uk Dr1 \ @ravo gk ll* — o1 (845%)

Combined with BBCG, there is

2 2
s = g B Plel?) -
Sk Yk
where (. in (27) is the same as (17).

Obviously, under certain conditions, the HS direction can be regarded as a special case
of formula (24). Taking into account the finite termination of the HS method, in order to
make our algorithm have good properties, when the following conditions hold,

T

S Yk
< k2 (28)
= s

|$E Y8 k|

< Ca, (29)
Al yillgell?
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where ¢4 € [0,1). We consider

dii1 = —8k+1 + Brdk- (30)

In summary, for the case where the dimension of the subspace is 2; if only condition (22)
is true, dy41 is calculated by (24). When inequalities (28) and (29) hold, dj; is calculated
from (30).

According to the above analysis, di 1 is calculated by (24) when only condition (22) is
true for the case of the 2-subspace dimension. When conditions (28) and (29) hold, dy.; is
calculated by (30).

Situation III: dim(();; 1) = 1.
When all conditions (21), (22), and (23) are not valid, we choose the negative gradient
as the search direction, i.e.,

dip1 = —8k+1- (31)

2.2. Selection of Initial Step Size

Considering that the selections of initial step sizes will also have an impact on the
algorithm, we choose the initial step size selection method of SMCG_NLS [17], which is
also a subspace algorithm.

According to [21], we know that

2(fk — fer1 + g;ﬂlsk)
b= - ~1, (32)
Sk Yk

which indicates how close the objective function is to the quadratic function on the line
segment formed between the current iteration point and the previous iteration point. Based
on [22], we know that the following condition indicates that the objective function is close
to a quadratic function:

tk S /\1 or max{tk, tk*l} S )Lz, (33)

where 0 < A < Ap.

Case I: when the search direction is calculated by Equations (10), or (24) or (30), the
initial step size is oclgo) =1

Case II: when dy. 1 = —gx1, the initial step size is

. BB2 .
< {max{mm{le(c ), Omax }» Omint, 1fng+1sk >0, (34)

max{min{lx;(cBBl)' Omax}, Omin}, if ngJrlsk <0

2 T
where a(P8) = 12, (BB2) _ siv
Sic Yk llyll

3. The Obtained Algorithm and Descent Property

This section describes the obtained algorithm and its descending properties under two
necessary assumptions in detail.

3.1. The Obtained Algorithm

The main content of this section is to introduce our proposed algorithm and give two
necessary assumptions. Before introducing the algorithm, we first introduce the restart
method we use to restart the proposed algorithm, and then describe the proposed algorithm
in detail.

According to [23], set
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_ 2fke1 — fi)
g{+1sk + glzsk’

If 7y, is close to 1, then the one-dimensional line search function is close to the quadratic
function. Similar to [21], if in multiple consecutive iterations, |r, — 1| < {5, we restart
the search direction along —gj 1. In addition, we restart our algorithm if the number of
consecutive uses of CG directions reaches the MaxRestart threshold.

Now, the details of the three-term subspace conjugate gradient method (TSCG for
short) is given as follows:

Algorithm 1: TSCG Alogrithm

Tk

1. Givenxg e R", a\”, e>0,0<5 <0 <1, &, &, &, & &, G A, Az € [0,1), MaxRestart,
MinQuad. Let Cyp = fo, Qo = 1, IterRestart := 0, Numgrad := 0, IterQuad := 0,
Numcongrad := 0, and k := 0.

When ||g¢|| < ¢, stop; otherwise, let dy := —gp, Numgrad = 1.

Ifk =0,gotostep4. If dyy1 = —gkr1, via (34) Compute a}({o)/_ otherwise, a,ﬁo) =1

Calculate the step size ay by (7) and (5).
Update x; 1 with (2). When ||gi|| < ¢, stop; otherwise, let IterRestart = IterRestart + 1. If
Ik = 1] < &5 0r | fis1 — fi — (85 15k + &F sk) < &6/6, IterQuad = IterQuad + 1; otherwise,
IterQuad = 0.
6. Calculate the search direction dy_ 1.
(a) If the conditions (21), (22) and (23) hold, calculate di 1 by (10) and (12), and then perform
step 7;
(b) If the condition (22) holds, calculate dj 1 by (24) and (26), and then perform step 7;
(c) If the condition (28) and (29) hold, calculate di 1 by (30), and then perform step 7;
(d) Otherwise, calculate diq from (31), and then perform step 7.
Update Q1 and Cy1 by (6).
8. Calculate 71 by (8), and set k := k + 1, and go to step 1.

IS R N

3.2. Descent Properties of Search Direction

In this subsection, we discuss the descent properties of the given algorithm, in which
it will be proved that the proposed algorithm (TSCG) fulfills sufficient descent conditions
in all cases. Now, we first introduce some common assumptions on the objective function.

Assumption 1. The objective function f : R" — R is continuous differentiable and has a lower
bound on R™.

Assumption 2. The gradient function g is Lipschitz continuous on the bounded level set © =
{x e R": f(x) < f(xo)}, that is, there exists constant L > 0, such that

lg(x) —g)ll < Lllx—yl, Vx,y €O.
That is: [|yx|| < Ll|sk|.

Lemma 2. If the search direction dy is generated by (10) or (24), then

4
g{+1dk+1 S _ ||gk+1|| , (35)
Pk-+1

holds.

Proof of Lemma 2. We only need to discuss the situation of search direction in relation
to Ppy1-
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Case I: if dj;; is generated by (24), the proof is similar to [22], so the proof process
is omitted.

Case II: when dy., ; is calculated by (10) and (12), we have

T
||gk+1H2 Mk

31?+1dk+1 = g]]Z:+15k Vk
Sk11Yk Yk
T
1 HS%MHZ X 61 6 ||8%<+1H2
=T A 8¥+15k 6p 0 03 8§+15k
N SV 6y 63 w 8k+1Yk
gkl

= xl 7
Ay YY)

T
8l 4
2
lgxsal

T
where ¢(x,y) is the binary quadratic function of variables d @‘k“j'l‘z represented
+

as x and y, and its simplified form is expressed as
p(x,y) = wx® + 203xy + 9]/2 + 26,x + 261y + x.

From Lemma 1, it is easy to get w > 0, w0 — 03 = Ay, 1pr11 > 0; thatis

A
qD(X, ]/)mm — kil
Ok+1
Therefore, we have
T [ [
dpq < =20 o(x, < =
Sk+1%k+1 = At @ (X, Y)min a1

Thus, that is the end of the proof. O

Lemma 3. Assume that dy 1 is generated by the algorithm TSCG. there exists a constant ¢q > 0,
such that

S < —cillgeslI* (36)

Proof of Lemma 3. As for the four forms of the constituent directions, we discuss them
separately.

Case L:if dj 1 = —gx11,letcg = %, then (36) holds.

Case II: when the search direction is binomial, namely, we first discuss the situation
given by (30). When dj is determined by (30), combined with (28) and (29), for By = kHS,

we have
8hadrir = =18k ll* + Brgliadx
(814 1v6) (814 1k) |
< — gk |]* + =25 -
dkTyk
< —lIgks1ll* + Eallgrsal®

IN

—(1—&4)llgrsl*

Case III: now, we discuss another case where the search direction is a binomial; that
is, the situation where the search direction is generated by (24). Combining (22) and
(27), obviously

2 2
k k
ot < g 8en TIell™ oo

S Yk
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In combination with the above formula and (35), it can be obtained

1

T 2
d < .
Sk+1%+1 = 262 Hgk+1||

Case IV: when the search direction is trinomial; that is, dy 4 is given by (10) and
(12). Consider Lemma 2 and use (20), (21), and x > 0, we first prove that p;,1 has an

upper bound:
( w} | (glam)? ZWk(g[Hyk)(ykTyi))
Iy = Ok Sy Yk 0k (s{ yk)
Ty
Ayl vl el 2 | oW Sk Vivi
+ 4+ 25k okt kJk
’ ( ok (s¢ yx)? St Yk I8+l VO [Ty JoesTys
< e
2K4 g2+ 21580 Kb
< vk S;fyk
< e
~ (2K+2VKVK)
< -
< 8K.

The py in the root of the above second inequality is gx.
Combining the conditions (22) and (23), it is easy to know that K; in (20) has an upper
bound, namely

2 41,,%]12
[ AN } e

K7 = max ,
{ sive T ok(siyr)?

There is
pr+1 = Qemax{ny, K} < 16K = 16K1[|ges1|* < 1682|8411

Finally, according to Lemma 2, we have

gT dk 1 < _||gk+l||4 < _ 1 ||gk 1“2'
k+1%k+1 = Pk+1 — 1662 -+

In summary, the value of ¢, satisfying (36), is

. [1 1 1
Cl —mln{z, E, (1—64), 1662}
Then the proof is complete. [

Lemma 4. If the search direction dy 1 is calculated by TSCG, then there exists a constant c; > 0,
such that
1]l < callgrll (37)

Proof of Lemma 4. Similar to Lemma 3, we discuss four cases of search directions, respec-
tively.

Case L: if dy 11 = —gx41, let co = 1, then (37) is true.

Case II: if d. 1 is calculated by (30), according to Assumption 2 and the condition (28),
we have
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ki1l = || — Srs1 + BES dil|
| &ks1 1yl | dic
d{yk

L
< (1 + g) 18+l
1

Case III: if dy 1 is calculated by (24) and (26), then, combining (22) and (27), and the
Cauchy inequality, we deduce

< I8kl +

A1 = prs1 (St y) — (8h1vk)?

(8f,1vk)?
> &Ikl <Pk+1 — ckHlZ

s{yk

1 et Iyl

> 5@1||Sk||2”g +17|! Hy ” .
Sk Yk

(38)

Combining the above equation, (27), the Cauchy inequality, and the triangle inequality,
we can get

ldis1ll = [lpk8rs1 + vieskll

A (1819l 18Easkl 1k | + 181 vkl kst 1 + 1okt (§h4as0) skl

1 < Pk+1|SkH2> 3
— | 2||sk kll +———5 k
At IBYEZA I5e |2 &kl

55 Yk ( Pr1llskl?
< ORUE sl el + Pl )| el
Eallsel 2yl \ 71 S

gkl
10s] yx 10
< i 2 g
(ansknnykn a) el

20
<= :
< 18k+1ll

IN

Case I'V: when the search direction is three; that is, the search direction is calculated

by (10) and (12). Similar to Case III, let us first derive the lower bound of Ay . According
to (16), (18) and (20), we have

Ags1 = Prr1X + W02 + g1y

—wiby — &1 Yk
=X (Pkﬂ - X ktl

(P41 — 1k

Let us write x1 = Qk(skTyk), and combine that with m; > %, we have x = ximy; >
% x1 > 0, therefore

1
A > — K.
k+1 2 10X1
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Then

lldisall = [[pk8rs1 + viesk + vyl

T
p (gl el (] (gl
=g | lsbsd | [ Bl desl )| s
stovil )\ 1ol Jesl lel )\ il

w (x1llgk+1 11> + 4ar/x1 K l| gk I + 2bey/x1 (K + pies1) + ki)

10
!il}(H”(Xl l8k1 01 + 4axy/x1Ka [ 841 1 + 261/ X1 (K + 1) + Cirr1)

IN

IN

10 40 a b )
= 77+340X7+160x—
||gk+1|( N v v &

where ay, = /aellsell + \/sTwellyg B = llsellllvg ]l e = exllsell2 + sTwely; | From (20),
(22) and (23), through calculation and simplification, we obtain

ﬂk<2 bk lik<2

G oVE VG S a o a

According to the above results, it can be further deduced

750
Meiall < == ) gisall.

According to the four cases of the above analyses, the value of ¢, that satisfies (38) is

{ L 20 750}
cp = maxs 1,

]- + = 7 x 7 Tx
S|
The proof is ended. O

4. Convergence Analysis

The global convergence of the algorithm for general functions is proven in this section.

Lemma 5. Suppose ay, is generated by line search (7) and (5), and satisfies Assumption 2, then

(A= o)lged]

® 39
NI PATE 39)

Proof of Lemma 5. By line search conditions (7) and (5), we have
(0 = Vgid < (8kr1— &) dk = yidx < [lyxlllldill < axLl|di]*.
We notice that o < 1, g Td, < 0,and (39) holds immediately. O

Theorem 1. Suppose Assumption 1 and Assumption 2 are satisfied, and sequence xy. is generated
by algorithm TSCG, then

liminf ||gx|| = 0. (40)
k—o0
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Proof of Theorem 1. According to (5) and (39), there is
(1-0)s (gl \*
&ng]{dk = — k
L [l
(41)
(1—0)éc3 lell?
> LCZ 8kll™-
Combining (41) and (7), we get
1—0)éc3
- %Hgkw < fe + 1k = frs1 (42)
4
Clearly
fi 1k — frp1 2 0. (43)
The above equation with klim #x = 0is equivalent to
—00
liminf(fi — fi41) > Wminf(f + 1k — fipq) + liminf(—m) =1 > 0.
k—o0 k—o0 k— 00
Suppose [ > 0, for ¢ = min {1, %} > 0, for any k > N, there exists N > 0, then
€
frer1 < fk— A (44)
Combining with (44) and EI_(‘_ZOON +1 % = 400, then klim fix = —oo. This contradicts
—00

Assumption 1 that f; on R" has a lower bound. Therefore,
liminf(fi + 7k — fry1) =1 =0.
k—o0

In combination with the above equation, (42) and klim g = 0, then (40) is true. The
—vo0

proof is complete. [J

5. Numerical Results

In this section, we compare the numerical performance of the TSCG algorithm with
SMCG_NLS [17] and SMCG_Conic [12] algorithms, both of which are subspace minimiza-
tion algorithms, through numerical experiments to prove the effectiveness of the proposed
TSCG algorithm. Performance profiles of Dolan and Moré [24] were used to test the perfor-
mance of the method. Our test functions were derived from 67 functions in [25], as shown
in Table 1. It was programmed and run on a Windows 10 PC with a 1.80-GHz CPU and
16.00 GB memory, 64-bit operating system. We set the termination criteria as: ||gx|| < ¢,
or when the number of iterations of the program exceeded 200,000, and exited when one
of them was true. The dimensions of the variables of the test function were 10,000 and
12,000 respectively.

The following shows the selection of parameters and some tags and numerical ex-
periments. The initial step size of the first iteration in this paper uses the adaptive strat-
egy of [26].

1.0, if [|xo]leo < 10730 and | folleo < 10739,
o 288, if [|x0]le0 < 1073 and || fo||eo > 1073,
% =\ min{10, Hgg%} if || xolles = 10730 and ||golle < 107,
I

~ Yollo 1 }} ; < 10-30 > 107
minq 1.0, max{ Taole’ Taolm S S if [|xollec > 107" and ||go|lcc > 107,

where || - || represents the infinite norm.
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Table 1. The test problems.

No. Test Problems No. Test Problems
1  Extended Freudenstein & Roth function 35 NONDIA function (CUTE)
2 Extended Trigonometric function 36 DQDRTIC function (CUTE)
3 Extended Rosenbrock function 37 EG2 function (CUTE)
4 Generalized Rosenbrock function 38 DIXMAANA - DIXMAANL functions
5 Extended White & Holst function 39 Partial Perturbed Quadratic function
6  Extended Beale function 40 Broyden Tridiagonal function
7  Extended Penalty function 41  Almost Perturbed Quadratic function
8  Perturbed Quadratic function 42 Perturbed Tridiagonal Quadratic function
9 Diagonal 1 function 43  Staircase 1 function
10 Diagonal 3 function 44  Staircase 2 function
11 Extended Tridiagonal 1 function 45 LIARWHD function (CUTE)
12 Full Hessian FH3 function 46 POWER function (CUTE)
13 Generalized Tridiagonal 2 function 47 ENGVALI function (CUTE)
14 Diagonal 5 function 48 CRAGGLVY function (CUTE)
15 Extended Himmelblau function 49 EDENSCH function (CUTE)
16  Generalized White & Holst function 50 CUBE function (CUTE)
17 Extended PSC1 function 51 BDEXP function (CUTE)
18 Extended Powell function 52 NONSCOMP function (CUTE)
19  Full Hessian FH2 function 53 VARDIM function (CUTE)
20 Extended Maratos function 54 SINQUAD function (CUTE)
21  Extended Cliff function 55 Extended DENSCHNB function (CUTE)
22 Perturbed quadratic diagonal function2 56 Extended DENSCHNF function (CUTE)
23  Extended Wood function 57 LIARWHD function (CUTE)
24 Extended Hiebert function 58 COSINE function (CUTE)
25  Quadratic QF1 function 59  SINE function:83
26  Extended quadratic penalty QP1 function 60 Generalized Quartic function
27  Extended quadratic penalty QP2 function 61 Diagonal 7 function
28  Quadratic QF2 function 62 Diagonal 8 function
29 Extended quadratic exponential EP1 func- 63 Extended TET function:(Three exponential
tion terms)
30 Extended Tridiagonal 2 function 64 SINCOS function
31 FLETCHCR function (CUTE) 65 Diagonal 9 function
32 TRIDIA function (CUTE) 66 HIMMELBG function (CUTE)
33 ARGLINB function (CUTE) 67 HIMMELH function (CUTE)
34 ARWHEAD function (CUTE)

The parameters of SMCG_NLS and SMCG_Conic algorithms are selected according to
the values selected in the original paper. The parameters of the TSCG algorithm proposed
by us are selected as follows.
e=10"% 6 =0.001, ¢ = 0.9999, & = 10~7,& = 10°,& = 1074, & = 0.875,
5 =1078, ¢ =10"12, A; =105, Ay = 0.06, O,,i = 10739, 8,0 = 10%.

The relevant tags of this article are as follows:

Ni: the number of iterations.

Nf: the number of function evaluations.
Ng: the number of gradient evaluations.

CPU: the running time of the algorithm (in seconds).

Now, we compare the algorithm TSCG in this paper with SMCG_NLS [17] and
SMCG_Conic [12] in numerical diagrams. The performance comparison diagrams of
Ni, Ng, Nf and CPU correspond to Figures 1-4 respectively. According to Figures 1 and 2,
it is found that the robustness and stability of TSCG are significantly better than that of
SMCG_NLS and SMCG_Conic in terms of the number of iterations and the total number
of gradient calculations. Overall, SMCG_NLS has better robustness and stability than
SMCG_Conic. From Figure 3, we know that both TSCG and SMCG_NLS are superior to
SMCG_Conic, and TSCG begins to be better than SMCG_NLS when v > 14.3231, even
when factor T < 14.3231, the total calculated by the function TSCG does not perform as well
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as SMCG_NLS. Figure 4 shows that TSCG and SMCG_NLS are better than SMCG_Conic in
terms of the robustness and stability of running time. In general, TSCG is almost better than
SMCG_NLS in terms of robustness and stability, only when factor 2.6328 < 7 < 7.6472,
TSCG is inferior to SMCG_NLS.

03f b
0.2} b
TSCG
01} - SMCG_NLS | A
= === SMCG_Conic
0 . . . . . . . | |
2 4 6 8 10 12 14 16 18 20

1 T T T T

R

09f e T e e

3-F

0.8

TSCG
o1t e SMCG_NLS |
= === SMCG_Conic

Figure 2. Performance profiles of the gradient (Ng).
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Pp:r{p,s}<=r
o
(4]

0.4 |
0.31
0.2t
TSCG
01}t e SMCG_NLS
I - == - SMCG_Conic
ol . . . . ‘ ‘ ‘ ‘

2 4 6 8 10 12 14 16 18 20

0371 1
0.2} 1
TSCG
0.1 e SMCG_NLS |
- == - SMCG_Conic
ol ‘ ‘ . . ‘ . . ‘

2 4 6 8 10 12 14 16 18 20

Figure 4. Performance profiles of CPU time (CPU).

6. Conclusions and Prospect

In order to obtain a more efficient and robust conjugate gradient algorithm for solv-
ing the unconstrained optimization problem, by constructing a new three-dimensional
subspace (1 = Span{gi;1, sk yj }, and solving the sub-problem of a quadratic approxi-
mate model of the objective function in the given subspace, we obtained a new three-term
conjugate gradient method (TSCG). The global convergence of the TSCG method for gen-
eral functions is established under mild conditions. Numerical results show that TSCG
has better performance than SMCG_NLS and SMCG_Conic, both of which are subspace
algorithms, for a given test set.

As for the research of the subspace algorithm, the main content of our future work
is to continue to study the estimation of terms, including Hessian matrix, to discuss
whether it can be extended to the constrained optimization algorithm, and consider the
application of the algorithm to image restoration, image segmentation, and path planning
of engineering problems.



Symmetry 2022, 14, 80 17 of 18

Author Contributions: Conceptualization, ].H. and S.Y.; methodology, ].Y.; software and validation,
J.Y. and G.W.,; visualization and formal analysis, J.Y.; writing—original draft preparation, J.Y.; super-
vision, S.Y.; funding acquisition, S.Y. All authors have read and agreed to the published version of the
manuscript.

Funding: This research was funded by Natural Science Foundation of China no. 71862003, Natural
Science Foundation of Guangxi Province (CN) no. 2020GXNSFAA159014, the Program for the
Innovative Team of Guangxi University of Finance and Economics, and the Special Funds for Local
Science and Technology Development guided by the central government, grant number ZY20198003.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.  Hestenes, M.R;; Stiefel, E. Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur. Stand. 1952, 49, 409-436.
[CrossRef]

2. Fletcher, R.; Reeves, C.M. Function minimization by conjugate gradients. Comput. ]. 1964, 7, 149-154. [CrossRef]

3. Polyak, B.T. The conjugate gradient method in extremal problems. JUssr Comput. Math. Math. Phys. 1969, 9, 94-112. [CrossRef]

4. Liu, Y, Storey, C. Efficient generalized conjugate gradient algorithms, part 1: Theory. J. Optim. Theory Appl. 1991, 69, 129-137.
[CrossRef]

5. Dai, YH,; Yuan, Y. A nonlinear conjugate gradient method with a strong global convergence property. Siam J. Optim. 1999, 10,
177-182. [CrossRef]

6. Fletcher, R. Volume 1 Unconstrained Optimization. In Practical Methods of Optimization; Wiley-Interscience: New York, NY, USA,
1980; p. 120.

7.  Zhang, H.,; Hager, WW. A non-monotone line search technique and its application to unconstrained optimization. Soc. Ind. Appl.
Math. J. Optim. 2004, 14, 1043-1056.

8.  Liu, H,; Liu, Z. An efficient Barzilai-Borwein conjugate gradient method for unconstrained optimization. J. Optim. Theory Appl.
2019, 180, 879-906. [CrossRef]

9. Yuan, Y.X;; Stoer, J. A subspace study on conjugate gradient algorithms. ZAMM-]. Appl. Math. Mech. FiiR Angew. Math. Und Mech.
1995, 75, 69-77. [CrossRef]

10. Dai, Y.H.; Kou, C.X. A Barzilai-Borwein conjugate gradient method. Sci. China Math. 2016, 59, 1511-1524. [CrossRef]

11. Barzilai, J.; Borwein, ].M. Two-Point Step Size Gradient Methods. IMA J. Numer. Anal. 1988, 8, 141-148. [CrossRef]

12. Li, Y; Liu, Z.; Hongwei, L. A subspace minimization conjugate gradient method based on conic model for unconstrained
optimization. Comput. Appl. Math. 2019, 38, 16. [CrossRef]

13. Wang, T.; Liu, Z; Liu, H. A new subspace minimization conjugate gradient method based on tensor model for unconstrained
optimization. Int. J. Comput. Math. 2019, 96, 1924-1942. [CrossRef]

14.  Zhao, T,; Liu, H.; Liu, Z. New subspace minimization conjugate gradient methods based on regularization model for unconstrained
optimization. Numer. Algorithms 2020, 87, 1501-1534. [CrossRef]

15.  Andrei, N. An accelerated subspace minimization three-term conjugate gradient algorithm for unconstrained optimization.
Numer. Algorithms 2014, 65, 859-874. [CrossRef]

16. Yang, Y, Chen, Y,; Lu, Y. A subspace conjugate gradient algorithm for large-scale unconstrained optimization. Numer. Algorithms
2017, 76, 813-828. [CrossRef]

17.  Li,M,; Liu, H,; Liu, Z. A new subspace minimization conjugate gradient method with non-monotone line search for unconstrained
optimization. Numer. Algorithms 2018, 79, 195-219. [CrossRef]

18.  Yao, S.; Wu, Y,; Yang, J.; Xu, J. A Three-Term Gradient Descent Method with Subspace Techniques. Math. Probl. Eng. 2021, 2021,
8867309.

19. Yuan, Y. A review on subspace methods for nonlinear optimization. Proc. Int. Congr. Math. 2014, 807-827.

20. Wei, Z; Yao, S.; Liu, L. The convergence properties of some new conjugate gradient methods. Appl. Math. Comput. 2006, 183,
1341-1350. [CrossRef]

21. Yuan, Y. A modified BFGS algorithm for unconstrained optimization. IMA J. Numer. Anal. 1991, 11, 325-332. [CrossRef]

22. Dai, Y; Yuan, J.; Yuan, Y.X. Modified two-point stepsize gradient methods for unconstrained optimization. Comput. Optim. Appl.
2002, 22, 103-109. [CrossRef]

23. Dai, Y.H.; Kou, C.X. A nonlinear conjugate gradient algorithm with an optimal property and an improved Wolfe line search. Soc.
Ind. Appl. Math. ]. Optim. 2013, 23, 296-320. [CrossRef]

24. Dolan, E.D.; Moré, ].J. Benchmarking optimization software with performance profiles. Math. Program. 2002, 91, 201-213.

[CrossRef]


http://doi.org/10.6028/jres.049.044
http://dx.doi.org/10.1093/comjnl/7.2.149
http://dx.doi.org/10.1016/0041-5553(69)90035-4
http://dx.doi.org/10.1007/BF00940464
http://dx.doi.org/10.1137/S1052623497318992
http://dx.doi.org/10.1007/s10957-018-1393-3
http://dx.doi.org/10.1002/zamm.19950750118
http://dx.doi.org/10.1007/s11425-016-0279-2
http://dx.doi.org/10.1093/imanum/8.1.141
http://dx.doi.org/10.1007/s40314-019-0779-7
http://dx.doi.org/10.1080/00207160.2018.1542136
http://dx.doi.org/10.1007/s11075-020-01017-1
http://dx.doi.org/10.1007/s11075-013-9718-7
http://dx.doi.org/10.1007/s11075-017-0284-2
http://dx.doi.org/10.1007/s11075-017-0434-6
http://dx.doi.org/10.1016/j.amc.2006.05.150
http://dx.doi.org/10.1093/imanum/11.3.325
http://dx.doi.org/10.1023/A:1014838419611
http://dx.doi.org/10.1137/100813026
http://dx.doi.org/10.1007/s101070100263

Symmetry 2022, 14, 80 18 of 18

25.  Andrei, N. An unconstrained optimization test functions collection. Adv. Model. Optim. 2008, 10, 147-161.
26. Hager, W.W.; Zhang, H. A new conjugate gradient method with guaranteed descent and an efficient line search. SIAM J. Optim.
2005, 16, 170-192. [CrossRef]


http://dx.doi.org/10.1137/030601880

	Introduction
	Search Direction and Step Size
	Direction Choice Model
	Selection of Initial Step Size

	The Obtained Algorithm and Descent Property
	The Obtained Algorithm
	Descent Properties of Search Direction

	Convergence Analysis
	Numerical Results
	Conclusions and Prospect
	References

