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Abstract: The goal of the HIBEAM/NNBAR program is to search for baryon number violation via
the conversion or oscillation of neutrons into sterile neutrons and/or antineutrons at the European
Spallation Source. A key experimental component of the program is the construction of an annihila-
tion detector to directly observe the production of an antineutron following the oscillation. Design
studies for the annihilation detector are presented. The predicted response of the detector models
are studied using GEANT4 simulations made with Monte Carlo simulations of the annihilation
signal topology and cosmic ray backgrounds. Particle identification and sensitive discriminating
observables, such as invariant mass and sphericity, are shown.

Keywords: neutron-antineutron oscillations; sterile neutrons; baryon number violation; particle
detectors; detector simulation

1. Introduction

The HIBEAM/NNBAR program [1] is a proposed two-stage experiment at the Eu-
ropean Spallation Source (ESS) designed to search for neutrons converting, or oscillat-
ing, into antineutrons (n → n̄) and/or sterile neutrons (n → n′). Such an observation
would indicate baryon number violation, a fundamental Sakharov condition for baryoge-
nesis [2], or act as a sign of a potential dark sector [3]. In addition to shedding light on
the baryon asymmetry of the universe [4–7], neutron conversions would provide the first
falsification outside of the neutrino sector of the Standard Model (SM) of particle physics.
Neutron conversions thus feature in theories which extend the SM, including supersym-
metry [8,9] and extra dimensions [10,11], and can accommodate dark sectors of feebly
interacting particles [12]. This paper focuses on design studies for a key component of the
HIBEAM/NNBAR experimental program: the detector which would observe antineutron-
nucleon annihilation interactions following the hypothetical baryon violating process.

The first stage of the program is termed High Intensity Baryon Extraction and Measure-
ment (HIBEEAM) using the general fundamental physics beamline of the ANNI design [13].
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In addition to opening a discovery window for sterile neutron searches, HIBEAM plans
a pilot experiment for free neutron-antineutron conversions with an aim to match the
sensitivity of the last search for nn̄ with free neutrons, which took place at the Institut
Laue-Langevin (ILL) in the early 1990s [14]. This would be followed by a second stage
(NNBAR), which would exploit the ESS Large Beam Port (LBP), with which the search
sensitivity would be increased by three orders of magnitude. The HIBEAM detector size
would be smaller than that planned for NNBAR. It should also be noted that the smaller
HIBEAM detector could also be deployed at another neutron facility, such as the ILL,
in advance of the more extensive HIBEAM program at the ESS [15].

This article presents progress towards a conceptual design of the HIBEAM/NNBAR
annihilation detectors. Monte Carlo simulations of signal and cosmic ray backgrounds
are made with GEANT4 [16–18] and incorporated into the HIBEAM/NNBAR software
framework [19]. This work is a first step within a broad program that will study all known
background sources and optimise the sensitivity of the experiments.

This paper is organized as follows. An overview of how a free neutron oscillation
experiment is made is given in Section 2. Section 3 describes the required detector per-
formance and discusses early design concepts for the HIBEAM and NNBAR detectors.
The signal and background models used within the detector simulation are described in
Section 4. Particle identification is detailed in Section 5, followed by a study of quantities
based on the observed final state in the detector, which can be used to discriminate signal
and background (Section 6). Finally, a summary and discussion of the current and future
scope of this work is given in Section 7.

2. Free Neutron Oscillation Experiments: HIBEAM and NNBAR

A schematic view of a free neutron oscillation experiment can be viewed in Figure 1.
A flux of slow (moderated) neutrons is reflected and guided from the source through
a magnetically shielded region of longitudinal length L to a thin carbon target disk
(thickness ~ 100µm). Around 100% of antineutrons would annihilate in this target. A new
mode of operating a n → n̄ search based on coherent n and n̄ mirror reflection has been
proposed [20] which can potentially increase the sensitivity of a search by another order
of magnitude. This is an interesting and exciting possibility, although the validity of this
approach remains to be experimentally tested.

An alternative approach to looking for n → n̄ with neutrons in flight can be made.
Here, n → n̄ would proceed via sterile neutron transitions [12]. This search requires
magnetic field scans of the neutron flight volumes rather than the neutrons being in a
quasi-free state, as would be the case for Figure 1.

Figure 1. A schematic view of a free n→ n̄ experiment showing the expected pionic final state.

The key detection feature for both types of searches is that, should one of the neutrons
convert into an antineutron, it will annihilate with a nucleon in the target disk, producing
a characteristic multi-pion final state for which any detector must be optimised.

The HIBEAM and NNBAR programs [1] use the principles described above. NNBAR
would exploit the so-called Large Beam Port (LBP), which corresponds to three normal-
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sized beam ports. It would also benefit from a cold liquid deuterium moderator [21] and
high reflectivity neutron optics. The propagation length of neutrons at NNBAR would be
around 200 m. The HIBEAM annihilation detector would be of a smaller scale than the
NNBAR detector, exploiting the cold neutron beam available at a beamline of the ANNI
design [13]. The propagation length is around 50 m.

The sensitivity of a n → n̄ search with free neutrons is traditionally quantified by
the figure of merit (FOM), with FOM = 〈Nn · t2

n〉, where Nni is the number of neutrons
per unit time reaching the annihilation foil after tni seconds of flight. The FOM depends
on the neutron flux, propagation length, neutron velocity spectrum, beam divergence,
and running time.

The FOM values that HIBEAM and NNBAR would be expected to achieve [1] are
FOMHIBEAM ∼ O(FOMILL) and FOMNNBAR ∼ O(103)× FOMILL, respectively, where
FOMILL is the FOM obtained at the last search with free neutrons at the ILL [14]. A
substantial enhancement to the expected sensitivities could be achieved with the approach
of Ref. [20] though the usefulness of this approach remains to be tested by direct calculations
similar to those done in Ref. [15].

3. Annihilation Detector

The FOM does not take into account the effect of an imperfect annihilation detector.
Detectors for ESS searches must be able to, at the very least, match the performance of
those utilized at the ILL and, ideally, given advances in detector technologies in recent
decades, exceed it. This implies a signal efficiency of at least 50% and sufficient background
rejection capability such that zero background events remain after event selections.

3.1. Guiding Principles behind the Design of an Annihilation Detector

The detector is used to measure a dominantly pionic final state, typically comprised
of between 2–8 (with an average of ~5) pions [22,23]. The pions are expected to be roughly
isotropically distributed in angle; for annihilation channels used in this analysis. Kaon
production during annihilation is heavily suppressed due to phase space effects and is
not considered here. Resonances, such as η, ρ and ω mesons, are included and considered
unstable within the nucleus. Particle generation is calculated via the annihilation process at
a particular radial position within the nucleus, simulated via a nuclear model of Fermi (gas)
motion and including an attractive antinucleon potential. Nuclear transport (so-called final
state interactions) is handled via a stochastic intranuclear cascade model [22–25]. Nuclear
knockouts, such as protons emitted from the nucleus following nuclear transport and
final state interactions, can also be produced but generally have lower kinetic energies.
The simulation is validated against low-energy interactions from available antiproton
data [22,25]. For a full overview of all the inner workings of the generator, see Ref. [25].

The distribution of kinetic energies of outgoing particles generated by the annihilation,
including those resulting from scattering and final state interactions, are shown in Figure 2.
The decay products of heavy resonances are included. The pion and photon energies extend
up to around 800 MeV, though they peak at around 100 MeV (for pions) and 300 MeV
(photons). The photon energies are larger, as they arise from heavy resonance decays.
Protons typically have the lowest kinetic energies; the kinetic energy distribution peaks at
around 50 MeV.

The invariant mass of the antineutron-nucleon system is ~1.88 GeV/c2. However, due
to final state interactions and meson absorption, values far lower than this may be observed.
This is seen in Figure 3, which shows the annihilation’s initial and final invariant mass
distributions. The initial state is defined here to comprise the mesonic system produced
after the antineutron-nucleon annihilation. The final state is the system of pions and
photons produced after nuclear effects are taken into account and resonances have decayed.
Note that the tail leading to low values of invariant mass (.1 GeV) for the final state is due
to absorption of mesons, and so acts as a loss when only considering this parameter space.
This curve includes photons resulting from the resonance decays. Such effects can similarly
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affect predictions of other kinematic quantities. Figure 3 also shows the distribution of
the total vector sum of the mesons’ (pions’) momenta, which extends to high values even
within the initial state due to Fermi motion and the presence of an attractive antinucleon
potential [23]. The tail of the final state’s total vector momentum of all pions and photons
elongates due to both the absorption of mesons as well as the decay of heavy resonances,
generally leading to further kinematic imbalance in the total vector momentum on an
event-by-event basis for the mesonic system. The correlation between the total momentum
and invariant mass for the initial and final states is also shown in Figure 3. The final state
distribution shows the importance of absorption and rescattering via final state interaction
effects, especially in the prediction of the invariant mass.

Figure 2. The distribution of the final state kinetic energies of outgoing annihilation-generated
particles. In red, π+ are shown; in green, π0; blue is π−; pink shows protons, p; and purple shows
photons, γ, resulting from certain heavy resonance decays.

Figure 3. The initial and final state distributions of invariant mass (top left), the absolute value of
the total momentum (top right), the relationship between the total momentum and invariant mass
for the initial (bottom left) and final (bottom right) states.
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Given that these experiments are looking for an ultra-rare process, the ultimate goal in
designing a neutron oscillation detector is the possibility to claim a discovery with only one
event recorded. This need motivates a number of the guiding principles of the detectors’
designs, which will be outlined below.

A common vertex of origin in the foil with at least two associated charged pion tracks
needs to be reconstructed (to ~mm precision). Excellent particle identification (PID) is
required; for example, it must be possible to discriminate between signal-charged pions
and protons arising due to spallation backgrounds. This can be achieved via exploitation
of measurements of the specific energy loss dE

dx , which is particularly well measured with
time projection chambers (TPCs). Furthermore, it is important that the momentum and
energies of all annihilation and nuclear products be measurable in order to reconstruct
event kinematics and exploit event-level characteristics of the signal event, such as the
expected isotropy of produced particles. Corrections based on statistical averages are not
allowed due to the rare nature of the process being measured, as one will never have many
events to make such types of corrections. However, since the annihilation event happens
on a nucleus and not in free space, the rejection power of some observables such as total
energy and invariant mass will be degraded, implying that some of the overall demands
on the calorimeter energy reconstruction for the signal final-state particles can be relaxed.
Since a significant fraction of the available energy is tied up in the rest masses of the pions,
accurate PID and thus measurements of the multiplicities of different types of particles are
themselves indirect energy measurements. For a final-state with four pions, nearly 600 MeV
of the total energy is accounted for. Precision electromagnetic calorimetry is, however,
needed. Neutral pions, a large part of the expected signal, will require reconstruction
via their decay π0 → γγ. In addition, timing measurements, from a dedicated cosmic
veto and from the individual detector components, are needed to reject backgrounds from
cosmic rays (charged and neutral). The detector must also be sufficiently well granulated
to be able to cope with the flux of gammas from neutron capture at the target and other
beam-related backgrounds.

The trigger system for the detector must be able to identify and read out annihilation
candidate events within a reasonably short time window to minimize overlaid detector
hits from unrelated background events. This was an issue in the ILL experiment, where
the relatively high trigger time window (150 ns) meant that multiple gamma events from
neutron capture in the target were included, accounting for as much as 32% of the total
trigger rate (~4 Hz). With fast scintillator and/or Cherenkov detectors read out with high-
speed analog-to-digital converters (ADCs), the time windows can be substantially reduced.
In the most pessimistic case where the trigger timing resolution is limited to the ADC clock
interval, the maximum trigger window would be double the ADC clock period (e.g., 50 ns
for a 40 MHz ADC rate similar to LHC [26]) due to the arbitrary timing of the arriving
neutrons. However, a modern trigger/DAQ system capable of fine timing extraction
from shaped, digitized pulses may allow smaller trigger timing windows to be applied.
In the simplest scenario, the trigger will accept events with multiple hits in the scintillator
layers exceeding a minimum threshold. Selectivity could be further improved by including
additional trigger criteria based on event topology and/or particle identification based on
the calorimeter data.

3.2. Design of HIBEAM and NNBAR Annihilation Detectors

Based on the discussion above, detectors for HIBEAM and NNBAR are being designed
(a prototype calorimeter comprising scintillators and lead glass is also under construc-
tion [27]). The designs are being studied with GEANT4. The principal features of the
designs which are being considered are discussed below.

• Tracking and dE
dx measurement would be provided by a TPC. Three-dimensional

tracking could also be performed with a silicon tracker to be placed inside the vacuum
tube, which guarantees good vertex resolution and corrects any possible multiple
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scattering effects when particles travel through the vacuum tube (to be made of steal
or aluminum);

• A stack of 10 scintillator slats is needed for particle range measurements. The slats
are arranged in layers with the slat orientation arranged orthogonally for each layer.
By reading out on each end of the scintillator, rudimentary tracking can be done with
the scintillator stack to supplement the TPC and silicon trackers;

• An electromagnetic calorimeter made of lead glass would be used to measure the
photons from π0 decay. This choice of active material is motivated by the need to maxi-
mally absorb the energy of the neutral pions in an effort to avoid statistical fluctuations
in energy deposits given the expected “intermediate” energy range (200–400 MeV) of
the particles. Moreover, as the energy deposited is measured via Cherenkov radiation,
lead glass provides some important directional information through the orientation of
the Cherenkov cone;

• A dedicated cosmic veto and overburden surrounding the detector is also needed,
though this is not in the current design shown in this work.

The NNBAR detector is shown in Figure 4. A box geometry is currently being con-
sidered. The detector is 600 cm long in the longitudinal (z) direction and has a width and
height of 515 cm. Sizes for each detector component are specified in the figure.

Figure 4. Schematic overview of the NNBAR detector design.

The preliminary detector designs for the HIBEAM experiment are similar to the
NNBAR detector, albeit without silicon tracking. A cross-sectional and side view of the
detector, together with specifications of dimensions, are shown in Figure 5. As can be seen,
the size of the TPC modules is reduced, though the scintillator, and lead glass dimensions
remain unchanged compared to the NNBAR detector. The HIBEAM detector is of the
same length as the NNBAR detector in the longitudinal direction, though, after taking into
account the smaller TPC, it is reduced in transverse size compared to the NNBAR design.

The following sections show distributions related to the detector performance for
signal and cosmic muon background events. Where distributions of specific quantities for
HIBEAM and NNBAR are similar, only the NNBAR-related distribution is shown.
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(a)

(b)

Figure 5. The HIBEAM detector in GEANT4. A cross-sectional view (a) and side view (b) are shown.
The dimension of the components are labelled in (a).

4. Signal and Background Simulations

The HIBEAM/NNBAR software framework [19] was used as an interface for a num-
ber of simulations needed to predict signal and background processes. For the NNBAR
detector, a simulation was used of neutrons transported to the target disk via an opti-
mized differential reflector following emission from a liquid-deuterium moderated neutron
source [28,29]. For HIBEAM, a simulated sample of neutrons produced for a beamline
of the ANNI concept was used [13]. A model of antineutron-nucleon annihilation with
subsequent nuclear effects [22,23] was used to predict the post-annihilation particle states.
Decays, transportation and interactions in the detector medium were studied with the
GEANT4 simulation.

Cosmic ray muons may also create signals in the NNBAR detector. The signature of
these events in the detector was studied using the Cosmic-ray Shower Library (CRY) [30]
interfaced with the GEANT4 simulation.

Figure 6a shows a signal event with five final-state pions in the NNBAR detector with
a nuclear fragment from the carbon target. When considering the charge conservation of
an annihilation event, the total charge is six. This is contributed by the 6 protons in the
12C nucleus, and the orbital electrons are ignored. The pions have energies ranging from
around 20 to 600 MeV. Figure 6b shows a cosmic muon of kinetic energy 3.4 GeV impinging
the NNBAR detector. The particle enters from the top detector module and leaves the
detector from the bottom.
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(a) (b)

Figure 6. Event displays with the NNBAR detector showing (a) a signal event with five pions; (b) a
cosmic muon. Red (blue) color in the figure represents a negatively (positively) charged particle.

5. Particle Identification

In order to robustly suppress background and characterise a possible signal event,
particle identification is required. A number of tools are available. Studied here is the
specific energy loss ( dE

dx ) in the TPC, which will allow for discrimination between charged
pions and protons, π0 identification via the two-gamma decay using the calorimeter,
and cosmic muon discrimination using timing-sensitive parts of the detector.

5.1. Energy Loss in the TPC

The TPC chambers in the current GEANT4 simulations are filled with 80% Ar and
20% CO2. Ideally, the TPC simulation should cover the calculation of ionization, electron
drift and avalanches given a detailed geometry and high voltage. However, this would
significantly increase the time and complexity of the simulation. As the current focus of the
simulations is the overall response of the particles to the detector, an alternative approach is
used, where the TPC modules are constructed as rectangular boxes made of Ar/CO2. Each
module is divided into 1 cm× 1 cm× 1 cm cells to imitate the readout pad. The energy
deposited and number of electrons per cell for each event, instead of the readout signal,
are simulated with this setup.

The TPC dE
dx can be computed in terms of the number of electrons induced per cm

(e−/cm). The e−/cm of a particle in the ith row of a TPC module can be approximated by
the equation below.

dE
dx

∣∣∣
i
=

ni
l

(1)

Here, ni is the number of electrons induced in row i, and li is the total track length in
row i. Collecting the electron yield in all rows gives a distribution of these dE

dx values.
Using a sample of signal events, the dE

dx in the TPC for each particle is then computed.
The dE

dx value per particle is presented as a function of the particle’s true momentum in
Figure 7. Bands of charged pions and protons can be seen. Nuclear fragments are blocked
by the aluminium tube and thus do not penetrate to the TPC. It must be noticed that in the
real NNBAR experiment, the momentum of the particles will not actually be measured,
owing to the need for magnetic shielding in the neutron propagation region. Figure 7 is,
however, important for validating the current simulation methods.
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Figure 7. The expected mean energy loss in the TPC, dE
dx , for simulated pions and protons.

5.2. Neutral Pion Reconstruction

Neutral pions decay ~99% of the time to two photons, the energies of which are related
to the π0 rest mass by m2

0 = 2E1E2(1− cos θ), where E1 and E2 are the energy of the two
respective photons and θ is the angle between the two momentum vectors of the photons.

The gammas from the π0 leave no trace in the silicon layers and TPC. However, they
interact with the calorimeter medium, and one can thus measure the photon energies
through the Cherenkov generated photons. The angle between the gammas, (θ), can be
determined by considering the position difference of the different detector elements that
fired and assuming a common point of origin determined to high precision with tracking
measurements of charged pions. Photon conversions are also possible in the aluminium
tube. In such cases, tracks of e+ and e− will be seen by the TPC. Both e+ and e− carry the
energy of the original gamma and will be detected by the calorimeter.

In order to check the π0 reconstruction accuracy, a sample of simulated single π0

events with each π0 produced in a random direction and possessing a kinetic energy of
250 MeV was studied. Each pion was produced at the centre of the NNBAR detector.
Figure 8 shows the diphoton invariant mass distribution. The distribution is shown for
the cases where (a) the true photon energies are used, and the angle between them is
determined geometrically using the positions of the energy depositions, (b) the deposited
energy and true angle are used and (c) the deposited energy and geometrically determined
angle are used. Incomplete energy reconstruction and an imprecise angle determination can
both lead to a degradation of the neutral pion reconstruction, with the angle measurement
contribution being largest. A tail at lower values of the diphoton mass is also seen. This
corresponds to the situation where a photon converts into an electron-positron pair in the
detector, and the energy depositions from one of these particles is wrongly assumed to be
from a photon. Energy from an electron or positron is then combined with a photon to
form a candidate diphoton mass.

If the reconstructed invariant mass of the two photons falls in the range 100 < M <
180 MeV, these two photons would be identified as photons from a π0 decay. In the case
where the geometrically determined angle and deposited energies are used, ~87% of π0

decays which are reconstructed will fall in the mass window 100 < M < 180 MeV.
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(a) (b)

(c)

Figure 8. Distribution of the diphoton mass for simulated events containing a single neutral pion
using (a) the true energies of the photons and the geometrically determined angle between them,
(b) the deposited energy and the true angle, and (c) and the deposited energy and the geometrically
determined angle.

5.3. Cosmic Muon Identification with Timing

Timing measurements in the detector play a vital role in determining whether particles
emanate from a common annihilation process. Particles from external sources may be
identified and rejected by assuring that the particle travel direction must be outwards. This
can be achieved by comparing the time difference (∆t = t1 − t2) between the time of the
first (t1) and last (t2) signals in the scintillators.

Each cosmic event contains one charged cosmic muon passing through the detector,
which would leave a track in the TPC that can be pointed back to the target disk. Since
the cosmic muons cross the top and bottom of the detector, ∆t for the cosmic background
is expected to be larger than for the signal. This can be seen in Figure 9, which shows
the ∆t distribution for the HIBEAM and NNBAR detectors, with the separation between
the signal and cosmic background growing, as expected from geometric considerations
with the larger detector. It should be noted that a good separation would thus be expected
from the scintillators in the present GEANT4 design alone. The development of a dedicated
scintillator-based cosmic ray veto shield surrounding the detector would add further
separation power, as would the utilisation of timing information from the lead glass
calorimeter components. Typical timing resolutions for scintillator staves are 1–1.5 ns [31].
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(a) (b)

Figure 9. Timing quantity, ∆t, for signal and cosmic muon background for the HIBEAM (a) and
NNBAR (b) detectors.

5.4. Charged Pion and Proton Definitions

An important task for a free n→ n̄ experiment is the ability to separate charged pions
from protons. This can be done by using information from the particle dE

dx in the TPC
and the number of scintillator layers travelled by the particle (the so-called scintillator
range). Figure 10 shows the TPC dE

dx distribution of charged pions and protons that can
penetrate scintillators at the layers 1, 5, 7 and 10, where the lowest (highest) layer number
corresponds to the layer closest to (furthest from) the TPC. Good separation between
protons and pions is observed, which increases in layer number. This allows a PID selection
to be made for particles penetrating a specific number of layers.

(a) (b)

(c) (d)

Figure 10. Expected distributions of the mean rate of energy loss, dE
dx , for protons (orange) and pions

(blue), for different ranges in scintillator layers for the particles. The selection windows for dE
dx are

also shown - selected pions (protons) correspond to the region to the left (right) of the dashed vertical
line. The scintillator ranges are (a) layer 1; (b) layer 5; (c) layer 7; (d) layer 10.

PID selections can be made by utilising information in the TPC dE
dx and scintillator

range, as shown in Figure 11. Particles above the defined boundary are tagged as protons,
whereas those below it are tagged as charged pions. The PID definitions for protons and
charged pions are given below.
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π± : TPC
dE
dx

< tN (2a)

proton : TPC
dE
dx
≥ tN (2b)

Here, tN refers to the cut value for particles that can pass through N scintillator layers.
When testing the object definition with simulated signal events, ~99% (~98%) of the charged
pions (protons) passing through the detector can be correctly identified.

Figure 11. The expected mean rate of energy loss, dE
dx , for protons and pions in the TPC, shown for

the range in scintillator layers for each particle.

6. Event Level Distributions

Beyond quantities characterising the identity of individual particles, it is important to
study observables which use information from many particles in the observed final state.
A number of such quantities are studied here: pion multiplicities, the total invariant mass,
and sphericity.

In order to study these variables, the kinematic quantities of the detected particles,
such as their kinetic energy, mass and momentum direction, have to be determined. The ki-
netic energy of a particle can be estimated by the amount of energy deposited in the
calorimeter. A charged particle leaves a track in the TPC and a cone surrounding that
particle with opening angle 25 degrees is used to associate with that particle energy de-
positions in the scintillator staves and lead glass calorimeter. The kinetic energy would
be the sum of the total energy deposited. The momentum direction of a charged particle
can be determined by the track in the silicon detectors or TPC. The mass of the charged
particle (pion or proton for this study) is determined by the object definition. Energy loss
in a calorimeter module that cannot be associated with any TPC track is considered to be a
photon. A neutral pion is constructed with a photon pair. The term “detector level” is used
in this section to refer to distributions calculated using the above quantities and definitions.

6.1. Neutral and Charged Pion Multiplicity

The multiplicities of neutral and charged pions in an event are key observables to be
used to determine whether annihilation happened in the target. The true and detector-level
multiplicities are shown. The multiplicities of charged and neutral pions and the total
number of pions in each annihilation event are shown in Figure 12. The detector-level
multiplicities versus true multiplicities are presented. As can be seen, the number of
charged pions at the detector level is typically the same as the true number generated,
though there are observable migration effects. For example, some charged pions are lost
through geometric effects, leading to an underestimation of charged pion multiplicity.
An overestimation can also occur if, eg, a proton or an electron or positron from a photon
conversion is falsely identified as a pion. Around 75% (80%) of signal events at NNBAR
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(HIBEAM) contain two charged pions passing through the TPC, which will be necessary
for the reconstruction of an annihilation vertex. The detector-level neutral pion multiplicity
shows a more unbalanced migration effect in that there is a greater tendency for the
multiplicity to be underestimated. This is due to the need to find two photons for each
pion and the effect of geometric acceptance.

(a) (b)

(c)

Figure 12. True and detector-level multiplicities for (a) charged, (b) neutral and (c) all pions.

6.2. Invariant Mass Reconstruction

A naive expectation of the final state invariant mass is that it should match that of an
antineutron/nucleon mass (~1.88 GeV) system. However, nuclear effects complicate this
picture. At the detector level, the invariant mass W of an event is given below.

W =
√
(∑

i
Ei)2 − (∑

i
~pi)2 (3)

Here, the index i represents charged pions and photons in an event. The particle
momentum ~pi and energy Ei are determined by energy deposited in the calorimeter and
object definitions. Figure 13 shows the invariant mass distributions of annihilation events
at truth and detector levels for the signal and cosmic muon background. The cosmic
background is shown in the case of a single muon event, taken to be misidentified as a
pion. The true signal shows a strong peak around ~1.9 GeV, as expected, though there is a
broad tail at lower masses extending to around 1 GeV. The detector level signal does not
reproduce the shape of the true signal distribution and corresponds to a broad distribution
extending up to around 2 GeV. The difference between the detector level and true invariant
mass distribution arises due to geometric acceptance effects, charged pions not being
stopped in the detector, and the misidentification of pions in the object definition. Events
containing only a cosmic muon correspond with low values of invariant mass and there is
clear separation between these and signal events.
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Figure 13. The invariant mass distributions from the signal and cosmic background events.

6.3. Sphericity

Particles in the signal final state are expected to be distributed isotropically. The spheric-
ity event shape variable can thus be used as a sensitive variable to discriminate the signal
and backgrounds. Sphericity (S) is defined such that a perfectly isotropic (spherical) event
has S = 1. To define sphericity, it is first necessary to write down the energy-momentum
tensor corresponding to the kinematic information of the event, as below.

Mxyz = ∑
i

 p2
xi pxi pyi pxi pzi

pyi pxi p2
yi pyi pzi

pzi pxi pzi pyi p2
zi

 (4)

Here, the index i runs through all particles measured from the experiment. Eigenval-
ues λ1,λ2 and λ3 can be obtained from the tensor. These eigenvalues are normalized and
ordered such that λ1 + λ2 + λ3 = 1 and λ1 > λ2 > λ3.

The sphericity S of the event is defined as:

S =
3
2
(λ2 + λ3) (5)

Figure 14 shows the analogous distribution of sphericity for true signal events and
detector-level signal and cosmic muon background events. As expected, the pure cosmic
ray events have small values of sphericity, while signal events have larger sphericity.
The discrepancy between true and detector-level sphericity arises due to the same factors
as for the invariant mass variable.

Figure 14. The expected distribution of sphericity for signal events at the generator level and detector
level and for cosmic ray muons at the detector level.

7. Discussion and Summary

The HIBEAM/NNBAR program is a step-wise experimental program searching for
the conversion of neutrons to antineutrons and/or sterile neutrons with goal of providing
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laboratory proof of baryon number violation. The program can lead to an improvement in
sensitivity for neutron-antineutron conversion of three orders of magnitude. To achieve
this, an annihilation detector meeting specific demands is needed.

As studied here, the annihilation of baryon numbers in an antineutron-nucleon re-
action gives rise to a characteristic set of properties which a detector can be designed to
measure. A strong robustness of a signal observation with a small number of events is nec-
essary. Given the scientific impact of a discovery, even the observation of one annihilation
event candidate may, even if not fully conclusive, motivate years of further data-taking.

The task described in this paper is to study an experimental setup which records the
annihilation final state as completely as possible and with as good resolution as possible
for each annihilation final state parameter. The experiment must be able to suppress back-
grounds to allow a zero-background selection, as was achieved at the last experiment with
free neutrons. Early designs of annihilation detectors have been made and studied with
models of signal and cosmic muon background. The next stages of this work correspond
to the continued development of the detector models and sensitive variables. Of key
importance is the study of models for all potential background sources. While cosmic
muon backgrounds were used here as a starting point, it is one of many sources. Examples
include neutral cosmic rays, skyshine [32], and high energy spallation products both inside
and outside of the beampipe. A large flux of gammas from activated nuclei in the target
foil and elsewhere is also expected and must be dealt with. Simulations with PHITS [33]
showed that, for HIBEAM (NNBAR), a gamma flux of 105 (107) gammas/s from the target
foil is expected. The granularity and read-out timing window should ensure that only
several such gammas could contribute to a background event or interfere with a signal
event. This will be fully quantified.

The experimental task of designing a sensitive annihilation detector is unusual and
interesting, as the signal particles to detect are in the few hundred MeV range, i.e., in
principle too high for nuclear physics and too low for particle physics. This is a regime
where calorimetry (electromagnetic or hadronic) is hampered by poor shower statistics.
Charged hadrons are unlikely to deposit all their energy with EM processes alone and,
if they do not interact hadronically, they will only deposit a fraction of their kinetic energy.
Multiple scattering leads to non negligible scattering angles for low-mass particles (like
pions) at these energies. This motivates the choices made here of exploiting precision
detection techniques where they can usefully be done, e.g. a TPC for particle identification
and an electromagnetic calorimeter for neutral pion reconstruction. Furthermore, the setup
itself imposes some important and inevitable constraints which impact the optimisation
of the final design. The most severe of these is the large aperture (inner diameter ~2 m)
needed to meet the requirements on neutron flux. Thus, detection of the isotropic emission
of annihilation products can never be 100% efficient. Due to the large diameter of the
vacuum vessel, it has to have thick walls to withstand the air pressure, leading to multiple
scattering effects. This motivates the investigation of the potential of tracking inside the
beampipe to mitigate the effect of multiple scattering on search sensitivity.

A neutron-neutron annihilation event has a characteristic signature which can be
exploited in searches. A multi-pion final state with an invariant mass up to 1.9 GeV
is extremely distinctive. Quantities which are sensitive to the event topology, such as
sphericity, have been shown to be promising discriminants. This work will continue with
other event-shape variables.

To conclude, GEANT4-based models have been a part of ongoing design work for
annihilation detectors to observe n→ n̄ conversions at ESS. Initial studies of discriminating
observables have been shown. Previous experiments realised zero background searches
with detector technologies appropriate for the 1990s. The detector under design in this paper
exploits more recent and sophisticated technologies and would be expected to also achieve
superb background rejection. Demonstrating this is a main goal of this work, which is itself
part of a program to develop conceptual designs for the HIBEAM/NNBAR experiments.
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