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Abstract: Modular architecture is very conducive to the development, maintenance, and upgrading
of electromechanical products. In the initial stage of module division, the design structure matrix
(DSM) is a crucial measure to concisely express the component relationship of electromechanical
products through the visual symmetrical structure. However, product structure modeling, as a very
important activity, was mostly carried out manually by engineers relying on experience in previous
studies, which was inefficient and difficult to ensure the consistency of the model. To overcome
these problems, an integrated method for modular design based on auto-generated multi-attribute
DSM and improved genetic algorithm (GA) is presented. First, the product information extraction
algorithm is designed based on the automatic programming structure provided by commercial CAD
software, to obtain the assembly, degrees of freedom, and material information needed for modeling.
Secondly, based on the evaluation criteria of product component correlation strength, the structural
correlation DSM and material correlation DSM of components are established, respectively, and the
comprehensive correlation DSM of products is obtained through weighting processing. Finally, the
improved GA and the modularity evaluation index Q are used to complete the product module
division and obtain the optimal modular granularity. Based on a model in published literature and a
bicycle model, comparative studies are carried out to verify the effectiveness and practicality of the
proposed method.

Keywords: modularization; automatic modeling; design structure matrix; improved GA

1. Introduction

To cope with the increasingly fierce market competition, manufacturers need to deal
with a series of issues such as product diversity, product customization, shorter product
life cycles, and rapidly changing policies and environments [1]. The idea of modularity in
product architecture is widely recommended as a corporate strategic decision to deal with
these issues all at once [2]. As a scientific methodology supporting product development,
modularity is to plan a series of modules (including basic modules and optional modules)
for product families or product platform modularity based on the products’ structural
characteristics [3]. Compared with the conventional product architecture, the advantages
of modular architecture are reflected in all stages of the product life cycle [4,5]. Reasonable
product module planning is not only conducive to product development, manufacturing,
and upgrading but also can effectively reduce the impact on the environment during prod-
uct service and after scrapping [6,7]. Modularity is recognized as a product development
strategy by academia and industry, and the openness of modular architecture makes it play
an important role in sustainable product development [8,9]. Modular design concepts and
methods have been used in many electromechanical product design processes, such as
coffee makers [10], industrial steam turbines [11], wind turbines [12], and large tonnage
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crawler cranes [13,14]. The modular design methods, as the crucial supporting technique
for the design of mechanical and electronic products, are still regarded as a research hot
spot in product design for life cycle and sustainability [15].

To meet the different requirements of product module design, researchers around
the world have put forward a lot of practical methods for product modularization. These
methods can be grouped into two main types: the heuristic methods and the clustering
methods [16]. The heuristic methods mainly employ all kinds of swarm intelligence op-
timization algorithms to gain the optimal or approximate solution of the specific fitness
function built upon some module driving forces. These algorithms include the simulated
annealing [17], genetic algorithm (GA) [18], grouping genetic algorithm (GGA) [19], and
strength Pareto evolutionary algorithm 2 (SPEA2) [20]. For example, to reduce the produc-
tion cost and lead time of filament winding process equipment to cope with the change
in customer demands, Xu et al. established the relationship matrix between the product
components in consideration of the structure, function, and stability factors, and then used
the GGA to solve the model with the objective function of maximizing the interaction and
stability in the module [21]. The clustering method is based on the membership degree
between components and clustering centers or the closeness of the relationship between
components to obtain the modular scheme of products, such as fuzzy c-means [22], k-
means [23], and hierarchical clustering [24]. For instance, Li et al. proposed an integrated
product modularization scheme based on flow analysis, design structure matrix (DSM),
and fuzzy clustering to compose a flexible platform [25]. In addition, some methods in
other fields, such as the atomic theory [26] and community discovery algorithm [27], are
also used for product module partitioning by some scholars.

In the initial stage of module partitioning, the most important preparatory work is to
establish a mathematical model of product structure to express the complicated relationship
between product components [28]. Graph-based and matrix-based representational tools
provide a graphic method to represent the relationships between modules and the interrela-
tions among components. The function, structure, maintenance, and material information
are usually considered as the main factors for assessing the correlation strength between
components. To generate a mathematical model of product structure, it is first necessary to
understand the interactions between the components. To capture these interactions, the
majority of published studies have used surveys, manual coding of documents, interviews,
and meetings with engineers [29]. The manual modeling process is inefficient and boring,
and due to the negligence of the engineer, it is very easy to cause missing and wrong filling
of the model [30]. Therefore, the automatic identification of product component association
and the automatic construction of the product structure model can not only effectively
reduce the impact of human factors on the modular results, but also greatly improve the
efficiency of the module partition method.

With computer-aided design (CAD) systems employed widely in the industrial field,
enterprises have accumulated a lot of 3D models of products and components in the
product design, manufacturing, and assembly stages, which contain a lot of product
structure, material, and assembly information [31]. Many works have been carried out to
extract information directly from CAD assembly models in past decades. The emphasis
has been put on identifying assembly liaisons, translating CAD model information, and
determining assembly sequences. However, the application of 3D assembly information
automatic extraction technology to product modular design is relatively less concerned.
Li et al. realized the automatic extraction of the product assembly information of the
product 3D model and established the DSM of the product structure based on the assembly
information [24]. Nevertheless, the purpose of the cited work is to realize the reuse of the
module structure of a 3D assembly model, so only the structural information is considered
when modeling. In addition, Li et al. also established a product structure model based on
the extracted product information and used hierarchical clustering and an elbow assessment
method to obtain the optimal product modular granularity [32]. This method can only
obtain the structural relationship between product components. Therefore, this method
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cannot meet actual needs well when companies need to consider sustainable design factors
such as the environment or recycling.

The product structure model is the basis of modular design. Modeling efficiency and
model accuracy have a far-reaching impact on the popularization and application of modu-
lar design methods. The existing product structure modeling methods have the following
two shortcomings: first, the establishment process of product multi-attribute DSM is mostly
manual, which is inefficient and error-prone. Second, the existing method of automatically
establishing product DSM only considers the structural relationship, and the factors con-
sidered are too single and do not meet the actual needs of the enterprise. Therefore, an
integrated method for modular design based on auto-generated multi-attribute DSM and
improved GA is proposed in this paper. The main contributions and novelty of this work
are as follows: (1) an automatic method for establishing product multi-attribute DSM is
proposed. Based on the product’s 3D assembly model and the secondary development tools
provided by commercial CAD software, a product information extraction algorithm was
developed, and then the DSM model was established based on the automatically extracted
product information. (2) An improved GA is proposed to realize product module division.
The traditional GA mutation operation is improved to break through the limitation of the
number of initial modules on the algorithm to obtain the global optimal solution.

The remainder of the paper is organized as follows. Section 2 introduces the research
framework and related operators, such as information extraction of a product’s 3D assembly
model, digitization of product information, formation of the comprehensive correlation
DSM, and an improved GA-based module division method. Two illustrative case studies
are presented in Section 3, and the module division of the gear oil pump and the bicycle is
executed to prove the effectiveness of the method proposed in this paper. Discussions and
conclusions are given in Sections 4 and 5, respectively.

2. The Proposed Module Partition Methodology

This section introduces the proposed module partition methodology, as shown in Fig-
ure 1, which contains the automatic extraction of 3D model information, the pre-processing
of product information, the formation of a comprehensive component correlation DSM of
the product, and the module partition method based on improved GA.
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Figure 1. The research framework of this paper. Figure 1. The research framework of this paper.

(1) Automatic extraction of 3D model information mainly refers to step 1 in Figure 1.
Firstly, the type of product information required is determined according to the
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modeling requirements, then the appropriate interface function is selected to extract
the corresponding product information.

(2) Step 2 in Figure 1 refers to the pre-processing of product information. The product
information extracted from the product 3D assembly model is mostly text information
and the information contains a large number of software design marks. Therefore, the
text information is converted into digital information through the pre-processing of the
information to improve the efficiency of the subsequent product DSM establishment.

(3) The main purpose of step 3 in Figure 1 is to generate the comprehensive component
correlation DSM of the product. According to the different types of extracted product
information, their correlation strength evaluation standards are formulated, respec-
tively. Then, the comprehensive product component correlation DSM is obtained by
the weighted summation method.

(4) The main function of step 4 in Figure 1 is to realize the module division of the
product. The modular index Q is selected as the fitness function to transform the
module partition problem into an optimization problem, and then the optimal product
module partition scheme is obtained based on the improved GA.

2.1. Information Extraction Algorithm of Product 3D Assembly Model

As for a product 3D assembly model, it contains a lot of product-related information,
such as structure, name, material, and matching relationship [33]. In the design of the
extraction algorithm, we only need to extract the information required to establish the
product DSM model. After analyzing the commonly used modular driving factors and the
product information content contained in the 3D assembly model, the connection strength
and material similarity between components are selected as the main factors of module
division. Dividing the components with high connection strength into one module is
conducive to the assembly and disassembly of the module. The materials of components
are closely related to their recycling methods, so the components with the same or similar
materials are grouped together to facilitate the disposal of product scrap.

This work divides the product information to be extracted into three categories: the ba-
sic information of product components, the assembly information of product components,
and the material information of product components. The basic information of product
components mainly refers to the number and name of product components, which are used
to determine the size, row, and column elements of the correlation matrix of product com-
ponents. The assembly information of product components mainly includes the constraint
relationship between components and the degree of freedom of components. The type
and quantity of the constraint relationship between components can be used to analyze
whether two components are in contact, and the strength of the connection relationship can
be determined by the degree of freedom of components. As the name suggests, the material
information of a product component refers to the name of the material used to produce the
component. The material information of the product component can be used to obtain the
disposal method of the component when the product is at the end of the lifecycle.

Most of the current CAD software, such as SolidWorks, Pro/Engineer, and UG, offer
their own standard automated programmable interfaces (APIs) for customizing software
applications. Based on the standardized APIs, the file of the assembly model is instantiated
by selecting the corresponding interface and the required product information can be
obtained directly by accessing the members of the instantiated object. The assembly
information extraction algorithm developed in this paper is oriented to the assembly model
file of SolidWorks. SolidWorks software supports secondary development using a variety
of programming languages, and this paper features VB language to develop an information
extraction algorithm on the Microsoft Visual Studio platform. The function brief of some
main interface members used in the extraction algorithm is shown in Table 1. For example,
to obtain the material information of the component, we can directly read it by calling the
member “GetMaterialPropertyName2” under the “IPartDoc” interface.
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Table 1. Main interface members and their functions.

No Interface Member Description

1 ISldWorks ActiveDoc Gets the currently active
document.

2 ISwDMDocument ConfigurationManager Gets the ConfigurationMgr for
this document.

3 IComponent2 GetChildren Gets all of the children
components of this component.

4 IPartDoc GetMaterialPropertyName2
Gets the names of the material

database and the material for the
specified configuration.

A common assembly model of SolidWorks is a typical tree-like hierarchy, which
includes a number of components in multiple levels as shown in Figure 2 (take the hydraulic
cylinder in Figure 1 as an example). As shown in the bottom half of this figure, a list of
features can offer a concise and clear description of how the assembly was constructed.
The name information of the product component can be directly extracted from the feature
tree and the sub-feature tree, and the assembly information of the component is extracted
from the “Mates” feature at the bottom of the feature tree and the sub-feature tree. The
acquisition of component materials and degrees of freedom data is to lock the pointer to the
corresponding target and directly extract it. The pseudo code of the information extraction
algorithm is shown in Figure 3.
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The extraction algorithm proposed in this paper can realize the automatic acquisition
of product assembly information, but the algorithm has certain limitations in its application
and promotion. From the perspective of the application, the object of this algorithm
is a standard SolidWorks assembly document, and the constraint relationship between
components must strictly follow reality. Otherwise, there will be errors in the product DSM
data established based on the extracted information. As for the promotion of algorithms,
the interfaces and functions in the secondary development tools provided by mature
commercial CAD are different. When the object of extracting information is other types of
3D assembly models (Pro/E, UG, etc.), it is necessary to update the corresponding interface
and function information under the framework of the information extraction algorithm.

2.2. Pre-Processing of Extracted Product Information

The original product information extracted from the 3D assembly is mostly in text
format and contains a lot of system setting information of CAD software, which is not
suitable for directly constructing the correlation matrix of product components. There-
fore, pre-processing of extracted product information facilitates the improvement of the
construction efficiency of the component correlation matrix.

The main operations of the pre-processing of the basic product information include
deleting the system setting information of the CAD software and adding the sequence
information of the product components. By deleting the system setting information of the
CAD software, the extracted product information can be kept consistent with reality to
enhance the legibility of the extracted information. The sequence information of the product
components is added to facilitate the subsequent processing of the matching information
and the material information of the product components.

The pre-processing of assembly information of product components mainly includes
two steps: assembly information simplification and text information digitization. In this
paper, the contact between two components is judged by whether there is an assembly
relationship between components, and the assembly information extraction algorithm
extracts all the assembly relationships between components, which leads to information re-
dundancy and is not conducive to the subsequent DSM construction. Through information
simplification, only the information of whether there is an assembly relationship between
components is retained and the quantity and type of assembly information is removed. In
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the process of simplification of assembly information, the digitization of text information
is realized by replacing text information with digital information. That is, the numbers 0
and 1 are used to indicate whether there is contact between two components, and a set
of N-dimensional vectors are used to indicate the contact relationship between a certain
component and the remaining components. As for the degree of freedom information of
product components, the fixed and floating states of components are represented by values
1 and 0, respectively.

The pre-processing of material information of product components mainly includes
two aspects: digitization of material information and increasing material compatibility
information. Commercial CAD software has carried out a very detailed division of material
types. For example, the types of ordinary carbon steel include Q225, Q235, and Q245.
Therefore, when digitizing material information, it is only necessary to use a serial number
instead of corresponding material text information. In the process of digitization, there
is a lack of material compatibility information, that is, although the two materials are
different, they belong to the same kind of materials, such as Q235 and Q245 of carbon steel.
Therefore, the material compatibility information is added during digitization to facilitate
the subsequent component material similarity evaluation.

The component information of the product after pre-processing is composed of the
component’s name and an N + 6-dimensional vector, where N is the number of product
components. The first two bits of the vector represent the sequence information of the
component and the 3 to N + 2 bits of the vector represent the matching information of
the component; the degree of freedom information of the component is in the N + 3 bit of
the vector and the last three bits of the vector are composed of material information and
recycling information.

2.3. Formation of the Comprehensive Correlation DSM

By analyzing the extracted product information, the comprehensive correlation DSM
of products can be established. The process of establishing product comprehensive cor-
relation DSM is mainly divided into three steps: structural correlation analysis between
assembled components, material correlation analysis between assembled components, and
comprehensive evaluation of correlation strength between assembled components.

2.3.1. Structure Correlation Analysis between Components

The structural correlation strength analysis between components mainly includes two
steps: the construction of the adjacency matrix of components and the evaluation of the
structural correlation strength between components.

The construction of the adjacency matrix of product components. During manual
modeling, engineers or designers can judge whether two product components are in contact
according to the product entity, design experience, and engineering data to establish an
adjacency matrix of product components. This process is easy to understand for people,
but difficult for computers. Therefore, this work uses the extracted product assembly infor-
mation to determine the contact relationship between the components, that is, when there
is an assembly constraint relationship between the two components, the two components
are considered to be in contact, and vice versa.

The structural correlation strength between components is evaluated. To gain the
structure correlation strengths between product components, a dependency rating criterion
based on the degree of freedom (DoF) of components is proposed in this paper. A lot of
dependency rating standards have been developed to assess correlation strengths in the
literature. Helmer et al. investigated these schemes from the perspective of the consistency
and applicability of the evaluation results and explained their limitations [34]. These rat-
ing schemes usually judge the difficulty of disassembly based on the type of connection
relationship between components, to obtain the strength of the association between them.
However, the connection relationship type of the component can neither be directly ex-
tracted from the 3D model of the product nor indirectly obtained through the extracted
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component assembly information. Turner et al. proposed a reduction algorithm to calculate
the DoFs between assembled components by analyzing constraints between them [35]. The
main idea of this method is that as the DoFs increase, the intensity of dependence also
increases. Based on the methods mentioned in the literature [24,35], this paper proposes
a dependency rating criterion based on the counts of DoFs in which four rating scales
from 0 to 1 are introduced to indicate different dependency strengths. Table 2 shows the
structure correlation strength evaluation between product assembled components, where
S(a,b) refers to structure correlation strength between component a and component b.

Table 2. Structure correlation strength evaluation between components.

No Description S(a,b)

1 Self-correlation of the component. 1
2 Both components are fixed (DoF = 0) or floating (DoF 6= 0). 0.8
3 One component is fixed (DoF = 0) and the other is floating (DoF 6= 0). 0.4
4 There is no contact relationship between the two components. 0

2.3.2. Material Correlation Analysis between Components

The sustainability factor has been paid more and more attention by researchers in mod-
ular design. In the process of product modularization, full consideration of the relevance
of component material and grouping components with the same or similar materials into
the same module can greatly reduce the environmental impact of the product scrapping
process. Table 3 shows the material correlation strength evaluation between assembled
components, where M(a,b) represents material correlation strength between component a
and component b.

Table 3. Material correlation strength evaluation between components.

No Description M(a,b)

1 Self-correlation of the component. 1
2 Two components have the same material. 0.8
3 The materials of the two components are compatible. 0.4
4 The materials of the two components are not compatible. 0

2.3.3. Comprehensive Assessment of Correlation Strength between Components

Based on the above-mentioned structural and material correlation strength evaluation
criteria, the structural correlation strength and material correlation strength between com-
ponents can be easily obtained. As for the calculation of the comprehensive correlation
strength between product components, the commonly used weighted summation method
is used. The weight wi (i = 1, 2) corresponds to the structural correlation strength and the
material correlation strength. The value range of i is greater than zero and less than one,
and the sum of the two weights is equal to one. According to the design specifications and
usage scenarios of mechanical products, the weight values of structure correlation strength
and material correlation strength are various and determined by the product engineer in
the relevant engineering field. Accordingly, the comprehensive correlation strength C(a,b)
between component i and j can be expressed as follows:

C(a,b) = S(a,b) × ω1 + M(a,b) × ω2 (1)

where C(a,b), S(a,b), and M(a,b) represent the comprehensive correlation strength, structure
correlation strength, and material correlation strength between components a and b, respec-
tively. ω1 and ω2, respectively, represent the weight of S(a,b) and M(a,b), which are assigned
in light of expert evaluation. According to the calculation result of the comprehensive
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correlation strength, the correlation matrix C between product components is a square
matrix of order k, where k is the number of product components, which is given by

C =


1 C(1, 2) · · · C(1, k)

C(2, 1) 1 · · · C(2,k)
...

...
. . .

...
C(k, 1) C(k, 2) · · · 1

 (2)

2.4. Improved GA-Based Module Division Method

The purpose of modular design is to improve the degree of cohesion of each module
while reducing the degree of coupling between modules. Therefore, by constructing a
reasonable objective function, the problem of module division can be transformed into an
optimization problem. As a classic intelligent evolutionary algorithm, GA is often used
to solve combinatorial programming problems. However, as the number of modules and
the size of the modules need to be set in advance, the traditional GA is susceptible to the
influence of the initial settings and it is difficult to obtain the optimal solution. In this
paper, an improved GA is proposed to overcome the disadvantages of the classic GA in
cluster solving of modularization. The framework of the improved GA-based module
division method is shown in Figure 4. Compared with the traditional GA, the improved
GA mainly improves the mutation operation to break through the constraint of the initial
number of modules on its global optimization. The improved mutation operation process is
shown in the dotted box in Figure 4. The mutation operation of the traditional GA is only a
transfer mutation, that is, according to the random number, the components corresponding
to the mutation point are divided from the corresponding module before mutation to the
corresponding module after mutation. As the value of the random number is constrained
by the number of initial modules, product components can only be transferred in existing
modules. In order to break through the limitation of the initial modular number on the
global optimization of the algorithm, the separation mutation is added on the basis of the
transfer mutation, that is, the mutation operation is allowed to generate new modules.
By generating new modules through mutation operation, the constraint of the number of
initial modules is weakened, and the improved GA has better global optimization ability.

2.4.1. Encoding and Initial Population Generation

In the improved GA, the position indices of the chromosome genes indicate the
corresponding product component, and the value in the gene represents the module to
which the component belongs. Taking the hydraulic cylinder in Figure 1 as an example,
the coding method of the algorithm is further described. As shown in Figure 5a, the total
number of components of the hydraulic cylinder determines the length of the chromosome
is 9. The position indices of chromosome genes 1 to 9, respectively, indicate the components
of the corresponding hydraulic cylinder: lifting lug, piston rod, buffering ring, etc. The
value 1–3 of the chromosome gene refers to the division of the hydraulic cylinder into 3
modules and which components each module contains.

The generation of the initial population mainly consists of three steps. The first step is
to set the parameters, including the number of populations, the length of chromosomes, and
the number of initial modules. The second step is to generate a fixed-length chromosome
and randomly assign a random number within the range of the total number of modules to
each gene of the chromosome. The last step is to repeat step 2 until the initial population is
generated.
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2.4.2. Crossover

The function of the crossover operation is to make the improved GA have a stronger
spatial search ability and the offspring can inherit the high-quality genes of the parent.
Crossover is conducted by the following three steps: (1) according to the length of the
chromosome, a one-dimensional array of 0 and 1 is randomly generated. (2) When the
value of the array position corresponding to the chromosome gene is 1, the values of the
two parent chromosome genes are exchanged. When it is 0, no operation is performed.
(3) From the first gene of the parent chromosome, perform step (2) until the last gene. An
example of the crossover is described in Figure 5b based on two randomly selected parent
chromosomes.

2.4.3. Mutation

In this improved GA, the mutation is a very important operation to help the algorithm
break through the limit of the initial number of modules to search for the global optimal
solution. In this work, the mutation is performed by transfer mutation and separation
mutation. Transfer mutation refers to the movement of a component from the original
module to other modules, while separation mutation refers to the separation of a compo-
nent from the original module to form a new module. The specific process of mutation
operation is shown in Figure 5c. Firstly, according to the probability of mutation operation,
a chromosome to be mutated is randomly selected as the parent. Then, a one-dimensional
array composed of 0 and 1 is randomly generated according to the chromosome length,
and the genes corresponding to the array of 1 are mutated. When the variation value of
the gene is less than or equal to the number of initial modules, it is a transfer mutation,
otherwise, it is a separation mutation.

2.4.4. Modular Object Adaptive Function

The role of the modular object adaptive function is to calculate the fitness number of
each chromosome when the genetic algorithm is iterating and to give more opportunities
for excellent chromosomes to be selected. Therefore, the criterion for selecting the modular
object adaptive function should be to analyze whether it can effectively evaluate the
pros and cons of the module division scheme. In related research work, scholars have
proposed many indexes to evaluate product module division schemes, such as the partition
coefficient (PC(c)) [36], the modularity index (MI) [37], the minimum description length [38],
the integrative complexity (IC) [39], and the modularity assessment index (Q) [15]. Among
them, the modularity Q, as an index introduced from the complex network theory, has been
popular in the field of modular design in recent years. Therefore, this paper features the
modularity index Q as the objective function to calculate the fitness of each chromosome.
To facilitate the calculation of the value of Q, a module matrix e is constructed as:

e =


1 y12

2 · · · y1k
2y21

2 1 · · · y2k
2

...
...

. . .
...

yk1
2

yk2
2 · · · 1

 (3)

where yii represents the fraction of intra-module interfaces while yij represents the fraction
of inter-module interfaces. For the module matrix e, the row sum is written as:

ai =
k

∑
j=1

eij = yii + (
k

∑
j=1

yij)/2 (4)

The modularity index Q is defined as:

Q =
k

∑
i=1

(eii − a2
i ) (5)
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where eii represents the fraction of edges with both end vertices in the same module i, and
ai represents fraction of edges with at least one end vertex inside module i. k refers to the
number of modules in the modular scheme. The modularity index Q has a numerical range
of (−1~1). The larger the value, the more reasonable the result of the module division, and
vice versa.

3. Case Illustration
3.1. Case Study for Gear Oil Pump

In this section, the proposed method is firstly applied to the modular design of the
gear oil pump. The case was published in the literature [40] and aims to modularize the 3D
assembly model of the pump in order to realize the reuse of modules. According to the
product information in the literature, we established a 3D assembly model of the gear oil
pump based on the SolidWorks software platform, as shown in Figure 6a. The structure
information and material information of the gear oil pump are shown in Figure 6b,c,
respectively.
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Figure 6. The product information of the gear oil pump: (a) the 3D assembly model; (b) the cross-
section; (c) the material of components [33].

Based on the product information automatic extraction algorithm and component
correlation strength evaluation standard proposed in Sections 2.1 and 2.2, the structure
correlation DSM and material correlation DSM of the gear oil pump are automatically
constructed and shown in Figure 7a,b, respectively. Then, the weights w1 = 0.8, w2 = 0.2
are taken to obtain the comprehensive correlation DSM of the gear oil pump as shown in
Figure 7c.
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Based on the comprehensive correlation DSM in Figure 7c, the improved GA given in
Section 2.3 is implemented to obtain the optimal module division scheme of the gear oil
pump. The improved GA is programmed in a MATLAB 9.0 environment and runs on a
desktop computer with a dual 2.63 GHz Intel i5 processor and 8GB RAM. The parameter
settings of the improved GA are shown in Table 4. The optimization process is shown in
Figure 8, and when the algorithm iterates about 110 times, the fitness function reaches the
maximum and begins to converge. The value of the modularity index Q at this time is
about 0.334 and the corresponding modularization scheme results in the gear oil pump is
divided into 3 modules. The specific details of the modular scheme are shown in Table 5.

Table 4. Improved GA parameter setting (the gear oil pump).

Parameter Value

Initial population 200
Generation time 200
Crossover rate 0.8
Mutation rate 0.2

Number of initial modules 4
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Table 5. Module partition result of the gear oil pump.

Module Name Component Module Component Model

Driving gear
shaft—gear module

2—Driving gear shaft, 3—Driving gear
shaft, 11—Driving gear, 12—Washer,

13—Nut, 14—Key
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In reference [40], the authors establish the multi-attribute network model of the gear
oil pump on the basis of comprehensively considering the structural correlation, functional
correlation, and flow correlation of components, and then the Fast Newman algorithm is
used to identify the community structure in the correlation network. Finally, the modular
index Q is employed to evaluate the quality of the module division scheme to obtain the
best one. Compared with the method proposed in this paper, in the process of product
structure modeling, both methods take structural association as the main driving factor of
module division while considering different secondary driving factors of module division.
The module division process is to use the Fast Newman algorithm and the improved GA,
respectively, to obtain the optimal module division scheme with the modular index Q as
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the evaluation criterion. The two methods used similar product structure models, different
module division algorithms, and the same modular scheme evaluation index, and finally
obtained the same module division results of gear oil pumps. The comparison proves the
feasibility of the module division method proposed in this paper.

3.2. Case Study for Bicycle

In this section, a bicycle assembly model is employed to testify the effectiveness of
the proposed method further. As a common vehicle in people’s daily life, the 3D assembly
model of a bicycle is shown in Figure 9. The left side of the figure shows that the structure
of the bicycle contains 23 components, and the right side shows the names and materials of
these components.
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In the same way as the case of the gear oil pump, based on the product information
automatic extraction algorithm and component correlation strength evaluation standard
proposed in Sections 2.1 and 2.2, the structure correlation DSM and material correlation
DSM of the bicycle components are automatically constructed and shown in Figure 10a,b,
respectively. Then, the weights w1 = 0.8, w2 = 0.2 are taken to obtain the comprehensive
correlation DSM of the bicycle components as shown in Figure 10c.

Based on the comprehensive correlation DSM in Figure 10c, the improved GA given
in Section 2.3 is implemented to obtain the optimal module division scheme of the bicycle.
The parameter settings of the improved GA are shown in Table 6. The optimization process
is shown in Figure 11, and when the algorithm iterates about 170 times, the fitness function
reaches the maximum and begins to converge. The value of the modularity index Q at this
time is about 0.512 and the corresponding modularization scheme results in the bicycle
being divided into 7 modules. The specific details of the modular scheme are shown in
Table 7. From the perspective of structure and recycling, the result of the bicycle module
division obtained according to the product 3D model information is reasonable. In terms
of bicycle structure, each module has a compact structure and relatively independent
functions. For example, the power input module is composed of the left pedal, right pedal,
middle axle, and chain ring. The assembly relationship between components is close,
and the materials of components have good compatibility. The modular design method
proposed in this paper only provides a modular scheme for enterprises quickly. As for
the specific implementation of the modular scheme, enterprises need to make appropriate
adjustments according to their scale, customer type, and other factors.
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Figure 10. DSMs of the bicycle: (a) the structure correlation DSM; (b) the material correlation DSM;
(c) the comprehensive correlation DSM.
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Table 6. Improved GA parameter setting (the bicycle).

Parameter Value

Initial population 200
Generation time 300
Crossover rate 0.8
Mutation rate 0.2

Number of initial modules 5

Table 7. Module partition result of the bicycle.

Module Name Components Module Component Model

Back wheel module 1—Back tire, 2—Back inner tube, 3—Rear
wheel hub
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with manual modeling methods. The algorithm aspect is to verify the advantages of the
proposed improved genetic algorithm in global optimization by comparing it with the
traditional genetic algorithm.
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4.1. Comparison with Manual Modeling

Compared with manual modeling, the automatic modeling method proposed in this
paper has significant advantages in terms of efficiency, and the time spent on modeling
is relatively less affected by the complexity of the model. In addition, the consistency of
the automatically established product DSM model will not be affected by the modeling
operator, and the errors that are prone to manual modeling such as missing and incorrect
filling can also be completely avoided.

Automatic modeling has great advantages in efficiency, consistency, and accuracy, but
its ability to automatically extract product information is limited. At present, the algorithm
in this paper can only realize the automatic extraction of structure information and material
information, but it cannot obtain the data not contained in the product assembly model
such as product function information and maintenance information.

4.2. Comparison with Traditional GA

The motivation of the improved GA proposed in this paper is to break the limitation of
the number of modules in the initialization of the traditional GA for the global optimization
of the population. Therefore, in the case of module division where the optimal number
of modules is less than or equal to the initial number of modules, the optimal module
division schemes obtained by the two algorithms are consistent. For example, in the case of
a gear oil pump, the initial value of the number of modules is 4, and the optimal number of
modules obtained by the two algorithms is 3 when the modularity index Q is maximum.

The discussion in this section focuses on the advantages shown by the improved
GA when the optimal number of modules is greater than the initial number of modules.
In case 2, the initial number of modules when the bicycle is divided into modules is
5, and the optimal number of modules obtained is 7. When the initial parameters and
settings are the same, the bicycle in case 2 is divided into modules using the traditional
GA. The optimization process is shown in Figure 12, and when the algorithm iterates about
140 times, the fitness function reaches the maximum and begins to converge. The value of
the modularity index Q at this time is about 0.508 and the corresponding modularization
scheme results in the bicycle being divided into 5 modules. Obviously, the traditional GA
fails to reach the global optimal solution when Q is equal to 0.508 due to the constraint
of the number of initial modules. The comparison of bicycle module division schemes
under the two algorithms is shown in Figure 13. The solution obtained by the improved
GA is significantly better than the solution obtained by the traditional GA in terms of the
compactness of the module and the uniformity of the modular granularity.
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Figure 13. Comparison of bicycle module division schemes: (a) the traditional GA; (b) the improved
GA.

5. Conclusions and Future Work

Product structure modeling and the solution of module division schemes are two
important activities in the process of product modular design. The product structure mod-
eling methods commonly used in existing related research work have the disadvantages of
low modeling efficiency and poor consistency of modeling results. As for the solution of
the module division scheme, some intelligent swarm optimization algorithms are usually
used, but these algorithms are susceptible to the limitation of initial parameters in the
process of searching for the optimal solution. In order to solve these problems in product
modular design, an integrated method is developed to identify the modular structure of
the product based on auto-generated multi-attribute DSM and an improved GA. Compared
with the published related research work, the innovations of this article are mainly reflected
in the following two aspects. One is the different ways of obtaining product information.
Different from the traditional modeling method which mainly refers to consulting prod-
uct manuals and interviewing design engineers, this article uses information extraction
algorithms to extract product information from product 3D assembly models. The other is
that the mutation operation of the GA is different. On the basis of traditional GA transfer
mutation, separation mutation is added to improve the algorithm’s global search ability.
The gear oil pump in Han et al.’s paper [40] is used as a case to prove the effectiveness of the
method in this article and the reliability of the results of the module division. In addition, a
bicycle as a brand-new case is used to further prove that the method has generalizability in
application. The main contributions of this paper are summarized as follows.

(1) An automatic construction method of product multi-attribute DSM is developed based
on the automatic extraction algorithm of product 3D assembly model information.

(2) An improved GA is proposed to solve the problem that the optimal solution is easily
affected by the initial parameters in the process of product module division.

The future work is mainly to integrate and promote the modular design method of
the product and other advanced technologies (mass customization, digital twinning, etc.)
in the environment of industry 4.0. For example, this method can promote the intelligence
of mass customization production.
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