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Abstract: In this research, a novel adaptive frontier-assessment-based environment exploration
strategy for search and rescue (SAR) robots is presented. Two neutrosophic WASPAS multi-criteria
decision-making (MCDM) method extensions that provide the tools for addressing the inaccurate
input data characteristics are applied to measure the utilities of the candidate frontiers. Namely, the
WASPAS method built under the interval-valued neutrosophic set environment (WASPAS-IVNS)
and the WASPAS method built under the m-generalised q-neutrosophic set environment (WASPAS-
mGqNS). The indeterminacy component of the neutrosophic set can be considered as the axis of
symmetry, and neutrosophic truth and falsity membership functions are asymmetric. As these three
components of the neutrosophic set are independent, one can model the input data characteristics
applied in the candidate frontier assessment process, while also taking into consideration uncertain
or inaccurate input data obtained by the autonomous robot sensors. The performed experiments
indicate that the proposed adaptive environment exploration strategy provides better results when
compared to the baseline greedy environment exploration strategies.

Keywords: search and rescue; autonomous environment exploration; neutrosophic sets; multi-criteria
decision-making; WASPAS-SVNS; WASPAS-IVNS; WASPAS-mGqNS

1. Introduction

The application of autonomous robots in search and rescue (SAR) missions, can enable
the rescue teams to collect on-scene information about the disaster site, without risking the
safety of human personnel [1]. One of the key requirements in these missions is robots’
ability to explore the environment and complete multiple high-level objectives without
(or only with minimal) intervention from the robot operators [2–4]. Therefore, an efficient
environment exploration strategy is an important issue that should be addressed.

In general, environment exploration strategies define how autonomous robots move
within the initially unknown environment and gather information about its features. If no a
priori information about the exploration environment is known, a common approach to this
problem is to apply the greedy next-best-view strategies, that interpret the robot-constructed
map to determine a set of candidate locations within the partly explored search space and
choose the one that should be visited by the robot [5]. By applying these strategies, the
decision on where the robot should move next is made on the go and therefore depend
only on the current state of the robot and the known environment information.

There are many different strategies that can be applied to assess the candidate locations.
However, a popular and easy-to-implement approach that is commonly used as a reference
point for algorithm improvement and testing [6,7] is proposed by Yamauchi [8]. The original
strategy is based on the frontier assessment approach in which the robot is directed to the
closest one. By following this approach, every time the robot reaches the selected frontier,
newly acquired environment information is added to the robot-constructed environment
map. Then, the list of available frontiers is updated and the process of decision making
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and moving to the selected candidate frontier is repeated. In theory, when given enough
time and applying this strategy, the robot will eventually visit all available frontiers, and
consequently, discover all environment information. However, a more efficient approach
to the frontier-based environment exploration problem is the assessment of candidates by
balancing several competing criteria that define a set of optimisation priorities.

Several papers tackle this problem by introducing multiple strategies for the assess-
ment of the candidates. For example, González-Baños and Latombe [9] propose to as-
sess the utility of a candidate by measuring the distance between the candidate and the
robot, while also estimating how much new information could be gained by reaching
it. Makarenko et al. [10] propose to assess the candidates by the sum of the information
gain utility, the cost utility, and the localization utility. Amigoni and Gallo [11] propose
to take into consideration the information overlap, and Visser and Slamet [12] propose to
expand the criteria list by taking into account the robot’s ability to communicate. Basilico
and Amigoni [5] propose to assess the candidate by applying a set of competing criteria.
Namely, the distance to the candidate frontier, the estimated information gain, and the
probability to communicate after reaching the candidate. These criteria are combined by
applying the MCDM method based on the Choquet integral. Gomez et al. [6] introduce
criteria that incorporate the semantic (transit area importance), geometric (the size of the
frontier) and topological (the distance that robot must travel) environment information.
Selin et al. [13] propose to store and evaluate the potential information gain. Recently, the
authors of this paper introduced several strategies for candidate frontier assessment by
considering the robot safety-related criteria [14], the need to reach the survivors [15] and
explore around the prioritized areas within the environment [16].

Although environment exploration strategies that are based on the candidate as-
sessment approach allow for the possibility to balance multiple competing criteria, the
multi-criteria decision-making (MCDM) method application capabilities in complex sce-
narios are yet to be exhaustively studied, especially if SAR missions are considered. A
major issue that should be taken into consideration when deciding on where the robot
should move next is the unstable robot movement and path planning performance and
the inaccurate input data characteristics that are applied in the decision-making process
when exploring the SAR environment. The ability to take into consideration inaccurate
input data is a prominent issue that causes researchers to look for modern techniques when
dealing with such complex decision-making problems. Therefore, in the field of MCDM
problems that cover various real-world selection issues [17–19], research is often based on
various versions of fuzzy sets, which found many applications in practical and theoretical
studies [20–22].

The main focus of this research is directed at the performance evaluation of the author-
proposed neutrosophic WASPAS method extensions (namely, WASPAS-IVNS [15] and
WASPAS-mGqNS [16]) that are applied together with the novel candidate assessment
strategy for SAR missions, proposed in this research. The WASPAS method is chosen
as a base for an extension due to the stability and wide application of this method in
multiple decision-making problems (e.g., in recent years WASPAS method was applied
in multiple papers such as [23–25], just to name a few). The motivation of this research is
to propose a generalized candidate assessment strategy that incorporates multiple SAR
mission-related criteria and evaluate the performance of the author-proposed methods
within the SAR environment.

2. Neutrosophic WASPAS Extensions

The proposed adaptive environment exploration strategy for SAR missions is built
on the frontier-assessment approach and is modelled by applying the three main compo-
nents: the fuzzy logic controller that selects the appropriate candidate frontier assessment
strategy by evaluating the current state of the robot and the known environment infor-
mation [26]; the multi-criteria decision-making method which measures the utility of a
candidate frontier (in this case, WASPAS-IVNS [15] and WASPAS-mGqNS [16] methods are
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applied individually); and the four novel candidate assessment strategies that are modelled
to define the specific SAR robot behaviours. As the main focus of this research is directed
at the evaluation of the novel candidate assessment strategies, the fuzzy logic controller is
applied as-is, referencing the previous research of the authors.

2.1. The Proposed Candidate Frontier Assessment Strategy

One of the possible approaches for modelling adaptive environment exploration strate-
gies is to enable the robot to switch between the rules that govern the candidate frontier
assessment process. When applying the multi-criteria decision-making approach, this can
be achieved by defining different criteria optimums and weights to the matching criteria
sets. For example, by modelling the criteria set in the way that forces the robot to prioritise
the frontiers with the computed path that also enables the robot to reach and monitor
detected survivors, the robot will showcase the Altruistic behaviour patterns. However, if
the robot prioritises its safety and survivability, the Egoistic candidate assessment strategy
is defined.

In this research, eight criteria are proposed for candidate assessment tasks to model
technical, social and safety requirements of the autonomous SAR mission. It is also worth
noting, that the proposed criteria set is not exhaustive and can be extended by the robot
operator by considering other factors that are important in specific SAR missions. The
proposed criteria set is constructed from the two subsets—the first subset includes three
criteria that were derived from the commonly applied candidate assessment and selection
strategies [5,12,14,27,28]. Namely, the amount of new information that could be obtained
after reaching the candidate frontier (expressed as the estimated length of a frontier), the
cost of reaching the candidate frontier (expressed as the estimated time needed to reach
the frontier), and the ability to transmit information from the candidate location to the
robot control station (expressed as the Euclidean distance between the candidate and robot
control station).

The second subset is constructed from five criteria, that address the technical, safety
and social aspects of search and rescue missions, derived from the previous research
by the authors. Namely, the current lowest recognition rate of a hypothesised survivor
near the computed path (modelled by the shortest distance between the waypoints in
the planned path and the survivor), the estimated penalty for following the computed
path (measured by applying the penalty-based methodology proposed in [15]), the ratio
between the free cells around the frontier and the sample population [16], the Euclidean
distance from the frontier to the closest priority location, and the total recognition rate of
hypothesised survivors that could be monitored while following the computed path to the
candidate frontier.

The latter criterion is maximised to prioritise paths that enable the robot to monitor
already discovered survivors. Even if the survivors’ condition is stable, the situation can
change at a later time of SAR environment exploration. For example, a nearby dangerous
object can change its location along with its area-of-effect zone (e.g., a fire source can
expand). Such events should be registered and sent to the rescue teams to enable them
to make better decisions. Thus, the ability to monitor survivors should be taken into
consideration when modelling environment exploration strategies for SAR missions. In
the context of this paper, the criterion value of the total recognition rate of survivors
that can be monitored by following the computed path is estimated by measuring the
Euclidean distance dv from each waypoint wpi in the planned path R

(
p f (x, y)i

)
to the

known survivor locations. If dv < 3 m it is assumed that the survivor is visible to the
robot and that its status can be monitored. The estimated survivor recognition rates are
then summed.

The final criteria set that defines the frontier assessment strategies is presented in
Table 1. The considered variance is applied by the WASPAS-IVNS method and is set
considering the parameters of the deployed autonomous SAR robot. Please note that
although these parameters are application-specific, they can be modelled to address the
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uncertainty of the input data characteristics as defined by the experts or robot operators.
Here, nwp represents the number of waypoints that are located in the dangerous areas
along the planned path, and nv represents the number of survivors that can be monitored
while moving along the planned path.

Table 1. The criteria set for the proposed frontier assessment strategy.

Criterion Criterion Name Units Considered Variance

c1 The estimated length of the frontier. m ±0.6 m

c2
The estimated distance from the candidate

frontier to the robot control station. m ±0.3 m

c3
The estimated time needed to reach the

candidate frontier. s ±7 s

c4
The estimated penalty for following the

computed path. Penalty (p) ±
(
nwp ∗ 0.3

)
p

c5

Total recognition rate of the hypothesised
survivors that could be monitored by

following the computed path.
% ±(nv ∗ 10)%

c6
Current lowest hypothesized survivor

recognition rate. % ±10%

c7
Distance from the frontier to the closest

priority location. m ±0.3 m

c8
The ratio between the free cells around the

frontier and sample population. % ±10%

The strategies that define the proposed adaptive environment exploration strategy are
presented in Table 2. In this research, four main strategies of danger avoidance (DA), restric-
tive reach survivor (RRS), reach survivor (RS) and information gain (IG) are remodelled
and applied by the fuzzy logic controller [26] to decide where the robot should move next.

Table 2. Criteria weights that define the DA, RRS, RS and IG environment exploration strategies.

Weights

Criterion Optimum DA RRS RS IG

c1 Max 0.056 0.029 0.043 0.213
c2 Max 0.061 0.073 0.019 0.075
c3 Min 0.197 0.203 0.131 0.322
c4 Min 0.394 0.373 0.395 0.043
c5 Min 0.037 0.039 0.065 0.033
c6 Min 0.112 0.125 0.234 0.081
c7 Min 0.078 0.070 0.025 0.137
c8 Max 0.065 0.089 0.088 0.097

The implementation of the fuzzy logic controller and the decision-making methods
in the proposed adaptive environment exploration strategy is schematically presented in
Figure 1.
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Figure 1. The proposed adaptive environment exploration strategy.

First, by applying the proposed adaptive environment exploration strategy, the input
data are collected from the robot sensors and the environment representation model is
updated. As in the original approach [26], the four strategies (DA, RRS, RS, and IG) used
in the candidate assessment process are switched depending on the distance between the
robot and dangerous areas E(d), and the distance between the robot and detected survivors
E(s). These data are passed to the fuzzification module which maps the parameters to the
corresponding membership functions. After the fuzzy inference step, the centre of sums
method is applied in the defuzzification module to determine which of the four candidate
assessment strategies should be applied at the current stage of the environment exploration
process. Then, the appropriate neutrosophic WASPAS extension is applied to assess the
candidate frontiers and determine the goal the robot should reach next. This goal is then
passed to the robot path planning module and the robot is directed to the selected location.
This process is repeated until the mission termination conditions are met (e.g., there are no
available frontiers left or the given time limit of the SAR mission has passed).

2.2. Preliminaries of the WASPAS-IVNS and WASPAS-mGqNS Methods

Next, the key definitions of the applied WASPAS-IVNS and WASPAS-mGqNS methods
are discussed. Please note, that for the complete neutrosophic algebra operations applied
by these methods, please refer to the original research papers by the authors [15,16].

Definition 1. The Interval-valued neutrosophic set IVNS [29] is defined by the three independent
membership functions: the truth membership—Tiv(x), the indeterminacy membership—Iiv(x), and
the falsity membership function—Fiv(x). The neutrosophic set components of truth and falsity
membership are asymmetric, and the indeterminacy component can be considered as the axis of
symmetry. These independent components can be modelled by taking into consideration the problem
of inaccurate and incomplete input data characteristics, that can have a significant impact on the
quality of the candidate frontier assessment process.

Definition 2. The interval-valued neutrosophic set can be defined as:

IVNS = {〈Tiv(x), Iiv(x), Fiv(x)〉 : x ∈ X} , (1)

where the three independent membership functions fulfil the following conditions:

Tiv(x) =
[

Tiv(x)−, Tiv(x)+] ⊆ [0, 1
]
; (2)

Iiv(x) =
[

Iiv(x)−, Iiv(x)+] ⊆ [0, 1
]
; (3)

Fiv(x) =
[

Fiv(x)−, Fiv(x)+
]
⊆ [0, 1]; (4)

0 ≤ Tiv(x)+ + Iiv(x)+ + Fiv(x)+ ≤ 3. (5)
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Definition 3. The interval-valued neutrosophic number (IVNN) can be defined as:

Niv =
〈[

t−iv, t+iv
]
,
[
i−iv, i+iv

]
, [ f−iv , f+iv ]

〉
. (6)

Definition 4. The interval-valued neutrosophic numbers can be compared by applying the following
score S(Q), accuracy a(Q), and certainty c(Q) functions:

S(Q) =
[
t−iv + 1− i+iv + 1− f+iv , t+iv + 1− i−iv + 1− f−iv

]
; (7)

a(Q) =
[
min

{
t−iv − f−iv , t+iv − f+iv

}
, max

{
t−iv − f−iv , t+iv − f+iv

}]
; (8)

c(Q) =
[
t−iv, t+iv

]
. (9)

Definition 5. The comparison between the interval-valued neutrosophic numbers can be performed
by applying the degree of probability p, when:

I f p(S(Q1) ≥ S(Q2)) > 0.5, then Q1 � Q2;
I f p(S(Q1) ≥ S(Q2)) = 0.5 and p(a(Q1) ≥ a(Q2)) > 0.5, then Q1 � Q2;
I f p(S(Q1) ≥ S(Q2)) = 0.5 and p(a(Q1) ≥ a(Q2)) = 0.5, and p(c(Q1) ≥ c(Q2)) > 0.5,
then Q1 � Q2;
I f p(S(Q1) ≥ S(Q2)) = 0.5 and p(a(Q1) ≥ a(Q2)) = 0.5, and p(c(Q1) ≥ c(Q2)) = 0.5,
then Q1 ∼ Q2.

Definition 6. The degree of probability p is measured by applying the following function:

p(S(Q1) ≥ S(Q2)) =

max
{

1−max
(

S(Q2)
+−S(Q1)

−

(S(Q1)
+−S(Q1)

−)+(S(Q2)
+−S(Q2)

−)
, 0
)

, 0
}

.
(10)

The degrees of accuracy and certainty are measured by applying the equivalent approach.

Smarandache considered the neutrosophic set as the generalisation of various fuzzy
sets [30], highlighting the possibility of a generalised neutrosophic set that includes the
benefits of all the considered fuzzy sets. Next, the key definitions of the applied WASPAS-
mGqNS method, which is modelled by applying this concept, are discussed.

Definition 7. The m-generalized q-neutrosophic set (mGqNS) is defined by the three independent
m-generalized q-neutrosophic memberships: the truth membership—Tmq(x), the indeterminacy
membership—Imq(x), and the falsity membership—Fmq(x).

Definition 8. The m-generalized q-neutrosophic set (mGqNS) is defined as:

mGqNS =
{〈

Tmq(x), Imq(x), Fmq(x)
〉

: x ∈ X
}

, (11)

where the three membership functions also satisfy the conditions:

Tmq(x), Imq(x), Fmq(x) : X → [0, r], (0 ≤ r ≤ 1); (12)

0 ≤ (Tmq(x))q + (Imq(x))q + (Fmq(x))q ≤ 3
m

; (13)

m = 1 or 3; q ≥ 1. (14)
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Definition 9. The m-generalized q-neutrosophic number (mGqNN) is defined by:

Nmq =
〈
tmq, imq, fmq

〉
. (15)

Definition 10. The score function for the m-generalized q-neutrosophic set can be defined by:

S
(

Nmq
)
=

3 + 3tq
mq − 2iq

mq − f q
mq

6
. (16)

Next, the key steps of the WASPAS [31] multi-criteria decision-making method, which defines
the core of the proposed environment exploration strategy (and is also applied while modelling the
author-proposed WASPAS-IVNS and WASPAS-mGqNS methods) are discussed.

Step 1. The first step of the considered WASPAS-IVNS and WASPAS-mGqNS methods is
the computation of the decision matrix D. Each element of the decision matrix is denoted
as [d]ij, where i = 1, 2, . . . , n is the index of a candidate, and j = 1, 2, . . . , k is the index of
a criterion.
Step 2. Then, the normalization of the decision matrix elements is performed. The normal-
ization for the WASPAS-IVNS is performed by the following functions:

[div]
−
ij =

[div]
−
ij

max[div]ij
√

k
, [div]

+
ij =

[div]
+
ij

max[div]ij
√

k
, (17)

and the element normalization for the WASPAS-mGqNS method is performed by:

[
dmq
]

ij =

[
dmq
]

ij√
∑k

j=1

([
dmq
]

ij

)2
. (18)

Step 3. The normalized matrix elements are converted to the neutrosophic form by applying
the conversion method defined in [32]. After this step, the elements of the decision matrix
obtain their neutrosophic form of

[
div

]
ij
= 〈
[
t−iv, t+iv

]
,
[
i−iv, i+iv

]
, [ f−iv , f+iv ]〉(for WASPAS-IVNS)

or
[
dmq

]
ij
= 〈tmq, imq, fmq〉 (for WASPAS-mGqNS).

Step 4. The first objective of the WASPAS method is obtained by the following function:

Q(1)
i =

(
∑Omax

j=1

[
d
]

ij
· wj

)
+

(
∑Omin

j=1

[
d
]

ij
· wj

)c
. (19)

where Omax and Omin represent the groups of maximized and minimized criteria, respec-
tively,

[
d
]

ij
represents an element of a decision matrix in its neutrosophic form, and wj is

the criterion weight.
Step 5. The second objective of the WASPAS method is obtained by:

Q(2)
i =

(
∏Omax

j=1

([
d
]

ij

)wj
)
·
(

∏Omin
j=1

([
d
]

ij

)wj
)c

. (20)

where the component definitions are identical to the ones presented in Step 4.
Step 6. The joint generalized value of the WASPAS method is obtained by:

Qi = 0.5Q(1)
i + 0.5Q(2)

i . (21)

Step 7. Finally, by applying the score functions presented by Definitions 4–6 (for the
WASPAS-IVNS method) and Definition 10 (for the WASPAS-mGqNS method), the neutro-
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sophic values obtained in step 6 of the WASPAS method are converted to the crisp score
values. Then, the candidate frontier with the highest utility score is selected as the next
goal the robot should reach.

3. Assessment of the Proposed Environment Exploration Strategy
3.1. Setup of the Case Study

The proposed autonomous environment exploration strategy is implemented into
the simulated multi-purpose four-wheeled Pioneer 3-AT robot. This robot platform is
chosen due to its extensive application in the context of academic autonomous mobile
robot research, including the field of search and rescue missions. The Robot Operating
System (ROS) provided libraries and packages are applied to set up robot navigation stack
and other core components, including environment perception, localisation, movement,
and mapping modules. However, the navigation stack is extended by implementing
the proposed autonomous environment exploration strategy which is introduced in the
Section 2 of this paper.

The proposed environment exploration strategy is evaluated in the three simulated
indoor environments that represent hypothetical disaster sites. The structures of these
environments are presented in Figure 2. Here, the blue squares represent the robot starting
positions. The red markers represent dangerous areas with a diameter of 4 m that the robot
must avoid. The yellow markers represent the survivors the robot must reach. Lastly, the
white markers represent priority locations set by the robot operators.
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The 1st environment (a) represents the SAR environment with multiple open spaces.
This topology allows the robot to move to any room within the exploration space without
any need for backtracking. The 2nd environment (b) represents an environment with clearly
separated left and right areas. This topology should force the robot to show backtracking
behaviour as there is only one path that connects both areas. Finally, the 3rd environment
(c) represents an environment with a mirrored loop-type topology. In this kind of topology,
the robot can visit multiple areas while moving between the connecting corridor loops.
To simplify the simulation, it is assumed that in all three environments, survivors and
dangerous areas do not change their locations during the simulation. It is also worth noting,
that the autonomous robot must cancel its current task and reach the detected survivor if it
is nearby. If there are two or more unvisited objects near the autonomous robot, specifically,
the hypothesised survivors or prioritised locations, the robot will always try to reach the
closest survivor first. The survivor is considered successfully reached when the distance
between it and the robot is less than 1.5 m [33]. The environment exploration process is
continued until one of the mission termination conditions are met, that is if the 10-min
simulation-time window has elapsed or the robot has visited all the priority locations. In
total, twenty simulation runs are performed for each strategy.

To perform the comparison between the proposed strategy and the baseline environ-
ment exploration methods, five parameters are considered. Namely, the robot travelled



Symmetry 2022, 14, 179 9 of 19

distance, the amount of the discovered environment information, the amount of received
penalty, the ratio between the robot travelled distance and the discovered information, and
the ratio between the received penalty points and the discovered information. The main
goals of this assessment are:

• To test the performance and the stability of the WASPAS-IVNS and WASPAS-mGqNS
methods against the state-of-the-art WASPAS-SVNS [32] method in simulated SAR
missions.

• To test the capabilities of the proposed environment exploration strategy in the simu-
lated search and rescue mission and compare the results against the baseline frontier-
assessment methods, namely, the Closest Frontier (CF) strategy, and the Standard
Information Gain (SIG) strategy.

By applying the CF strategy, the decision on where the robot should move next is based
only on the estimated time that is needed to reach the candidate frontier. The SIG strategy
is based on the multi-criteria decision-making approach and is derived from previously
discussed candidate assessment strategies [5,12,14,27,28]. The criteria that define the SIG
strategy along with their optimums and weights are presented in Table 3. The utility of a
candidate is measured by applying the state-of-the-art WASPAS-SVNS method.

Table 3. The standard information gain (SIG) strategy.

Criteria Name Optimum Weight

The estimated length of the frontier. Max 0.50

The estimated time needed to reach the candidate frontier. Min 0.30

The estimated distance from the candidate frontier to the robot
control station. Min 0.20

3.2. Assessment of the WASPAS-IVNS and WASPAS-mGqNS Methods

The performance of the WASPAS-IVNS and WASPAS-mGqNS methods in SAR mis-
sions is first compared against the state-of-the-art WASPAS-SVNS method. The tested
methods are expected to introduce slight differences in the robot performance when com-
paring the previously discussed parameters of the average amount of gained information,
the average penalty received by the robot for traversing dangerous areas, and the average
of robot travelled distance. However, the proposed methods should provide similar results
when compared to the WASPAS-SVNS method, meaning, that the obtained variations be-
tween the results should mostly be insignificant, regardless of the increased (or decreased)
robot performance. The simulation results are presented in Table 4.

Table 4. The average results obtained in the three simulated environments by applying the proposed
environment exploration strategy.

Environment Method Information Penalty Distance

1st
WASPAS-SVNS 367 5.47 66.11
WASPAS-IVNS 367 7.20 68.92

WASPAS-mGqNS 367 5.85 70.36

2nd
WASPAS-SVNS 556 4.73 149.41
WASPAS-IVNS 562 8.85 147.67

WASPAS-mGqNS 557 6.03 151.14

3rd
WASPAS-SVNS 643 14.47 137.03
WASPAS-IVNS 644 11.70 130.94

WASPAS-mGqNS 639 5.36 128.03

The obtained results indicate that the WASPAS-IVNS and WASPAS-mGqNS methods
provide similar results when compared to the state-of-the-art WASPAS-SVNS method. In
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the 1st environment, the robot discovered the same amount of information and travelled an
almost identical distance (with a 4–6% value increase between the results, when applying
WASPAS-IVNS and WASPAS-mGqNS methods, respectively). Similar results were obtained
in the 2nd and 3rd environments. In the 2nd environment, the amount of discovered
information was increased by up to 1%, and the amount of travelled distance varied from a
1% decrease to 1% increase when applying WASPAS-IVNS and WASPAS-mGqNS methods,
respectively. In the 3rd environment, the value of the robot travel distance was decreased by
4.5–6.5%, when applying WASPAS-IVNS and WASPAS-mGqNS methods. As the obtained
results are relatively similar, an ANOVA statistical analysis test was performed to assess
the significance of the observed variations. The obtained p values are presented in Table 5.

Table 5. The p values between the proposed environment exploration strategies that apply WASPAS-
SVNS, WASPAS-IVNS and WASPAS-mGqNS methods.

Environment WASPAS-SVNS Results
Compared against Information Penalty Distance

1st
WASPAS-IVNS 0.93 0.31 0.12

WASPAS-mGqNS 0.89 0.82 0.06

2nd
WASPAS-IVNS 0.51 0.07 0.71

WASPAS-mGqNS 0.86 0.57 0.65

3rd
WASPAS-IVNS 0.93 0.55 0.15

WASPAS-mGqNS 0.73 0.03 0.03

The p values indicate that there is no statistical significance between the slight varia-
tions of the results by the state-of-the-art WASPAS-SVNS method and the WASPAS-IVNS
method. However, the decrease in average robot travel distance by 6.5% and the average
penalty for traversing dangerous areas by up to 63% in the 3rd environment by WASPAS-
mGqNS method, can be considered as significant. Considering this result, it could be
reasoned that in different topology SAR environments, the WASPAS-IVNS and WASPAS-
mGqNS methods provide as stable results as the state-of-the-art WASPAS-SVNS method,
while also making it possible to deal with the inaccuracies in the input data characteristics.
This ability enables the robot to make slightly better decisions which, due to the applied
frontier-based environment exploration approach, can have a long-term impact on the
robot performance.

The ability to take into consideration the inaccurate input data characteristics and
lead the robot to different frontiers is highlighted by providing a solution to a frontier
assessment problem, presented in Figure 3. Here, the robot’s position is marked by a black
square. The frontier regions are marked by blue lines of grid map cells that are located
between the known and the unknown exploration space. The green markers indicate the
candidate frontiers. The white markers represent the priority locations, set by the robot
operators. The yellow markers represent the detected survivors, and the red markers
indicate dangerous areas.

In the considered frontier assessment problem, the robot must measure the utility of
18 candidate frontiers and select the one that should be reached next. The initial decision
matrix constructed for the considered frontier assessment problem is presented in Table 6.
It is worth noting, that in this example there are no survivors that can be taken into
consideration for the monitoring task, meaning that the c5 criterion has no influence in the
decision-making process. Therefore, to address the specifics of the neutrosophic set algebra,
the criterion value is set to a small positive number. Furthermore, to avoid indecisive robot
behaviour, the c6 criterion value is set to a high randomised value when the robot is very
close to the confirmed survivor. This is done so the robot would prioritise the survivors
that are yet to be visited.
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Next, the criteria values of the initial decision matrix are normalised and converted
to the neutrosophic numbers by applying the methodologies presented in Section 2 of
this paper. Then, the products of the first and second WASPAS objectives are computed
for each MCDM method that is tested, namely, for the WASPAS-SVNS, WASPAS-IVNS
and WASPAS-mGqNS. Then, the results of the first and the second WASPAS objectives
are summed to obtain the joint generalized value of the WASPAS method. Finally, the
utility of each candidate frontier is measured and ranked by applying the WASPAS-SVNS,
WASPAS-IVNS and WASPAS-mGqNS score functions. The candidate frontier with the
highest utility score is then chosen as the next optimal goal the exploring robot should
reach. The frontier utilities obtained in this step are presented in Table 7.

Table 6. The initial decision matrix for the considered candidate frontier assessment problem.

c1 c2 c3 c4 c5 c6 c7 c8

f1 2.1 12.09 14.69 0.001 0.001 327.0 7.66 0.14
f2 2.0 13.17 20.49 0.001 0.001 423.3 5.12 0.28
f3 7.2 9.35 36.78 80.32 0.001 446.9 8.65 0.06
f4 8.8 17.14 50.12 111.1 0.001 494.9 3.78 0.57
f5 2.1 7.02 29.39 90.39 0.001 207.6 8.09 0.16
f6 3.5 15.18 43.72 111.1 0.001 324.1 4.15 0.50
f7 2.8 4.76 38.27 107.5 0.001 363.7 5.31 0.53
f8 1.5 10.91 47.15 91.15 0.001 298.8 7.89 0.01
f9 6.3 10.03 48.87 175.27 0.001 452.9 8.12 0.08
f10 3.8 9.01 50.78 135.26 0.001 389.1 1.90 0.51
f11 3.5 13.62 51.67 90.72 0.001 326.7 8.43 0.53
f12 3.9 11.68 58.89 128.5 0.001 204.3 6.96 0.51
f13 2.1 12.02 59.87 135.3 0.001 375.5 3.29 0.14
f14 3.1 14.69 53.34 91.08 0.001 468.9 11.95 0.46
f15 2.0 12.91 63.38 135.3 0.001 360.5 5.15 0.27
f16 6.3 15.58 75.24 258.8 0.001 280.2 11.18 0.15
f17 1.5 14.85 58.78 91.12 0.001 487.1 12.79 0.36
f18 2.2 17.49 89.78 258.6 0.001 410.1 12.26 0.62
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Table 7. The utility scores of the candidate frontiers by the three MCDM methods.

WASPAS-SVNS WASPAS-IVNS WASPAS-mGqNS

Score Rank Score Rank Score Rank

f1 0.839 1 [2.467, 2.636] 2 0.711 1
f2 0.838 2 [2.492, 2.620] 1 0.707 2
f3 0.743 9 [2.181, 2.494] 11 0.607 6
f4 0.763 5 [2.354, 2.507] 6 0.604 7–8
f5 0.766 4 [2.325, 2.558] 4 0.632 3
f6 0.761 6 [2.352, 2.513] 5 0.609 5
f7 0.775 3 [2.384, 2.539] 3 0.623 4
f8 0.691 14 [2.119, 2.438] 15 0.586 12
f9 0.676 16 [2.049, 2.400] 16 0.558 16
f10 0.746 8 [2.338, 2.493] 8 0.598 9
f11 0.754 7 [2.331, 2.513] 7 0.604 7–8
f12 0.737 10 [2.321, 2.487] 9 0.590 10
f13 0.689 15 [2.174, 2.397] 14 0.568 14
f14 0.729 11 [2.278, 2.465] 10 0.587 11
f15 0.692 13 [2.219, 2.402] 13 0.566 15
f16 0.598 17 [2.057, 2.312] 17 0.522 17
f17 0.700 12 [2.208, 2.414] 12 0.572 13
f18 0.581 18 [2.068, 2.288] 18 0.516 18

Considering the computed utility scores, it can be observed that the candidate frontier
f1 is determined as the highest-valued frontier by the WASPAS-SVNS and WASPAS-mGqNS
methods. However, when the assessment is performed by applying the WASPAS-IVNS
method, the frontier f2 is chosen as the next goal the robot should reach (this frontier is
assumed to be the second-best by WASPAS-SVNS and WASPAS-mGqNS methods). A
similar value switch of the candidate ranks is also observed when considering the frontiers
ranked at the 3rd and the 4th place. This example highlights how the proposed methods can
take into consideration the possible inaccuracies in the input data characteristics and con-
sequently make better assessments when comparing similar candidates. Next, the results
obtained by testing the proposed environment exploration strategy in all three simulated
environments are discussed and compared against the baseline SIG and CF strategies.

3.3. Comparison of the Environment Exploration Strategies

The proposed environment exploration strategy which applies the fuzzy logic con-
troller and either the proposed WASPAS-IVNS or WASPAS-mGqNS method for computing
the utility of a candidate frontier is compared against the Closest Frontier strategy (CF) and
the standard information-gain strategy (SIG). It is anticipated that the proposed adaptive
environment exploration strategy will significantly increase the robot performance on
all of the considered aspects: will increase the amount of the discovered environment
information, reduce the robot travelled distance and reduce the robot-received penalty for
traversing dangerous areas. To test this hypothesis, all strategies are applied individually
when exploring the three previously introduced SAR environments. The averaged results
obtained in these simulations are presented in Table 8.

Considering the obtained results, the discovered information in the 1st environment
is similar when comparing the four strategies. As the environment is relatively small the
robot can discover its characteristics simply by reaching every available frontier within
the set mission time limit, regardless of the applied strategy. Therefore, the important
comparison metric in this type of environment is not the amount of discovered information,
but rather the ability to balance multiple optimisation priorities, modelled by applying the
proposed criteria set. For example, the robot travel distance or the penalty received for
crossing dangerous areas.
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Table 8. The averaged results obtained in the three simulated SAR environments by the CF, SIG and
the proposed environment exploration strategy when applying the WASPAS-IVNS and WASPAS-
mGqNS methods.

Environment Method Information Penalty Distance

1st

WASPAS-IVNS 367 7.20 68.92
WASPAS-mGqNS 367 5.85 70.36

SIG 360 57.32 77.18
CF 365 55.72 77.84

2nd

WASPAS-IVNS 562 8.85 147.67
WASPAS-mGqNS 557 6.03 151.14

SIG 498 52.68 142.33
CF 509 60.07 124.97

3rd

WASPAS-IVNS 644 11.70 130.94
WASPAS-mGqNS 639 5.36 128.03

SIG 569 95.74 113.30
CF 521 93.18 97.98

Considering the penalty for crossing dangerous areas this value is reduced by 87.44%
and 87.07% when comparing the proposed strategy which applies the WASPAS-IVNS
method to the SIG and CF strategies. Similar results are observed when comparing the
proposed strategy that applies the WASPAS-mGqNS method to the SIG and CF strategies.
This average is reduced by 89.80% and 89.50%, respectively. By applying the proposed
environment exploration strategy, the robot travel distance in this environment is reduced
by 8.84–11.46%.

However, the amount of distance travelled by the robot is increased in the 2nd envi-
ronment, as due to the environment topology the autonomous robot must traverse already
visited areas multiple times. When comparing the SIG and CF strategies to the proposed
environment exploration strategy by applying the WASPAS-IVNS method, the increase
in travelled distance of 3.8% and 18.17% is observed. Similarly, the increase of 6.19% and
20.95% is observed, when the baseline strategies are compared to the proposed strategy
that applies the WASPAS-mGqNS method.

Nevertheless, the proposed environment exploration strategy increased the average
of the discovered environment information by up to 9.51–12.69%. The amount of the dis-
covered information in the 2nd environment is presented in Figure 4. Here, the maximum
value obtained by applying the SIG strategy is just slightly above the average, obtained
by the proposed environment exploration strategy, when applying the WASPAS-mGqNS
method. The minimum value, obtained by the proposed strategy when applying WASPAS-
IVNS is just above the average obtained by the SIG strategy and is equal to the average
obtained by the CF strategy.
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Finally, the penalty received for traversing dangerous areas is also reduced when
applying the proposed environment exploration strategy. This value is reduced by 83.20%
and 85.27% when comparing results obtained by applying the WASPAS-IVNS method to the
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results obtained when applying SIG and CF strategies, respectively. A similar observation
can be made when comparing the results obtained when applying the WASPAS-mGqNS
method. Here, the penalty is reduced by 88.56% and 89.97% when compared to the SIG
and CF strategies, respectively. Furthermore, the data presented in Figure 5 indicates that
the baseline strategies display high variation between the received penalty values. In this
case, the highest obtained penalty was received when applying the CF strategy, as this
strategy tends to direct the robot to the frontiers that are located around (or within) the
dangerous area, essentially locking the autonomous robot in the dangerous environment
until the exhaustive exploration within the area is performed.
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When considering the results obtained in the 3rd environment, it can be observed
that the amount of the discovered information is increased by 13.19% and 23.60% when
comparing the proposed environment exploration strategy (which applies the WASPAS-
IVNS method) to the SIG and CF strategies. An increase of 12.27% and 22.60% is observed
when applying the WASPAS-mGqNS. These results correlate to the those obtained in
other environments, indicating the effectiveness of the proposed environment exploration
strategy. Considering the additional data presented in Figure 6, it can be observed that the
maximum value obtained by the SIG strategy is less than the average of the discovered
information by applying the proposed environment exploration strategy. However, the
maximum value obtained by the CF strategy is slightly above the average obtained when
the WASPAS-mGqNS method is applied, and slightly lower than the one obtained when
the WASPAS-IVNS method is applied. Nevertheless, the average amount of information
obtained by the CF strategy is the lowest of the four strategies.
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The penalty for traversing the dangerous areas is also reduced in this environment. The
decrease of up to 87% is observed when applying the proposed environment exploration
strategy and the WASPAS-IVNS method. A decrease of up to 94.4% is observed when
applying the WASPAS-mGqNS method. Furthermore, evaluating the additional data
provided in Figure 7, it can be reasoned that the CF strategy displays similar issues to the
ones observed in the 2nd environment. As this strategy is more sensitive to various errors in
the environment representation model than the proposed environment exploration strategy,
it can often direct the robot to the different frontiers between the multiple simulations,
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depending only on how close the frontier is to the robot. This sensitivity reduces the
stability of the baseline CF method, resulting in more dispersed results.

Symmetry 2022, 14, x FOR PEER REVIEW 15 of 19 
 

 

exploration strategy, it can often direct the robot to the different frontiers between the 
multiple simulations, depending only on how close the frontier is to the robot. This sensi-
tivity reduces the stability of the baseline CF method, resulting in more dispersed results. 

 
Figure 7. The penalty received in the 3rd environment. 

The improvements provided by the proposed environment exploration strategy are 
observed across all simulated environments. However, it is also observed that the proposed 
environment exploration strategy increases the robot travelled distance, and this increase is 
notable in the 2nd and the 3rd environments. For example, in the 3rd environment, the trav-
elled distance was increased by up to 33.64% when applying the proposed environment 
exploration strategy. To assess the significance of the observed results, the ANOVA statisti-
cal analysis test is conducted. The obtained 𝑝 values are presented in Table 9 when the SIG 
strategy is tested against the proposed environment exploration strategies. The p values 
for the CF strategy are presented in Table 10. The considered α value in both tests is 0.05. 

Table 9. The p values by performing ANOVA test between the proposed environment exploration 
strategies that apply WASPAS-IVNS and WASPAS-mGqNS methods and the SIG strategy. 

Environment SIG Compared Against Information Penalty Distance 

1st 
WASPAS-IVNS 0.24 0.00 0.02 

WASPAS-mGqNS 0.25 0.00 0.06 

2nd 
WASPAS-IVNS 0.00 0.00 0.29 

WASPAS-mGqNS 0.00 0.00 0.04 

3rd 
WASPAS-IVNS 0.00 0.00 0.00 

WASPAS-mGqNS 0.00 0.00 0.00 

Table 10. The p values by performing ANOVA test between the proposed environment exploration 
strategies that apply WASPAS-IVNS and WASPAS-mGqNS methods and the CF strategy. 

Environment CF Compared Against Information Penalty Distance 

1st 
WASPAS-IVNS 0.51 0.00 0.00 

WASPAS-mGqNS 0.56 0.00 0.02 

2nd 
WASPAS-IVNS 0.00 0.00 0.00 

WASPAS-mGqNS 0.00 0.00 0.00 

3rd 
WASPAS-IVNS 0.00 0.00 0.00 

WASPAS-mGqNS 0.00 0.00 0.00 

Considering the results presented in Tables 9 and 10, it can be reasoned that the pro-
posed environment exploration strategy can significantly increase the robot’s ability to 
avoid dangerous areas in SAR missions. Furthermore, by applying the proposed environ-
ment exploration strategy, the robot can significantly increase the amount of discovered 

Figure 7. The penalty received in the 3rd environment.

The improvements provided by the proposed environment exploration strategy are
observed across all simulated environments. However, it is also observed that the proposed
environment exploration strategy increases the robot travelled distance, and this increase
is notable in the 2nd and the 3rd environments. For example, in the 3rd environment, the
travelled distance was increased by up to 33.64% when applying the proposed environ-
ment exploration strategy. To assess the significance of the observed results, the ANOVA
statistical analysis test is conducted. The obtained p values are presented in Table 9 when
the SIG strategy is tested against the proposed environment exploration strategies. The
p values for the CF strategy are presented in Table 10. The considered α value in both tests
is 0.05.

Table 9. The p values by performing ANOVA test between the proposed environment exploration
strategies that apply WASPAS-IVNS and WASPAS-mGqNS methods and the SIG strategy.

Environment SIG Compared against Information Penalty Distance

1st
WASPAS-IVNS 0.24 0.00 0.02

WASPAS-mGqNS 0.25 0.00 0.06

2nd
WASPAS-IVNS 0.00 0.00 0.29

WASPAS-mGqNS 0.00 0.00 0.04

3rd
WASPAS-IVNS 0.00 0.00 0.00

WASPAS-mGqNS 0.00 0.00 0.00

Table 10. The p values by performing ANOVA test between the proposed environment exploration
strategies that apply WASPAS-IVNS and WASPAS-mGqNS methods and the CF strategy.

Environment CF Compared against Information Penalty Distance

1st
WASPAS-IVNS 0.51 0.00 0.00

WASPAS-mGqNS 0.56 0.00 0.02

2nd
WASPAS-IVNS 0.00 0.00 0.00

WASPAS-mGqNS 0.00 0.00 0.00

3rd
WASPAS-IVNS 0.00 0.00 0.00

WASPAS-mGqNS 0.00 0.00 0.00

Considering the results presented in Tables 9 and 10, it can be reasoned that the pro-
posed environment exploration strategy can significantly increase the robot’s ability to
avoid dangerous areas in SAR missions. Furthermore, by applying the proposed environ-
ment exploration strategy, the robot can significantly increase the amount of discovered
information in larger environments that have a similar topology to that of the 2nd and
3rd environments. However, as the increase in robot travelled distance is observed to be
rather significant in the 2nd and the 3rd environments, two additional ratio parameters
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(namely, the ratio between the robot travelled distance and the discovered information and
the ratio between the received penalty and the discovered information) are considered to
determine if the proposed environment exploration strategy is actually balancing between
the optimisation priorities. These results are presented in Table 11.

Table 11. The averaged ratio values obtained in the three simulated environments.

Environment Method Distance/Information Penalty/Information

1st

WASPAS-IVNS 0.19 0.02
WASPAS-mGqNS 0.19 0.02

SIG 0.21 0.16
CF 0.21 0.15

2nd

WASPAS-IVNS 0.26 0.02
WASPAS-mGqNS 0.27 0.01

SIG 0.29 0.11
CF 0.25 0.12

3rd

WASPAS-IVNS 0.20 0.02
WASPAS-mGqNS 0.20 0.01

SIG 0.20 0.17
CF 0.19 0.18

The averaged ratio values highlight that the proposed environment exploration strat-
egy decreases the penalty for every travelled meter by up to 85–90%. These results are
stable across the simulated SAR environments. However, the ratio between the robot
travelled distance and the obtained information is not as stable. This value is decreased by
up to 12% in the 1st environment. Decreased by 8.7% and increased by up to 9% in the 2nd
environment and increased by up to 7% in the 3rd environment. To assess the significance
of the observed variations between the proposed WASPAS-IVNS and WASPAS-mGqNS
methods and the baseline strategies, an ANOVA statistical analysis test is performed. The
obtained p values for the SIG method are presented in Table 12. However, considering
the ANOVA test results against the CF strategy, the increase and decrease of values in all
environments are considered as significant, with all p values < 0.05.

Table 12. The p values between the proposed environment exploration strategies that apply WASPAS-
IVNS and WASPAS-mGqNS methods and the baseline SIG strategy.

Environment SIG Results
Compared against Distance/Information Penalty/Information

1st
WASPAS-IVNS 0.00 0.00

WASPAS-mGqNS 0.02 0.00

2nd
WASPAS-IVNS 0.01 0.00

WASPAS-mGqNS 0.08 0.00

3rd
WASPAS-IVNS 0.45 0.00

WASPAS-mGqNS 0.83 0.00

Considering the results, it can be concluded that the decrease in the received penalty
relative to the travelled distance is significant in all three simulated environments. However,
the increased robot travel distance in the 3rd environment is considered insignificant, when
the proposed environment exploration strategy is compared to the baseline SIG strategy,
and the decrease is significant in the 1st environment. This indicates, that in multiple
situations the robot could balance between the given prioritisation requirements. However,
it is worth noting that the results obtained by the frontier assessment strategies (such as
the proposed one) strongly depend on the structure of the environment, and the positions
of objects that attract or redirect the exploring robot. Nevertheless, the robot’s ability
to avoid dangerous areas while also increasing the discovered environment information
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is an important feature that can be employed when exploring the SAR environments.
The obtained results confirm that in some situations the proposed adaptive environment
exploration strategy can significantly increase the robot performance when compared to the
baseline CF and SIG strategies. It is also worth noting that the path planning process (which
is used for several criteria value calculations) is a time-consuming procedure. However,
the proposed decision-making approach for candidate frontier assessment does not require
significant additional computational resources.

4. Conclusions

In this research, the proposed adaptive candidate frontier assessment strategy which
applies the neutrosophic WASPAS-IVNS and WASPAS-mGqNS methods is evaluated in the
simulated SAR environments. The proposed environment exploration strategy is compared
against the standard CF and SIG strategies, and the MCDM methods are compared against
the state-of-the-art WASPAS-SVNS method. The WASPAS-IVNS and WASPAS-mGqNS
methods show computational stability when compared to the WASPAS-SVNS method. By
applying the proposed candidate frontier assessment strategy, generally insignificant result
fluctuation of the considered comparison parameters (at p value > 0.05) is observed in 1st
and 2nd simulated SAR environments. Also, the m-generalised q-neutrosophic set includes
all the benefits of the considered fuzzy sets [30], thus introducing additional flexibility to
the proposed candidate frontier assessment approach.

The proposed environment exploration strategy which applies the WASPAS-IVNS
and WASPAS-mGqNS methods, provides noteworthy performance improvements when
compared to the SIG and CF strategies. When comparing to the SIG strategy, the proposed
environment exploration strategy increases the robot performance regarding the discov-
ered environment information by up to 1.8%, 12.69%, and 13.19% in the three simulated
environments, when applying the WASPAS-IVNS method, and up to 1.8%, 11.83%, and
12.27% when applying the WASPAS-mGqNS method. When compared to the CF strategy,
the proposed environment exploration strategy increases the robot performance regarding
the discovered environment information by up to 0.5%, 10.36%, and 23.63% in the three
simulated environments, when applying the WASPAS-IVNS method. The values increase
by up to 0.5%, 9.51%, and 22.60% when applying the WASPAS-mGqNS method. The
increase in performance is significant in the 2nd and 3rd environments at p values < 0.05.
Furthermore, the proposed environment exploration strategy is capable of decreasing the
robot obtained penalty for traversing dangerous regions by up to 94.4%. The observed
ability to decrease the received penalty is significant in all three environments at p val-
ues < 0.05. However, the average of robot travelled distance can increase when applying
the proposed adaptive environment exploration strategy. Nevertheless, a robot that applies
the proposed navigation strategy is capable of balancing multiple prioritisation objectives,
enabling it to discover more environment information while also avoiding dangerous areas
in the environment.
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