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Abstract: The aim of the present paper is the evaluation of the resonance half-widths of the first
maximum for the probability of the total neutrino conversion in a medium. We consider the simplest
case of two-neutrino mixing in matter with a constant refraction length. The results can be applied,
for example, to studies of neutrino oscillations in the Earth’s mantle and elsewhere.
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1. Introduction

The neutrino is a unique particle that breaks the fundamental symmetry between left
and right in nature: chiral symmetry or parity P. It participates in the weak interactions,
which break the discrete symmetries, such as P-symmetry and C-symmetry, between par-
ticles and their antiparticles, and also time reversal symmetry, T-symmetry. It is proven
experimentally that the strong and electromagnetic interactions preserve the aforemen-
tioned symmetries. See reviews [1,2].

The weak interactions are sensitive only to left-handed neutrinos and right-handed an-
tineutrinos in such a way that CP-symmetry is preserved for massless neutrinos, according
to the Standard Model. However, it was proven by oscillation experiments that neutrinos
are massive particles and can be mixed, but with a different pattern than quarks mixing.
Such mixing can lead to a violation of CP-symmetry with an even more rich structure of
CP violation phases than that existing in the quark sector. The neutrino mixing matrix is
called the Pontecorvo–Maki–Nakagawa–Sakata (PMNS) mixing matrix.

Neutrino propagation in the sun and in Earth, for which medium is asymmetric,
with respect to the presence of particles and antiparticles due to the baryon asymmetry of
our universe, can lead to an additional violation of CP-symmetry. The symmetry of the
resonance shape of the probability distribution of neutrino oscillations in matter is also
destroyed by the neutrino interaction with matter.

This paper is dedicated to the evaluation of the resonance half-widths of the first
maximum for the probability of the total neutrino conversion in the medium. The simplest
case of two-neutrino mixing in matter with a constant refraction length is considered. We
explore the resonant enhancement of the transition between two neutrino species. We show
that the resonant shape of the transition probability is highly asymmetric, contrary to the
usual assumption about a symmetric shape of the resonance widths.

2. Framework and Definitions

The probability of transition between the two weak-eigenstates of ultrarelativistic
neutrinos, να and νβ (α 6= β = e, µ, τ, s) (the symbols e, µ, τ, and s mean electron, muon, tau,
and sterile neutrinos, respectively), in matter [3]

P2 = sin2 2θm sin2 φm (1)

depends on the mixing function

sin2 2θm =
sin2 2θ

sin2 2θ + (cos 2θ − `ν/`0)
2 (2)
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and the phase

φm =
π

√
sin2 2θ + (cos 2θ − `ν/`0)

2

`ν/`0
· `
`0

, (3)

which is proportional to the distance ` traveled by neutrinos. Here, θ is the vacuum
mixing angle, and θm is the mixing angle in matter. The ratio of the neutrino energy, E,
and the neutrino mass squared difference, ∆m2, defines the vacuum oscillation length
`ν = 4πE/∆m2, and `0 = 2π/Vαβ is the refraction length, where Vαβ is the difference of
the effective potentials between propagation of the να and νβ states in matter.

The relations (2) and (3) at a fixed vacuum mixing angle θ are expressed through two
independent dimensionless variables, x = `/`0 and y = `ν/`0. For the first time, it was
mentioned in [4,5] that the mixing function sin2 2θm has a resonance form, with respect to
the variable y. At the resonance

yR = cos 2θ (4)

the mixing function (2) reaches the maximum sin2 2θm = 1 with the symmetric half-widths
on both sides at half-maxima, with respect to the variable y:

∆yR = sin 2θ. (5)

In the following, we consider the case when the resonance happens for vacuum
mixing angles in the first octant 0 ≤ θ ≤ π/4, which correspond to positive yR. In the case
π/4 ≤ θ ≤ π/2, resonance is possible for the opposite signs of ∆m2 or Vαβ.

It is clear that the half-width (5) is the supremum of the observable half-widths for
the probability (1), with respect to the variable y, since there is an additional multiplier
sin2 φm(x, y), which is less or equal to 1. This multiplier has an infinite number of maxima,
with respect to the variable x, starting from zero. Let us consider for definiteness the first
maximum for probability (1) P2 = 1, which corresponds to a total neutrino conversion and
is reached at

xR =
1
2

cot 2θ (6)

for fixed y = yR (4).
The half-widths on both sides at half-maxima of the probability (1), with respect to the

variable x, are then symmetric and easily calculated

∆xR =
1
4

cot 2θ . (7)

Evaluation of resonance half-widths of the probability (1), with respect to the variable y
at fixed x = xR (6), cannot be done analytically and will be considered numerically in the
next section.

3. Half-Widths with Respect to the Variable y

It is obvious that the probability distribution (1) around the maximum, with respect to
the variable y at fixed x = xR, is asymmetric with different half-widths ∆y+ = y+ − yR 6=
∆y− = yR − y−. The equations for new variables z± = ±∆y±/ sin 2θ look the same,

sin

 π
√

1 + z2
±

2(1 + z± tan 2θ)

 =

√
1 + z2

±
2

, (8)

but correspond to solutions with different signs z+ > 0 and z− < 0, where z+ describes the
ratio of the exact numerical solution of Equation (8) for the right half-width to the analytical
guess of Equation (5), while z− corresponds to the negative ratio of the exact numerical
solution of Equation (8) for the left half-width to the same analytical symmetric solution of
Equation (5).
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Equation (8) can be easily solved numerically by Newton’s method, starting with
the points z± = ± 0. It is interesting to compare the resonance half-width (5) with the
half-widths of the resonance peak for the probability (1) (see Figure 1).
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Figure 1. A comparison between the half-widths: The sign-dependent ratio of the exact numerical
solution of Equation (8) to the analytical guess of Equation (5).

There is only one point tan 2θ =
√

2− 1 or θ = π/16 at which the right half-width
coincides with Equation (5): ∆y+ = sin 2θ.

The Equation (8) allows simple investigation of their limiting cases at tan 2θ = 0
and tan 2θ → ∞ analytically. In the limiting case of small vacuum mixing angles θ, both
solutions give the same half-width (see Figure 1)

∆y+0 = ∆y−0 = |z0| sin 2θ ≈ 0.8 sin 2θ , (9)

where z0 is a solution of the following transcendental equation:

sinc
(

π

2

√
1 + z2

0

)
=

√
2

π
. (10)

The asymptotic solutions for the maximal vacuum mixing angle θ = π/4 can be found
by substitutions z+∞ = a cot 2θ and z−∞ = −b cot 2θ, where a and b are positive constants.
There is always only one positive root of Equation (8), which corresponds to the right
half-width of the resonance probability peak. In the limiting case, tan 2θ → ∞, we get the
solution a = 1, which corresponds to

∆y+∞ = cos 2θ = yR. (11)

However, there are infinitely many negative roots at tan 2θ → ∞, which correspond to
oscillation peaks on the left side of the first resonance peak at y = yR (4). The only maximal
solution

∆y−∞ =
1
3

cos 2θ =
1
3

yR (12)

with b = 1/3 corresponds to the left half-width of the resonance probability peak.
Therefore, in both limiting cases, the absolute values of the widths tend to zero at

x = xR (6), starting from the symmetric peak (9) at small mixing angles to the maximally
asymmetric half-widths ratio ∆y+∞/∆y−∞ = 3 (11,12) at the maximal vacuum mixing
angle (see Figure 2).
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Figure 2. The difference between the upper and lower curves presents the absolute half-width
dependence, with respect to tan 2θ.

In the same limiting case tan 2θ → ∞, we can also find the positions of all non-
resonance maxima, including the resonance (n = 1)

yn
R =

1
2n− 1

cos 2θ, (13)

where n = 1, 2, 3, . . . and the corresponding half-widths are

∆yn
+∞ =

1
(2n− 1)(4n− 3)

cos 2θ =
1

4n− 3
yn

R, (14)

∆yn
−∞ =

1
(2n− 1)(4n− 1)

cos 2θ =
1

4n− 1
yn

R. (15)

However, due to strong asymmetry in the probability distribution shape, with respect
to the location of the absolute maximum, especially in the case of tan 2θ ≥ 1, these formu-
lae cannot give an adequate description of the Mikheyev–Smirnov–Wolfenstein (MSW)
resonance width. Therefore, it will be considered in the next section.

4. Full Consideration of the Resonance Width

Let us consider the shapes of the probability distribution (1) in the two-dimensional
(y, x) plane. There are two lines that correspond to maximal values of the multipliers in
Equation (1): y = cos 2θ and

x =
y

2
√

sin2 2θ + (y− cos 2θ)2
= x1(y) (16)

for the first maximum. The maximum P2 = 1 is reached at the point (yR, xR), while the
condition P2 ≥ 1/2 defines the ranges, with respect to the variable y

−min(sin 2θ, cos 2θ) ≤ ∆y ≤ sin 2θ, (17)

where ∆y = y− cos 2θ, and with respect to the variable x

|∆x| ≤ 2x1(y)
π

arccos

√
sin2 2θ + ∆y2

2 sin2 2θ
, (18)

where ∆x = x− x1. In Figure 3, the total width dependence on parameter θ are shown.



Symmetry 2022, 14, 176 5 of 8

0

1

2

3

4

5

 2| x|max

/43 /16/8/160
 [rad]

to
ta

l w
id

th

 

 

Figure 3. The total width dependence, with respect to the parameter θ for the variable y (solid line)
and maximal width for the variable x (dashed line).

The solid (red) line presents the total width for the variable y Equation (17), while the
dashed (blue) line presents the maximal value of width for the variable x Equation (18) at
fixed y. From Figure 3, it is clear that the resonance shapes for the small mixing parameter
θ and the maximal mixing θ = π/4 are highly asymmetric (Figure 4a,c).
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Figure 4. Resonance shapes (solid lines for P2 = 1/2) for the mixing parameters π/100 (a), 2π/25 (b),
and π/4 (c). Dashed lines correspond to Equation (16), and the dots show the absolute maxima.

For small mixing angles (Figure 4a), the resonance shape has a very narrow width,
with respect to the variable y around 1, and very long ridge, with respect to the variable
x. This resonance disappears at zero mixing in infinity, with respect to the variable x.
The intermediate (between π/16 and π/8) mixing angle θ ≈ 2π/25 (Figure 3) leads to a
resonance shape with nearly the same sizes, with respect to the variables x and y (Figure 4b),
while the maximal mixing θ = π/4 again shows the asymmetric shape with an absolute
maximum at x = y = 0 (Figure 4c).

5. Applications

In the case of three neutrino mixing, there is a 3 × 3 unitary mixing matrix UPMNS:νe
νµ

ντ

 = UPMNS

ν1
ν2
ν3

, UPMNS = U23UδU13U12U†
δ Uη , (19)

where the matrix Uij corresponds to the rotation in the (ij)-plane by an angle θij, while
Uδ = diag(1, 1, eiδ) takes into account CP violation phase δ and Uη = diag(eiη1 , eiη2 , 1)
introduces the Majorana phases. It is the well-known PMNS mixing matrix.

Since matter-induced neutrino potential V = diag(Veµ, 0, 0) commutes with U23, angle
θ23 is not affected by matter. Finally, in the case of neutrino masses m1 ≈ m2 � m3 or
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m1 ≈ m2 � m3, mass matrix commutes approximately with U12 and commutes with Uδ

and Uη . Therefore, the problem can be reduced with good approximation to two flavours
without the effect of the CP violation phase δ, the Majorana phases η1, η2, or mixing angle
θ12. Therefore, for the νe—νµ transition we get:

Peµ = Pµe = sin2 θ23 P2, (20)

where the two flavours probability P2 from Equation (1) depends on the vacuum mix-
ing angle θ = θ13, mass squared difference ∆m2 = m2

3 − m2
1, and the effective potential

Veµ =
√

2GF Ne. In the last expression, GF is the Fermi coupling constant and Ne is the
electron number density in the medium.

In [6], the authors derived the minimal width of the medium dmin, below which the
probability conversion P2 is less than 1/2. For a uniform medium in approximation of
small vacuum mixing angles at the resonance yR, they got the following relation:

dmin = d0 cot 2θ, (21)

where d0 = π/(2
√

2GF) is the refraction width. Although it is a good approximation
for very small vacuum mixing angles (see Figure 4a), Figure 4b demonstrates that it is
not the case for bigger vacuum mixing angles when corrections to Equation (21) must be
applied. Indeed, xmin is always reached at y values less than yR. In Figure 5, a comparison
between the minimal width of the medium from Equation (21) and a direct calculation
using Equations (16) and (18) is shown. Direct calculations show that at θ → π/8, the
minimal width of the medium tends to zero: xmin → 0, where there is maximal deviation
from Equation (21). For the physical value of the mixing angle θ13 ≈ 8.6◦, we get from
Equation (21) about 20% bigger value than that obtained from the direct calculations.

0.01

0.1

1

 [rad]/100 /16 /8

  

 

xmin/(2d0)

Figure 5. Comparison of the minimal width of the medium in units of d0 from Equation (21)
(dashed line) and direct calculations (solid line).

At the end of this section, we apply Equations (16)–(18) to calculate the shape of
the resonance peak in the Earth’s mantle for atmospheric neutrinos. If the mass squared
difference is positive ∆m2 = m2

3 −m2
1 ≈ 2.4× 10−3 GeV > 0 (normal neutrino mass order),

the MSW matter enhancement of oscillations will take place between electron and muon
neutrinos. For negative mass squared difference (inverted order), the matter oscillation
enhancement will take place for the corresponding antineutrinos.

The electron number density in the Earth’s mantle can be estimated assuming a
constant matter density ρm ≈ 5 g/cm3 with an electron fraction number Ye ≈ 0.5 and
Avogadro constant, NA, as Ne = YeρmNA. From Equation (4), the resonance energy is
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ER =
∆m2

2Veµ
· yR ≈ 6 GeV. (22)

In order to calculate the distance from the Earth’s atmosphere to the detector, where the
total neutrino conversion takes place, we will use Equation (6),

cos hR =
π

R⊕Veµ
· xR ≈ 0.82 ≈ cos(35◦), (23)

where h is the nadir angle and R⊕ ≈ 6371 km is the Earth’s radius. The position of the
absolute maximum is presented in Figure 6.
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Figure 6. Resonance shape of the probability distribution (solid lines for P2 = 1/2) for the atmospheric
neutrinos in Earth. Dashed line corresponds to Equation (16) and dot shows absolute maximum.

It corresponds to neutrino trajectory in the mantle close to the Earth’s core, which
has a radius Rc ≈ 3480 km. Therefore, the neutrino trajectories with a nadir angle less
than hc ≈ 33◦, crossing both the mantle and the core of the Earth, which have different
matter densities and MSW resonance description, is not applicable for this region. The
MSW resonance shape (P2 = 1/2) is shown in Figure 6 with a solid line for the applicable
region h ≥ hc and with a dotted line for the unphysical case when the Earth’s interior had
a constant matter density ρm.

The resonance shape of the probability distribution of the neutrino trajectories with
h < hc cannot be described by the MSW resonance curve (1). In this region, another matter
effect is operative: the interference effect between neutrino wave functions in the mantle
and in the core [7].

6. Discussion

The neutrino propagation in the medium can be described using the MSW approach [3–5].
The probability of oscillations between two ultrarelativistic neutrino species for a constant
matter density and its constant electron fraction number is described by Equation (1). There
is a phenomenon of resonant enhancement of transition between species, which leads to a
maximal mixing angle in the matter θm = π/4 and total neutrino conversion.

It is usually accepted that the resonance half-widths are symmetric and given by
Equation (5). In this paper, we investigate the resonance shape of the probability distribu-
tion P2 Equation (1) on two independent parameters, x and y, which are proportional to
the distance ` travelled by the neutrino and neutrino energy E, correspondingly. Using the
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analytical Equations (16)–(18), for the first maximum it is shown that the resonance shape is
highly asymmetric (Figure 4). Equation (16) can be easily generalised for the n-th maximum

xn(y) =
(2n− 1)y

2
√

sin2 2θ + (y− cos 2θ)2
, (24)

while the equations for the half-widths (17) and (18) are valid for any resonance maximum.
Our formulae are applicable for any fixed vacuum mixing angles θ. However, it should

be pointed out that Equation (4) leads to the solution E = 0 at the maximal vacuum mixing
angle θ = π/4. Certainly, such a solution with zero neutrino energy corresponds to an
unphysical case, because Equation (1) is applicable only to a ultrarelativistic neutrino. This
limiting case will be considered in details elsewhere.
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