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Abstract: This paper proposes a modification of the imperialist competitive algorithm to solve 
multi-objective optimization problems with hybrid methods (MOHMICA) based on a modification 
of the imperialist competitive algorithm with hybrid methods (HMICA). The rationale for this is 
that there is an obvious disadvantage of HMICA in that it can only solve single-objective optimi-
zation problems but cannot solve multi-objective optimization problems. In order to adapt to the 
characteristics of multi-objective optimization problems, this paper improves the establishment of 
the initial empires and colony allocation mechanism and empire competition in HMICA, and in-
troduces an external archiving strategy. A total of 12 benchmark functions are calculated, including 
10 bi-objective and 2 tri-objective benchmarks. Four metrics are used to verify the quality of 
MOHMICA. Then, a new comprehensive evaluation method is proposed, called “radar map 
method”, which could comprehensively evaluate the convergence and distribution performance of 
multi-objective optimization algorithm. It can be seen from the four coordinate axes of the radar 
maps that this is a symmetrical evaluation method. For this evaluation method, the larger the radar 
map area is, the better the calculation result of the algorithm. Using this new evaluation method, 
the algorithm proposed in this paper is compared with seven other high-quality algorithms. The 
radar map area of MOHMICA is at least 14.06% larger than that of other algorithms. Therefore, it 
is proven that MOHMICA has advantages as a whole. 

Keywords: multi-objective optimization problems; hybrid methods; imperialist competitive algo-
rithm; optimization 
 

1. Introduction 
In the fields of production processes, engineering applications, management and 

decision-making within complex systems, multi-objective optimization problems are 
more common than single-objective problems. However, it is very difficult to achieve a 
solution to meet the requirement that all objective functions are optimal because of the 
conflict between various objective functions. Therefore, there is hardly a single global 
optimal solution, but a set of Pareto optimal solutions balanced by the values of various 
objective functions will be formed. In this case, the process of solving solutions becomes 
more complex than single-objective optimization, and it is difficult to obtain multiple 
uniformly distributed approximate Pareto optimal solution sets. Accordingly, it is of 
theoretical and practical significance to study the solution for such problems. 

1.1. Description of Constrained Optimizaiton 
Generally, a multi-objective optimization problem can be described by the Formula 

(1). 
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where, { 1 2( ), ( ),...,f x f x }( )mf x  represents the individual objective function. ( ) 0ig x ≤  is 
the i-th inequality constraint in optimization problem in the Formula (1), and p  is the 
number of inequality constraints. ( ) 0jh x =  is the j-th equation constraint, and q  is 
the number of equation constraints. ku  and kv  are the upper and lower bounds of kx , 
respectively. The set { | ( ) 0, ( ) 0,i jD x S g x h x= ∈ ≤ =  1,2..., , 1,2,..., }i p j q= =  that meets 
all inequality and equality constraints in the search space { ,k k kS u x v= ≤ ≤  

, 1, 2,..., }nx R k n∈ =  is called the feasible region of the constrained optimization problem 
in the Formula (1). If a group solution x D∈ , x is called a feasible solution; otherwise, it 
is called an infeasible solution. For two group of solutions ( )1 11 12 1, ,..., nx x x x=  and 

( )2 21 21 2, ,..., nx x x x= , if all components of 1x  are better than 2x , or some components of 

1x  are better than 2x  and the others are equal, there is a dominant relationship be-
tween 1x  and 2x . Here, 1x  is the dominant solution and 2x  is the dominated solu-
tion. Otherwise, there is a non-dominant relationship between 1x  and 2x . 

1.2. Related Work 
This section can be divided into two parts, including multi-objective swarm and 

evolutionary algorithms and multi-objective imperialist competitive algorithms. 

1.2.1. Multi-Objective Swarm and Evolutionary Algorithms 
Swarm and evolutionary algorithms can use the population to search in the optimal 

direction, so as to make the whole population approach the Pareto front, and finally ob-
tain the approximate Pareto front. There have been several studies about swarm and 
evolutionary algorithms for solving multi-objective optimization, since Schaffer [1] pro-
posed the vector evaluated genetic algorithm (VEGA). Some well-known algorithms in-
clude multiple objective genetic algorithm (MOGA) proposed by Fonseca and Fleming 
[2], Pareto evolutionary selection algorithm II (PESA-II) proposed by Corne [3], 
non-dominated sorting in genetic algorithms (NSGA) [4] and non-dominated sorting in 
genetic algorithms II (NSGA-II) [5] proposed by Deb, multi-objective particle swarm op-
timization (MOPSO) proposed by Coello [6], multi-objective evolutionary algorithm 
based on decomposition (MOEA\D) proposed by Q. Zhang [7] and multi-objective arti-
ficial bee colony algorithm proposed by Akbari [8]. 

When solving complex multi-objective optimization problems, the above algo-
rithms may have one or more of the following problems: 
(1) With the increase of the number of objective functions, the proportion of 

non-dominated solutions in the population also increases, which would lead to the 
slowing down in the speed of search process; 

(2) For high-dimensional target space, the computational complexity to maintain di-
versity is too high, and it is difficult to find the adjacent elements of the solution; 

(3) The indexes for evaluating comprehensive performance of the algorithm are poor. 
Almost all evaluation indexes can only evaluate one of the convergence and distri-
bution of the population in the algorithm; therefore, it is presently difficult to com-
prehensively evaluate the population convergence and distribution of the swarm 
and evolutionary algorithms for solving multi-objective optimization; 

(4) For the high-dimensional target space, how to visualize the results is also a difficult 
problem. 
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In recent years, many new swarm and evolutionary algorithms and their improved 
algorithms have also been effectively applied in the process of solving multi-objective 
optimization. Mirjalili proposed the multi-objective grasshopper optimization algorithm 
(MOGOA) [9], the multi-objective ant lion optimizer (MOALO) [10] and the mul-
ti-objective grey wolf optimizer (MOGWO) [11], respectively. The MOGOA algorithm, 
based on the grasshopper optimization algorithm (GOA), has been proposed when 
solving multi-objective optimization. In order to solve multi-objective optimization, an 
archive and target selection mechanism was introduced into GOA. For most mul-
ti-objective optimization, MOGOA is a competitive algorithm with high distribution. In 
addition, the quality of convergence and distribution is competitive. The MOALO algo-
rithm, based on ant lion optimizer (ALO), has also been proposed for solving mul-
ti-objective optimization. The algorithm was tested on 17 case studies, including 5 un-
constrained functions, 5 constrained benchmarks and 7 engineering design optimiza-
tions. Most of the results achieved have been better than NSGA-II and MOPSO. The 
MOGWO algorithm, based on the grey wolf optimizer (GWO), is another algorithm 
proposed to solve multi-objective optimization. In this algorithm, in order to save the 
non-dominated solutions in the iterative process, a fixed-sized external archive was used. 
Meanwhile, a grid-based approach was employed to maintain and adaptively assess the 
Pareto front. After solving CEC 2009 [12] benchmarks, the results of MOGWO were 
compared with that of MOPSO and MOEA/D. Based on MOGWO, using an adaptive 
chaotic mutation strategy, a multiple search strategy based on the multi-objective grey 
wolf optimizer (MMOGWO) [13] has been proposed by Liu. An elitism strategy is also 
introduced into MMOGWO to search for more potential Pareto optimal solutions and 
store the diversity of solutions in the approximated solution set. Therefore, MMOGWO is 
verified by some benchmark functions of multi-objective optimization, and competitive 
calculation results are obtained. Based on stochastic Fractal Search (SFS), Khalilpourazari 
[14] proposed multi-objective stochastic Fractal Search (MOSFS) with two new compo-
nents, including archive and leader selection mechanism. Then, this algorithm was ap-
plied in the welded beam design problem, obtaining better results than MOPSO and 
MOGWO. Got [15] extended the whale optimization algorithm (WOA) and proposed a 
new multi-objective algorithm called the guided population archive whale optimization 
algorithm (GPAWOA). This algorithm uses an external archive to store the 
non-dominated solutions searched in the process of solving the optimization problems. 
The leaders are selected from the archive to guide the population towards promising re-
gions of the search space; also, the mechanism of crowding distance is incorporated into 
the WOA to maintain the diversity. The algorithm obtained good results, but there is 
room for improvement in the initialization. In the future, some new swarm and evolu-
tionary algorithms, including aquila optimizer (AO) [16], reptile search algorithm (RSA) 
[17], and arithmetic optimization algorithm (AOA) [18], can be improved in order to 
solve multi-objective optimization. 

1.2.2. Multi-Objective Imperialist Competitive Algorithms 
Imperialist competitive algorithms (ICA) are a kind of evolutionary algorithm based 

on the colonies’ competition mechanism of the imperialist method proposed by Atash-
paz-Gargar and Lucas [19], which is a kind of social heuristic optimization algorithm. At 
present, ICA is widely applied in many different fields, including artificial intelligence 
[20,21], power electronic engineering [22], supply chain management [23–26], vehicle 
scheduling [27–29] and production process scheduling [30–32]. 

In recent years, there has been some research carried out regarding solving mul-
ti-objective optimization problems using ICA and all kinds of modified ICA. Enaytifar 
[33] proposed the multi-objective imperialist competitive algorithm (MOICA). The main 
calculation steps of MOICA are strictly carried out according to the ICA algorithm. 
Therefore, there are some problems, including premature convergence, because empires’ 
competition can reduce the number of empires, and computing terminates before the 
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number of iterations reaches the maximum. The reason for this is that convergence is too 
fast, leading to empires dying out in the process of empire competition. Moreover, there 
are several steps in the MOICA algorithm, and each step has space to improve, including 
in terms of the search ability and convergence speed. In order to solve these problems, 
researchers have proposed some form of modified MOICA. Ghasemi [34] proposed a 
bare-bones multi-objective imperialist competitive algorithm with a modified version 
(MGBICA). In that paper, a Gaussian bare-bones operator was introduced in empire as-
similation in order to enhance the population diversity. Then, MGBICA is applied in the 
multi-objective optimal electric power planning, namely optimal power flow (OPF) and 
optimal reactive power dispatch (ORPD) problems. For this algorithm, the other steps, 
except for assimilation, have modified room. Mohammad [35] improved MOICA, a new 
step that all countries move to the optimal imperialist; they use this algorithm to design 
variables of brushless DC motor to maximize efficiency and minimize total mass. For this 
algorithm, such algorithm design can enhance the convergence speed, but increase the 
possibility of falling into local optimization. At the same time, it cannot solve the prob-
lem that the number of empires may be reduced due to imperialist competition, and the 
iteration may be terminated before the number of iterations reaches the maximum. 
Piroozfard [36] designed an improved multi-objective imperialist competitive algorithm 
to solve multi-objective job shop scheduling optimization problem with low carbon 
emission. The algorithm obtains good calculation results for the model established in 
this paper, but the application scope has obvious limitations. When Khanali [37] re-
searched multi-objective energy optimization and environmental emissions for a walnut 
production system, a new modified MOICA was proposed. This algorithm solved the 
multi-objective optimization for the walnut production system. The result of the most 
environmental and economic benefits of energy consumption was obtained. In order to 
solve flexible job shop scheduling problems with transportation, sequence-dependent 
setup times (FJSSP-TSDST), which is a complex multi-objective problem, Li [38] pro-
posed a new MOICA named imperialist competitive algorithm with feedback (FICA). 
This algorithm proposed a new assimilation and adaptive revolution mechanism with 
feedback. Meanwhile, in order to improve the search ability, a novel competition mech-
anism is presented by solution transferring among empires. 

In addition, some improved ICA algorithms that can only solve single objective op-
timization have the potential to solve multi-objective optimization problems through 
continuous improvement. A hybrid algorithm using ICA combining Harris Hawks Op-
timizer (HHO) [39] was proposed, called Imperialist Competitive Harris Hawks Opti-
mization (ICHHO). This algorithm could solve some common optimization problems. 
Therefore, 23 benchmarks are calculated, and then the results are compared with ICA 
and HHO. This hybrid algorithm can obtain better results than two basic algorithms. In 
order to solve assembly flow shop scheduling problem, Li [40] proposed imperialist 
competitive algorithm with empire cooperation (ECICA). This algorithm uses a new 
imperialist competitive method through adaptive empire cooperation between the 
strongest and weakest empires. Tao [41] presented an improved ICA called a discrete 
imperialist competitive algorithm (DICA) to solve the resource-constrained hybrid 
flow-shop problem with energy consumption (RCHFSP-EC). A new decoding method 
considering the resource allocation was designed in this algorithm. Finally, a series of 
real shop scheduling system instances are calculated and compared with some other 
high-quality heuristic algorithms. DICA obtained satisfactory results. 
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1.3. The Main Content of This Paper 
From the above literature on the improvement and application of multi-objective 

imperialist competitive algorithms, these kind of algorithms have the following three 
problems. First, most algorithms fail to solve the problem that the number of empires is 
reduced due to imperialist competition. When the number of empires is one, the calcula-
tion would not be carried out, which may lead to the early termination of iterative cal-
culation. Second, in the operation process of each step of all kinds of modified imperial-
ist competitive algorithms, most of the algorithms cannot consider both local search and 
global search. Third, when solving practical problems, some algorithms have limitations, 
which are only applicable to the problems to be solved, but not universal. 

Therefore, in order to solve the above problems of multi-objective optimization us-
ing ICA, this paper proposes a new multi-objective imperialist competitive algorithm, 
called MOHMICA, based on a modification of the imperialist competitive algorithm, 
HMICA, in the literature [42]. 

The scientific contribution of this paper can be divided into the following two as-
pects, including algorithm theory and the evolution of algorithm performance: 
(1) From the perspective of algorithm theory, this paper proposes a new scheme to 

solve multi-objective optimization problems based on HMICA. By calculating 12 
multi-objective benchmarks and comparing with some high-quality algorithms in 
recent years, the algorithm proposed in this paper has certain advantages; 

(2) From the perspective of algorithm performance evaluation, this paper proposes a 
comprehensive evaluation method of multi-objective optimization algorithm by 
using multiple evaluation metrics. 
The second part of this paper will introduce MOHMICA, which is the proposed al-

gorithm in this paper. The third part will introduce the relevant design of numerical 
simulation in this paper, including performance metrics, comparison algorithms, simu-
lating setting and environment. The fourth part introduces the calculation results and 
discussion, and the fifth part is the conclusion and future research. 

2. The Proposed Algorithm 
The steps of MOHMICA include initialization of solutions, the establishment of the 

initial empires, the development of imperialists and assimilation of colonies, empire in-
teraction, empire revolution, empire competition and external archive. 

Among these steps, initialization of solutions, the development of imperialists and 
assimilation of colonies, empire interaction, and empire revolution are the same as 
HMICA. In this paper, the steps of the establishment of the initial empires, empire com-
petition and external archive strategy are as follows. 

2.1. The Establishment of the Initial Empires 
Firstly, generate N initial solutions, namely N countries, using Halton sequences, 

and then sort these N initial solutions. The rules are as follows: 
(1) The feasible solution is better than the infeasible solution. If both solutions are in-

feasible solutions, compare the value of the violation function. The smaller the val-
ue of the violation function is, the better the solution is; 

(2) If both solutions are feasible solutions, first judge whether there is a dominant rela-
tionship between the two solutions. If one solution dominates the other, the domi-
nant solution is the optimal solution and the dominated solution is the inferior so-
lution; 

(3) If the two solutions are mutually non-dominated feasible solutions, arrange the 
number of dominated solutions of the two solutions in the whole population. The 
less the number of dominated solutions is, the better the solution is; 

(4) If the two solutions are mutually non-dominated feasible solutions, and the number 
of dominated solutions of the two solutions is the same in the whole population, the 
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crowding distance is compared. The larger the crowding distance is, the better the 
solution is. The calculation process of the crowding distance can be seen in the lit-
erature [5]. 
After sorting the countries, they are divided into Nimp empires. Each empire is 

composed of an imperialist and several colonies, that is, all countries are composed of 
Nimp imperialists and Ncol colonies. Here, imp colN N N= + . For the top 1impN −  imperialists, 
the number of colonies randomly assigned to each imperialist is carried out according to 
the Formula (2), and the remaining colonies are assigned to the last imperialist. 

(0,1), when th imperialist is a non dominated feasible solution
0, when th imperialist is a dominated feasible solution

1, when th imperialist is an infeasible solution

col
i

imp

randi i
NNC round i
N

i

− − 
= + −   

  − −






 (2)

where, NCi means the number of colonies allocated to the i-th imperialist. ( )round •  is 
an integer closest to • . ( )0,1randi  is a random number of 0 or 1. 

Allocating colonies such as this can avoid the disadvantage that the calculation 
formula of empires’ power in the basic ICA cannot be used in multi-objective optimiza-
tion and simplify the steps of colony allocation. Meanwhile, when, 2

imp colN N< , it ensures 
that each imperialist can be assigned to at least one colony. 

2.2. Empire Competition 
Competition among empires is a process of redistribution of the colonies owned by 

each empire. The steps are as follows: 
Step 1. Compare the quality of each empire and rank them to find out the strongest 

empire and the weakest empire. 
Step 2. If the weakest empire has colonies, find the weakest colony in the weakest 

empire as the annexed country. If there are no colonies in the weakest empire, the impe-
rialist will be annexed by other empires. 

Step 3. Randomly put the annexed countries into other empires. 
The rules for ranking the strength of the empire are as follows: 

(1) Comparing the number of infeasible solutions in each empire, where the empire 
with a smaller number is better; 

(2) If the number of infeasible solutions of the two empires is the same, compare the 
number of dominated solutions. The lower the number of dominated solutions, the 
better empire is; 

(3) If the above two are the same, compare the average crowding distance of each em-
pire, where the larger the crowding distance is, the stronger empire is. 

2.3. External Archive Strategy 
When solving multi-objective optimization, it is necessary to compare the quality of 

solutions by using the distribution indexes, such as crowding distance, because 
non-dominated solutions cannot be directly compared. Since a certain number of 
non-dominated solutions would be generated in each iteration, in order to prevent these 
non-dominated solutions generated in each iteration from losing in the next iteration, it 
is necessary to establish an external archive, which could store these non-dominated so-
lutions, merge the non-dominated solutions obtained in each iteration and delete the 
duplicate or dominated individuals in the external archive. Finally, the elite individuals 
in the calculation process are retained. The specific process of archiving strategy in this 
paper is as follows: 

Step 1. Arrange the non-dominated solutions obtained in each iteration according 
to the crowding distance, place into the external archive and delete the duplicate solu-
tions in the external archive; 
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Step 2. Update the external archive. Recalculate the number of dominated solutions 
and crowding distance of each solution in the external archive, and define the crowding 
distance of the D solutions with the minimum value in any specific sub vector as posi-
tive infinity. D is the number of objective functions; 

Step 3. Delete the dominated solutions of the updated external archive and sort 
them by crowding distance. If the number of non-dominated solutions is larger than the 
maximum size of the external archive at this time, the part beyond the maximum size of 
the external archive will be deleted. In particular, in order to preserve more possible elite 
solutions, the size of the external archive can be enlarged to a certain extent, for example, 
twice the population; 

Step 4. Find the country that the number of dominated solutions is the largest in all 
colonies, and replace the colony with the solution with the largest crowding distance in 
the external archive (excluding two solutions that the crowding distances are positive 
infinite), and then carry out the next iteration. 

2.4. Implementation of the Proposed Algorithm 
After the improvement of the hybrid method, the pseudo code of MOHMICA is 

obtained, as shown below. 

Algortithm: Pseudocode of MOHMICA 

Input: 

Population total number N 

The number of initial imperialists Nimp and colonies Ncol 

The number of optimization iterations MaxIt, archive size EA 

Output: MOHMICA Pareto front 

1 Initialize the MOHMICA population postions by Halton sequence 

2 for i = 1: N do 

3 Calculate the function values, violation values (if the optimization with constraints) the number of dominated solutions and 

crowding distance of the initial countries. 

4 Sort initial solutions according to the sorting rules in the Section 2.1. 

5 Create empires: according to the clonies allocating rules in the Section 2.1. 

6 end for 

7 while t MaxIt≤  do 

8 for i = 1:N do            

9       The development of imperialists and the assimilation of colonies: according to literature [42]. 

10       Calculate the function values, violation values (if the optimization with constraints) the number of dominated solutions and 

crowding distance of the initial countries. 

11 Empire interaction: according to literature [42]. 

12 Calculate the function values, violation values (if the optimization with constraints) the number of dominated solutions and 

crowding distance of the initial countries. 

13 Empire revolution: according to literature [42]. 

14 Calculate the function values, violation values (if the optimization with constraints) the number of dominated solutions and 

crowding distance of the initial countries. 

15 Empire interaction: according to literature [42]. 

16 Empire competition: according to the Section 2.2 of this paper. 

17 Update external archive: according to the Section 2.3 of this paper.  

18 end for 
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3. Experimental Design 
This part will introduce the benchmark functions calculated in this paper, perfor-

mance metrics, comparison algorithms, simulating setting and environment. 

3.1. Benchmark Functions 
In order to verify the effectiveness of the algorithm proposed in this paper, 12 

benchmark functions are calculated by MOHMICA, including SCH [5], FON [5], 
ZDT1-ZDT4 in ZDT [5] series, and 6 benchmarks in UF of CEC 2009. Among them, UF8 
and UF10 are three objective functions and the other benchmarks are double objective 
functions. The mathematical expressions of all benchmarks are shown in Table 1. 

Table 1. The mathematical expressions of all benchmarks. 

Function 
Name 

Mathematical Expressions Dimen-
sions 

Bounds 

SCH ( )22
1 2, 2f x f x= = −  1 [ ]0, 2  
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2 23 3
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= − =
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UF7 { } { }
1 2

2 2
1 1 2 1

1 2

1 2

1

2 2, 1

| is odd and 2 , | is even and 2

sin 6 , 2,...,
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n
ππ

∈ ∈

= + = − +
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 = − + = 
 

 
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2
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




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2 1
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j
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n
ππ

−

= ≤ ≤

 = − + = 
 

 
30 [ ] [ ]2 20,1 2,2 n−× −  

3.2. Performance Metrics 
In order to evaluate the convergence and distribution of solutions, this paper uses 

four metrics: convergence metric (CM), diversity metric (DM), generational distance (GD) 
and inverted generational distance (IGD). The introduction of these four indicators is as 
follows. 
(1) Convergence metric 

This metric reflects the distance between the approximate Pareto front and the real 
Pareto front. The smaller the value is, the closer the individual of the solutions is to the 
real Pareto front, and the better its convergence is. The calculating method is as shown 
in Equation (3): 

( ) ( )* *

1

1, min ,
ndn

i
ind

CM PF PF PF PF
n =

= ⋅  (3)

where, PF is the calculated approximate Pareto front. PF* is real Pareto front. nnd is the number 
of non-dominated solutions.   means Euclidean distance. Particularly, if CM = 0, that 
means the calculated Pareto front is true Pareto front. 
(2) Diversity metric 

This metric is used to measure the distribution of non-dominated solutions. The 
smaller its value is, the better distribution of non-dominated solutions is. The calculation 
method is shown in Equation (4). 

( )

1

1 +1
1

1
1

*
1

+1
1

,
,

1

,
,

nd

nd

nd

n

n i i
i

f l i i
i nd

n

f l i i
i

PF PF
d d PF PF

n

DM PF PF
d d PF PF

−

−
=

+
=

−

=

+ + −
−

=
+ +





 

(4)

where, df and dl are the Euclidean distance between the extreme non-dominated solution 
and the boundary solutions of the obtained non-dominated solution set. 
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(3) Generational distance 
This metric refers to the distance between the whole approximate Pareto front ob-

tained by the algorithm and the real Pareto front. The smaller the GD is, the closer solu-
tions are to the real Pareto front, and the better the convergence of the algorithm. The 
calculation method of this metric is shown in Equation (5): 

( ) ( )2* *

1

1, min ,
ndn

i
ind

GD PF PF PF PF
n =

= ⋅   (5)

(4) Inverted generational distance 
This metric refers to the distance between the real Pareto front and the approximate 

Pareto front obtained by the algorithm. To some extent, it is a comprehensive metric that 
can measure both convergence and diversity of an algorithm. The smaller the IGD, the 
better quality of algorithm is. The calculation method of IGD is shown in Equation (6): 

( )* *

1

1, min ,
PFn

i
iPF

IGD PF PF PF PF
n =

= ⋅  (6)

where, PFn  is the number of points of real Pareto front. 

3.3. Comparison Algorithm and Simulation Setting 
In this paper, each benchmark function is run independently 20 times by using the 

MOHMICA algorithm, and then compared with some multi-objective algorithms that 
have achieved good results in solving these kind of problems in recent years, including 
PESA-II, MOEA\D, NSGA-II, MOABC, MOALO, MOGOA and MMOGWO. In particu-
lar, the related parameter settings of PESA-II and MOEA\D are the same as in [3,7]. The 
related data of the other algorithms are from [13]. 

The simulation environment is Windows 10, Intel ® Core (TM) i7-10875H CPU @ 
2.30 GHz with a 16.00 GB RAM memory with a running environment of MATLAB 
2017b. 

The initial population size of the MOHMICA algorithm is set to 100, and the size of 
the external archive is set to 200. For SCH and FON, the maximum number of iterations 
is 50, meaning the maximum number of evaluations is 5000. The maximum number of 
iterations of other two objective functions is 250, that is, the maximum number of evalu-
ations is 25000. For the three objective benchmark functions, the maximum number of 
iterations is 500, that is, the maximum number of evaluations is 50,000. In order to en-
sure that the comparison results of different algorithms are fair when calculating the 
same function, the population number, maximum iteration times and maximum evalua-
tion times of all comparison algorithms are the same as those of MOHMICA. 

4. Results and Discussion 
4.1. Calculation Results and Discussion of Benchmark Functions 

The results of MOHMICA and other comparison algorithms are shown in Tables 2–
5. These four tables show the mean value and standard deviation (SD) of CM, DM, GD 
and IGD respectively. Meanwhile, the ranking of mean values of each algorithm are 
counted in these tables. Then, the results of average of ranking values of four metrics on 
each algorithm are in Table 6. From this table, MOHMICA ranked first more than all the 
other algorithms. 

In Tables 2–6, some rules about relevant metrics can be obtained when calculating 
each benchmark function of MOHMICA. For the convergence metrics including CM and 
GD, MOHMICA has an obvious advantage in general. For the distribution metric DM, 
the amount of times that MOHMICA ranked first was the most among all algorithms. 
For the metric of IGD, the comprehensive ranking of the algorithm proposed in this pa-
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per was slightly lower than MOALO and MMOGWO, but significantly higher than oth-
er algorithms. The reason for this is the low ranking of SCH and UF2 functions. On the 
whole, the more complex a benchmark function is, the better the result obtained by 
MOHMICA is. The results of all benchmark functions calculated by different algorithms 
from Table 2 to Table 5 can be quantitatively verified by the Wilcoxon test on the four 
metrics of each algorithm. This test is conducted with three levels of significance, name-
ly, =0.01α , =0.05α  and =0.1α . The statistical hypotheses for the Wilcoxon test are as 
follows: 
(1) H0: The results of the two algorithms are homogenous; 
(2) H1: The results of the two algorithms are heterogenous. 

According to the results of the Wilcoxon test in Table 7, the conclusions that can be 
obtained as follows: 
(1) From the perspective of R+, MOHMICA has advantages over the other algorithms. 

Moreover, most of the results can pass the level of significance of =0.01α ; 
(2) For the convergence metric CM, only two comparing algorithms, including 

MOGOA and MMOGWO, cannot pass the level of significance of =0.01α , but can 
pass the level of significance of =0.05α . For the other convergence metric GD, the 
performance of MOHMICA is worse than that of CM, with three algorithms in-
cluding MOALO, MOGOA and MMOGWO falling the level of significance of 

=0.01α . Moreover, the latter two cannot pass the level of significance of =0.1α , 
although MOHMICA has advantages over them; 

(3) For the distribution metric DM, except PESA-II failing to achieve the level of signif-
icance of =0.1α , MOHMICA outperforms other algorithms with a level of signifi-
cance of =0.01α ; 

(4) For the comprehensive metric IGD, MOHMICA has some advantages over 
MOALO and MOGOA, but these are not significant. The results of MOHMICA and 
MMOGWO are equal. It has obvious advantages over other algorithms with a level 
of significance of =0.05α . 
In order to show the advantages of MOHMICA in calculating these benchmark 

functions intuitively, the approximate Pareto front of each benchmark function calcu-
lated by MOHMICA, PESA-II, MOEA\D are compared with the real Pareto front, as 
shown from Figures 1–12. It is easy to see that the MOHMICA algorithm has obvious 
advantages in benchmark functions from these function images. 

Table 2. The results of convergence metric (CM) for all benchmark functions. 

Benchmark Func-
tions MOHMICA PESA-II MOEA\D NSGA-II MOABC MOALO MOGOA 

MMOG-
WO 

SCH 
Mean 1.328E-03 1.373E-03 2.870E-03 8.03E-03 8.38E-03 7.40E-03 8.28E-03 8.18E-03 

SD 1.332E-04 2.441E-04 3.546E-03 5.41E-04 4.72E-04 1.27E-03 6.96E-04 6.85E-04 
Rank 1 2 3 5 8 4 7 6 

FON 
Mean 2.706E-03 2.249E-03 3.182E-03 9.97E-03 3.65E-02 1.11E-02 9.23E-02 1.06E-02 

SD 2.154E-04 2.380E-04 2.199E-03 3.87E-04 8.89E-03 2.08E-03 1.12E-02 8.29E-04 
Rank 2 1 3 4 7 6 8 5 

ZDT1 
Mean 2.639E-03 7.745E-02 6.369E-02 4.61E-02 2.94E-01 5.04E-03 7.79E-02 1.23E-03 

SD 1.075E-03 1.731E-02 7.270E-02 4.33E-02 5.59E-02 9.67E-03 2.33E-01 4.01E-04 
Rank 2 6 5 4 8 3 7 1 

ZDT2 
Mean 2.341E-03 1.253E-01 8.943E-01 7.52E-02 3.05E-01 5.40E-04 4.02E-03 8.52E-04 

SD 6.979E-04 2.924E-02 4.823E-01 4.28E-02 7.19E-02 7.52E-05 6.95E-03 1.06E-04 
Rank 3 6 8 5 7 1 4 2 

ZDT3 
Mean 3.965E-03 7.376E-02 8.962E-01 5.31E-02 1.87E-01 7.67E-03 3.83E-02 4.69E-04 

SD 3.885E-04 1.550E-02 7.403E-01 5.42E-02 5.94E-02 3.27E-03 6.39E-02 6.19E-04 
Rank 2 6 8 5 7 3 4 1 
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ZDT4 
Mean 2.003E-03 2.515E+00 1.011E+00 7.08E+00 2.25E+00 2.01E+01 1.53E+01 4.25E+00 

SD 2.899E-04 1.613E+00 5.481E-01 2.85E+00 8.90E-01 5.24E+00 3.37E-01 4.15E+00 
Rank 1 4 2 6 3 8 7 5 

UF1 
Mean 3.810E-02 3.814E+00 3.982E+00 2.22E-01 7.95E-02 6.76E-02 9.04E-02 4.43E-02 

SD 8.746E-03 1.990E-01 3.816E-01 9.24E-02 2.10E-02 5.15E-02 3.65E-02 3.80E-02 
Rank 1 7 8 6 4 3 5 2 

UF2 
Mean 4.716E-02 7.390E-02 6.105E-02 7.92E-02 4.12E-02 1.23E-01 2.21E-02 5.13E-02 

SD 9.735E-03 1.487E-02 2.064E-02 2.51E-02 7.31E-03 4.25E-02 2.47E-02 1.44E-02 
Rank 3 6 5 7 2 8 1 4 

UF3 
Mean 1.112E-01 1.879E+00 4.122E+00 3.11E-01 3.39E-01 2.15E-01 1.72E-01 2.54E-01 

SD 1.469E-01 1.215E+00 9.176E-01 8.20E-02 6.92E-02 8.63E-02 4.74E-02 6.05E-02 
Rank 1 7 8 5 6 3 2 4 

UF7 
Mean 3.172E-02 3.913E-02 4.450E-02 2.54E-01 7.08E-02 5.46E-02 3.33E-02 2.15E-02 

SD 1.074E-02 1.636E-02 2.496E-02 1.55E-01 2.30E-02 4.69E-02 1.91E-02 5.04E-03 
Rank 3 5 6 2 8 7 4 1 

UF8 
Mean 6.497E-02 9.886E-01 6.195E-01 4.65E+00 2.59E-02 1.91E-01 4.53E-01 1.96E+00 

SD 4.238E-02 7.686E-01 4.503E-01 9.59E-01 1.83E-02 1.42E-01 5.97E-01 7.10E-01 
Rank 2 6 5 8 1 3 4 7 

UF10 
Mean 2.562E-01 3.775E+01 2.544E+01 1.27E+01 6.68E-01 3.46E+00 2.48E+00 4.79E+00 

SD 5.884E-02 1.231E+01 1.311E+01 2.62E+00 3.40E-01 7.75E-01 3.40E-01 1.86E+00 
Rank 1 8 7 3 2 5 4 6 

Table 3. The results of diversity metric (DM) for all benchmark functions. 

Benchmark Functions MOHMICA PESA-II MOEA\D NSGA-II MOABC MOALO MOGOA MMOG-
WO 

SCH 
Mean 8.881E-01 7.445E-01 1.004E+00 4.14E-01 9.35E-01 1.53E+00 1.05E+00 9.68E-01 

SD 5.480E-02 8.738E-01 8.104E-01 4.43E-02 7.03E-02 1.11E-01 6.94E-02 1.35E-01 
Rank 4 2 6 1 3 8 7 5 

FON 
Mean 2.300E-01 9.964E-01 8.855E-01 3.92E-01 7.19E-01 1.36E+00 1.44E+00 8.97E-01 

SD 1.603E-01 1.381E-01 3.006E-01 4.40E-02 1.14E-01 1.16E-01 1.37E-01 8.04E-02 
Rank 1 6 5 2 4 7 8 3 

ZDT1 
Mean 7.849E-01 4.924E-01 6.744E-01 4.56E-01 8.08E-01 1.11E+00 1.20E+00 1.09E+00 

SD 1.005E-01 3.133E-01 4.230E-01 5.10E-02 8.04E-02 4.71E-02 7.41E-02 1.24E-01 
Rank 4 2 3 1 5 7 8 6 

ZDT2 
Mean 2.339E-01 5.747E-01 1.101E+00 5.01E-01 8.50E-01 1.02E+00 1.00E+00 9.89E-01 

SD 1.175E-01 3.249E-01 5.375E-01 6.90E-02 9.17E-02 7.40E-03 2.30E-04 1.44E-01 
Rank 1 3 8 2 4 7 6 5 

ZDT3 
Mean 6.281E-01 5.084E-01 8.692E-01 5.28E-01 8.16E-01 1.30E+00 1.28E+00 9.78E-01 

SD 1.150E-01 2.534E-01 7.403E-01 1.02E-01 9.78E-02 1.09E-01 1.19E-01 1.06E-01 
Rank 3 1 5 2 4 8 7 6 

ZDT4 
Mean 7.841E-01 5.215E-01 1.011E+00 9.36E-01 1.01E+00 1.04E+00 9.81E-01 1.04E+00 

SD 8.153E-02 4.647E-01 5.481E-01 3.25E-02 1.1E-01 4.24E-02 0.00E+00 6.61E-02 
Rank 2 1 5 3 5 7 4 7 

UF1 
Mean 5.859E-01 9.075E-01 6.372E-01 8.11E-01 7.16E-01 1.14E+00 1.07E+00 9.48E-01 

SD 2.984E-01 5.877E-01 5.285E-01 7.58E-02 1.05E-01 1.31E-01 5.99E-02 9.99E-02 
Rank 1 5 4 3 2 8 7 6 

UF2 
Mean 2.886E-01 8.539E-01 1.044E+00 5.92E-01 6.49E-01 1.34E+00 1.05E+00 1.00E-01 

SD 2.145E-01 5.205E-01 7.942E-01 6.26E-02 9.13E-02 1.24E-01 2.98E-02 9.03E-02 
Rank 2 5 6 3 4 8 7 1 

UF3 
Mean 8.723E-02 5.565E-01 3.369E-01 8.61E-01 8.76E-01 1.50E+00 1.08E+00 1.19E+00 

SD 2.201E-01 5.321E-01 2.178E-01 8.62E-02 1.12E-01 1.77E-01 2.76E-02 2.52E-01 
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Rank 1 3 2 4 5 8 6 7 

UF7 
Mean 3.881E-01 4.977E-01 1.252E+00 8.87E-01 8.85E-01 1.38E+00 1.18E+00 1.11E+00 

SD 2.363E-01 3.726E-01 8.852E-01 7.93E-02 1.01E-01 1.81E-01 8.02E-02 1.68E-01 
Rank 1 2 7 4 3 8 6 5 

UF8 
Mean 6.238E-01 6.185E-01 1.276E+00 7.36E-01 1.01E+00 1.15E+00 1.07E+00 8.40E-01 

SD 2.687E-01 3.627E-01 6.372E-01 3.96E-02 1.18E-01 7.79E-02 6.88E-02 4,15E-02 
Rank 2 1 8 3 5 7 6 4 

UF10 
Mean 5.439E-01 5.024E-01 5.950E-01 7.39E-01 8.60E-01 1.06E+00 1.09E+00 8.99E-01 

SD 2.459E-01 3.404E-01 6.405E-01 4.49E-02 1.20E-01 6.67E-02 4.23E-02 3.74E-02 
Rank 2 1 3 4 5 7 8 6 

Table 4. The results of generational distance (GD) for all benchmark functions. 

Benchmark functions MOHMICA PESA-II MOEA\D NSGA-II MOABC MOALO MOGOA MMOG-
WO 

SCH 
Mean 1.837E-04 2.245E-04 2.752E-04 9.41E-04 9.94E-04 8.78E-04 9.63E-04 9.44E-04 

SD 1.686E-05 2.865E-05 1.847E-05 5.13E-05 4.73E-05 1.16E-04 6.85E-05 6.86E-05 
Rank 1 2 3 5 8 4 7 6 

FON 
Mean 3.369E-04 2.648E-04 4.661E-04 1.18E-03 1.06E-02 1.28E-03 1.01E-02 1.23E-03 

SD 3.695E-05 2.591E-05 4.613E-04 3.75E-05 1.96E-03 2.10E-04 1.03E-03 7.99E-05 
Rank 2 1 3 4 8 6 7 5 

ZDT1 
Mean 3.192E-04 8.538E-03 6.435E-03 4.78E-03 9.73E-02 6.70E-04 8.55E-03 2.34E-04 

SD 1.083E-04 2.564E-03 7.331E-03 4.47E-03 2.37E-02 1.32E-03 2.65E-02 1.37E-04 
Rank 2 6 5 4 8 3 7 1 

ZDT2 
Mean 3.134E-04 1.303E-02 8.962E-02 7.58E-03 1.21E-01 6.12E-05 2.25E-03 9.79E-05 

SD 8.934E-05 2.948E-03 4.810E-02 4.26E-03 3.52E-02 6.83E-06 5.75E-03 1.09E-05 
Rank 3 6 7 5 8 1 4 2 

ZDT3 
Mean 5.102E-04 1.022E-02 2.626E-02 6.98E-03 6.56E-02 1.22E-03 4.70E-03 6.16E-04 

SD 5.726E-05 3.748E-03 7.629E-03 5.77E-03 2.21E-02 6.85E-04 6.78E-03 9.65E-05 
Rank 1 6 7 5 8 3 4 2 

ZDT4 
Mean 2.498E-04 2.603E-01 2.601E-01 7.13E-01 1.19E+01 2.06E+00 1.48E+01 6.10E-01 

SD 3.085E-05 1.645E-01 1.840E-01 2.84E-01 5.59E-01 6.65E-01 2.11E+00 6.53E-01 
Rank 1 3 2 5 8 6 7 4 

UF1 
Mean 6.493E-03 4.351E-01 4.918E-01 3.21E-02 2.72E-02 8.32E-03 1.14E-02 5.42E-03 

SD 9.354E-04 8.314E-02 1.727E-01 1.46E-02 9.75E-03 5.29E-03 6.19E-03 4.17E-03 
Rank 2 7 8 6 5 3 4 1 

UF2 
Mean 7.537E-03 9.090E-03 8.073E-03 1.42E-02 9.60E-03 1.43E-02 2.66E-03 7.37E-03 

SD 1.917E-03 2.782E-03 2.195E-03 5.33E-03 2.80E-03 4.77E-03 2.76E-03 2.35E-03 
Rank 3 5 4 7 6 8 1 2 

UF3 
Mean 2.766E-02 2.635E-01 5.185E-01 3.20E-02 1.39E-01 2.94E-02 1.87E-02 3.24E-02 

SD 6.751E-02 1.350E-01 1.510E-01 8.99E-03 3.07E-01 6.64E-03 4.53E-03 3.46E-03 
Rank 2 7 8 4 6 3 1 5 

UF7 
Mean 3.498E-03 4.398E-03 5.600E-02 2.87E-02 2.75E-02 5.84E-03 5.37E-03 2.53E-03 

SD 1.584E-03 1.566E-03 2.156E-01 1.76E-02 1.18E-02 5.01E-03 1.85E-03 6.57E-04 
Rank 2 3 8 7 6 5 4 1 

UF8 
Mean 1.503E-02 9.907E-02 7.081E-02 5.26E-01 1.85E-02 1.99E-02 5.70E-02 2.03E-01 

SD 1.600E-02 7.682E-02 6.364E-02 1.14E-01 1.52E-02 1.45E-02 7.03E-02 7.12E-02 
Rank 1 6 5 8 2 3 4 7 

UF10 
Mean 2.892E-02 3.883E+00 2.070E+00 1.34E+00 3.85E-01 3.49E-01 2.88E-01 4.93E-01 

SD 7.995E-03 1.296E+00 1.485E+00 2.95E-01 2.25E-01 7.70E-02 4.31E-02 1.89E-01 
Rank 1 8 7 6 4 3 2 5 
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Table 5. The results of inverted generational distance (IGD) for all benchmark functions. 

Benchmark 
Functions MOHMICA PESA-II MOEA\D NSGA-II MOABC MOALO MOGOA MMOGWO 

SCH 
Mean 3.071E-02 8.118E-02 4.315E-02 2.00E-03 2.07E-03 1.83E-03 2.10E-03 2.02E-03 

SD 1.025E-02 7.402E-02 1.123E-02 1.35E-04 1.18E-04 3.18E-04 1.74E-04 1.71E-04 
Rank 6 8 7 2 4 1 5 3 

FON 
Mean 7.468E-03 2.263E-01 1.063E-01 1.01E-02 3.75E-02 1.11E-02 9.70E-02 1.08E-02 

SD 8.528E-04 2.592E-03 6.293E-02 3.96E-04 9.09E-03 2.13E-03 1.14E-02 8.48E-04 
Rank 1 8 7 2 5 4 6 3 

ZDT1 
Mean 7.408E-03 8.114E-02 6.826E-02 3.72E-02 3.02E-01 1.57E-03 2.58E-02 1.18E-03 

SD 1.136E-03 2.040E-02 7.086E-02 4.33E-02 5.59E-02 9.67E-03 2.33E-01 4.01E-04 
Rank 3 7 6 5 8 2 4 1 

ZDT2 
Mean 6.696E-03 1.776E-01 9.824E-01 8.31E-02 3.02E-01 5.40E-04 8.79E-04 8.52E-04 

SD 6.855E-04 1.910E-01 5.170E-01 4.28E-02 5.17E-03 7.52E-05 6.95E-03 1.06E-04 
Rank 4 6 8 5 7 1 3 2 

ZDT3 
Mean 5.766E-03 2.589E-02 8.298E-02 2.91E-02 1.21E-01 4.40E-03 1.46E-02 2.74E-03 

SD 8.433E-04 6.404E-03 1.750E-02 3.86E-02 3.43E-02 2.80E-03 4.68E-02 3.71E-04 
Rank 3 5 7 6 8 2 4 1 

ZDT4 
Mean 6.061E-03 2.367E+00 2.558E+00 6.22E+00 2.17E+00 1.85E+01 1.53E+01 4.04E+00 

SD 6.388E-04 1.484E+00 1.586E+00 2.85E+00 8.92E-01 5.25E+00 3.38E-01 4.16E+00 
Rank 1 3 4 6 2 8 7 5 

UF1 
Mean 1.055E-01 3.852E+00 4.076E+00 2.11E-01 7.65E-02 5.12E-02 7.82E-02 2.42E-02 

SD 3.389E-03 1.779E-01 4.040E-01 9.24E-02 2.10E-02 5.15E-02 3.65E-02 3.80E-02 
Rank 5 7 8 6 3 2 4 1 

UF2 
Mean 1.000E-01 9.146E-02 1.419E-01 7.14E-02 3.92E-02 1.07E-01 1.28E-02 4.70E-02 

SD 8.393E-03 2.784E-02 1.840E-02 2.51E-02 7.31E-03 4.25E-02 2.47E-02 1.44E-02 
Rank 6 5 8 4 2 7 1 3 

UF3 
Mean 2.508E-01 1.739E+00 4.167E+00 3.02E-01 3.31E-01 1.91E-01 1.56E-01 2.53E-01 

SD 6.304E-02 8.475E-01 8.612E-01 8.20E-02 6.92E-02 8.63E-02 4.74E-02 6.05E-02 
Rank 3 7 8 5 6 2 1 4 

UF7 
Mean 5.428E-02 9.423E-02 1.486E-01 2.54E-01 7.20E-02 3.03E-02 2.66E-02 2.11E-02 

SD 1.141E-02 1.164E-02 5.324E-02 1.55E-01 2.30E-02 4.69E-02 1.91E-02 5.04E-03 
Rank 4 6 7 8 5 3 2 1 

UF8 
Mean 1.649E-01 1.343E+00 9.484E-01 4.64E+00 1.89E-02 1.50E-01 2.11E-01 1.95E+00 

SD 4.118E-02 6.953E-01 4.026E-01 9.59E-01 1.83E-02 1.42E-01 5.97E-01 7.10E-01 
Rank 3 6 5 8 1 2 4 7 

UF10 
Mean 2.562E-01 3.796E+01 2.561E+01 1.17E+01 5.63E-01 3.28E+00 2.71E+00 4.93E+00 

SD 5.884E-02 1.228E+01 1.310E+01 2.62E+00 3.40E-01 7.75E-01 4.30E-01 1.86E+00 
Rank 1 8 7 6 3 2 4 5 

Table 6. Average ranking of each algorithm on each metric. 

Metrics MOHMICA PESA-II MOEA\D NSGA-II MOABC MOALO MOGOA MMOGWO 
CM 1.467 4.267 4.533 4 4.2 3.6 3.8 2.933 
DM 1.6 2.133 4.133 2.133 3.267 6 5.333 4.067 
GD 1.4 4 4.667 4.4 5.133 3.2 3.467 2.733 
IGD 2.667 5.133 5.467 4.2 3.533 2.533 2.933 2.333 
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Table 7. Results of the Wilcoxon test results of each metric by MOHMICA and other mul-
ti-objective algorithms. 

MOHMICA 
vs. 

CM DM 
R+ R− =0.01α  =0.05α  =0.1α  R+ R− =0.01α  =0.05α  =0.1α  

PESA-II 76 2 H1 H1 H1 53 25 H0 H0 H0 
MOEA\D 78 0 H1 H1 H1 75 3 H1 H1 H1 
NSGA-II 78 0 H1 H1 H1 58 20 H1 H1 H1 
MOABC 74 4 H1 H1 H1 78 0 H1 H1 H1 
MOALO 77 1 H1 H1 H1 78 0 H1 H1 H1 
MOGOA 74 4 H1 H1 H1 78 0 H1 H1 H1 

MMOGWO 65 13 H0 H1 H1 76 2 H1 H1 H1 
MOHMICA 

vs. 
GD IGD 

R+ R− =0.01α  =0.05α  =0.1α  R+ R− =0.01α  =0.05α  =0.1α  
PESA-II 76 2 H1 H1 H1 77 1 H1 H1 H1 

MOEA\D 78 0 H1 H1 H1 78 0 H1 H1 H1 
NSGA-II 78 0 H1 H1 H1 74 4 H1 H1 H1 
MOABC 78 0 H1 H1 H1 65 13 H0 H1 H1 
MOALO 77 1 H0 H1 H1 43 35 H0 H0 H0 
MOGOA 65 13 H0 H1 H1 44 34 H0 H0 H0 

MMOGWO 60 18 H0 H0 H0 39 39 H0 H0 H0 
 

 

Figure 1. Pareto frontiers of SCH benchmark function obtained by MOHMICA, PESA-II and 
MOEA\D. 

 
Figure 2. Pareto frontiers of FON benchmark function obtained by MOHMICA, PESA-II and 
MOEA\D. 

f2
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Figure 3. Pareto frontiers of ZDT1 benchmark function obtained by MOHMICA, PESA-II and 
MOEA\D. 

 
Figure 4. Pareto frontiers of ZDT2 benchmark function obtained by MOHMICA, PESA-II and 
MOEA\D. 

 

Figure 5. Pareto frontiers of ZDT3 benchmark function obtained by MOHMICA, PESA-II and 
MOEA\D. 
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Figure 6. Pareto frontiers of ZDT4 benchmark function obtained by MOHMICA, PESA-II and 
MOEA\D. 

  
Figure 7. Pareto frontiers of UF1 benchmark function obtained by MOHMICA, PESA-II and 
MOEA\D. 

 
Figure 8. Pareto frontiers of UF2 benchmark function obtained by MOHMICA, PESA-II and 
MOEA\D. 



Symmetry 2022, 14, 173 18 of 24 
 

 

 
Figure 9. Pareto frontiers of UF3 benchmark function obtained by MOHMICA, PESA-II and 
MOEA\D. 

 

Figure 10. Pareto frontiers of UF7 benchmark function obtained by MOHMICA, PESA-II and 
MOEA\D. 

 
Figure 11. Pareto frontiers of UF8 benchmark function obtained by MOHMICA, PESA-II and 
MOEA\D. 
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Figure 12. Pareto frontiers of UF10 benchmark function obtained by MOHMICA, PESA-II and 
MOEA\D. 

4.2. A New Method for Evaluating Multi-Objective Optimization Algorithm 
For the common metrics evaluating the quality of multi-objective optimization al-

gorithms at present, CM, DM, GD and IGD all have some limitations. Specifically, CM 
and GD are convergence metrics from different perspectives. DM is a metric to evaluate 
the distribution of solutions in the approximate Pareto front. Although IGD is generally 
considered to be a comprehensive evaluation metric that can take into account the con-
vergence and distribution of the solutions, it also has some limitations. On the one hand, 
a different number of the sampling points on the real Pareto front may affect the results 
of IGD; on the other hand, for those optimization problems with more than three objec-
tive functions, the convergence and distribution of the solutions obtained by algorithms 
cannot be seen from IGD because those solutions cannot be expressed visually. There-
fore, it is of some theoretical significance to combine multiple metrics representing the 
convergence and distribution of the solutions of multi-objective optimization algorithms 
and propose a comprehensive evaluation method that can be expressed visually. The 
specific methods are as follows. 

Firstly, each metric result of benchmark functions calculated by different algorithms 
is processed by logarithm. The specific calculation method is shown in Equation (7): 

lgw u v= −  (7)

In Equation (7), v  represents the mean value of CM, DM, GD and IGD, respec-
tively. [ ]min

lg 1u v= − + , where [ ]•  represents the integer of • . w  is logarithmic pro-
cessed data. Then, draw the radar map of each benchmark functions using CMw , DMw ,

GDw  and IGDw  of different algorithms, as shown in Figures 13–16. The drawing method 
of radar maps is as follows. Starting from the origin point, the length of CMw , DMw , 

GDw  and IGDw  are the half diagonal respectively. CMw  and DMw  forms a diagonal of 
the quadrilateral of the radar map, because these two are the metrics that directly char-
acterize convergence degree and distribution degree of the approximate Pareto front, 
respectively. GDw  and IGDw  constitutes another diagonal, because these two metrics 
represent the distance from the approximate Pareto fronts obtained by different algo-
rithms to real Pareto fronts and the distance from real Pareto fronts to the approximate 
Pareto fronts obtained by different algorithms. The larger the area of the radar map is, 
the better the comprehensive result of the benchmark function obtained by each algo-
rithm. For the 12 benchmark functions calculated by MOHMICA and comparing other 
algorithms in this paper, the larger the average area of the 12 radar maps of each algo-
rithm, the stronger the comprehensive ability to calculate the multi-objective optimiza-
tion problems. Moreover, from the actual value after logarithmic transformation, when 
the radar map areas of two algorithms calculating the same benchmark function, there is 

0
00

0.2

0.4
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f3
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1
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little performance difference between different algorithms. The calculation results are 
shown in Table 8. 

From the results in Table 8, comparing with the average area of radar maps of dif-
ferent algorithms in this paper, MOHMICA is the largest, being at least 14.06% larger 
than the total area of other algorithms. It shows that the comprehensive ability of 
MOHMICA is also the strongest when calculating benchmark functions. Meanwhile, the 
number of times the radar maps with the largest area of MOHMICA is the most among 
all algorithms. 

 
Figure 13. Comprehensive evaluation radar maps of SCH function (left), FON function (center) 
and ZDT1 function (right) calculated by eight different algorithms. 

 
Figure 14. Comprehensive evaluation radar maps of ZDT2 function (left), ZDT3 function (center) 
and ZDT4 function (right) calculated by eight different algorithms. 
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Figure 15. Comprehensive evaluation radar maps of UF1 function (left), UF2 function (center) and 
UF3 function (right) calculated by eight different algorithms. 

  
Figure 16. Comprehensive evaluation radar maps of UF7 function (left), UF8 function (center) and 
UF10 function (right) calculated by eight different algorithms. 

Table 8. Comparison of radar map area calculated by eight algorithms for benchmark function. 

Benchmark Functions MOHMIICA PESA-II MOEA\D NSGA-II MOABC MOALO MOGOA MMOGWO 

SCH Area 32.039 30.546 29.188 31.502 29.573 29.118 29.377 29.652 
Rank 1 3 7 2 5 8 6 4 

FON Area 34.586 27.338 27.199 28.592 20.651 25.751 17.089 26.727 
Rank 1 3 4 2 7 6 8 5 

ZDT1 
Area 32.170 19.397 19.743 22.000 12.790 31.193 19.253 36.284 
Rank 2 6 5 4 8 3 7 1 

ZDT2 
Area 35.139 17.062 10.128 19.528 12.468 41.670 31.032 39.188 
Rank 3 6 8 5 7 3 4 1 

ZDT3 Area 31.471 20.557 13.685 21.355 14.691 27.816 21.673 35.858 
Rank 2 6 8 5 7 3 4 1 

ZDT4 Area 33.407 8.173 8.334 5.329 4.715 3.241 2.323 6.052 
Rank 1 3 2 6 5 7 8 4 

UF1 
Area 20.244 6.533 6.648 14.635 17.522 18.844 17.676 21.190 
Rank 2 8 7 6 5 3 4 1 
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UF2 Area 20.892 18.08 18.031 18.635 20.688 16.299 23.856 23.463 
Rank 3 6 7 5 4 8 1 2 

UF3 
Area 18.517 8.636 7.069 13.751 12.081 14.037 15.459 13.754 
Rank 1 7 8 5 6 3 2 4 

UF7 
Area 22.816 21.079 15.972 14.261 17.439 19.857 21.024 23.255 
Rank 2 4 8 7 6 5 3 1 

UF8 Area 17.810 10.273 10.610 6.260 20.812 15.198 12.771 8.328 
Rank 2 6 5 8 1 3 4 7 

UF10 Area 14.884 2.493 3.209 4.246 9.889 6.770 7.328 6.083 
Rank 1 8 7 6 2 4 3 5 

Mean area 26.164 15.847 14.151 16.674 16.109 20.816 18.238 22.486 
The rank of mean 

area 1 7 8 5 6 3 4 2 

5. Conclusions and Future Research 
This paper aimed to address the shortcomings of HMICA that can only solve sin-

gle-objective optimization problems and proposes the MOHMICA algorithm. In order to 
adapt to the characteristics of multi-objective optimization problems, MOHMICA up-
dates the colony allocation strategy during the empire creation on the basis of HMICA, 
and increases the step of external archive. 

In order to verify the performance of MOHMICA, this paper calculated 12 common 
benchmark functions, including 10 bi-objective benchmarks and 2 tri-objective bench-
marks. Then, seven high-quality algorithms were compared to the proposed algorithm 
using four metrics: CM, DM, GD and IGD. After ranking and performing the Wilcoxon 
test, the proposed algorithm was found to have certain advantages over other algo-
rithms for most metrics, but it is not enough to prove that the algorithm proposed in this 
paper has obvious advantages for each function. Therefore, a new comprehensive eval-
uating method called “radar map method” is proposed as the other knowledge contri-
bution of this paper, which is used to evaluate comprehensive ability, including that of 
convergence and distribution of the approximate Pareto fronts obtained by different al-
gorithms. The coordinate axis of the radar map includes CM, DM, GD and IGD. After 
evaluating algorithms that compare with MOHMICA using the radar map method, the 
comprehensive ability of MOHMICA was found to be the best among all algorithms. 

For future research, there are three problems recommended to improve upon. First, 
in order to make the Pareto front distribution better than the algorithm proposed in this 
paper, when solving the optimization problem with more than two objective functions, 
the external archive strategy may need to be further improved. Second, in order to re-
duce time consumption and complexity when using MOHMICA to solve optimization 
problems, the operators in some of the steps may need to be replaced with simpler oper-
ators. Lastly, the application field needs to be considered. Using MOHMICA to solve re-
al-world problems, including vehicle routing, industrial production management and 
production process scheduling optimization, are also important to explore in future re-
search. 
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