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Abstract: Despite the great possibilities of modern neural network architectures concerning the
problems of object detection and recognition, the output of such models is the local (pixel) coordinates
of objects bounding boxes in the image and their predicted classes. However, in several practical tasks,
it is necessary to obtain more complete information about the object from the image. In particular, for
robotic apple picking, it is necessary to clearly understand where and how much to move the grabber.
To determine the real position of the apple relative to the source of image registration, it is proposed
to use the Intel Real Sense depth camera and aggregate information from its depth and brightness
channels. The apples detection is carried out using the YOLOv3 architecture; then, based on the
distance to the object and its localization in the image, the relative distances are calculated for all
coordinates. In this case, to determine the coordinates of apples, a transition to a symmetric coordinate
system takes place by means of simple linear transformations. Estimating the position in a symmetric
coordinate system allows estimating not only the magnitude of the shift but also the location of the
object relative to the camera. The proposed approach makes it possible to obtain position estimates
with high accuracy. The approximate root mean square error is 7–12 mm, depending on the range
and axis. As for precision and recall metrics, the first is 100% and the second is 90%.

Keywords: pattern recognition; stereovision; object detection; YOLOv3; Intel Real Sense; coordinate
estimation; data aggregation; agriculture; horticulture; apple picking

1. Introduction

Today, there is a rapid surge in the use of artificial intelligence systems in various
spheres of the economy. Agriculture is one of the areas undergoing rapid digitalization [1–3].
According to the United Nations (UN) report [4], the number of the world’s population
will grow rapidly in the next 30–50 years; in particular, by 2050, it is expected that the
Earth population will reach 10 billion. At the same time, questions arise about providing
such several people with provisions. The solution to this problem is impossible without
increasing the efficiency in the field of agriculture. The work [5] pays great attention to
the aspects of digitalization of sustainable agri-food systems and predicting risks, taking
into account the new coronavirus infection in the Middle East and North Africa. It should
be noted that along with the potential problems of future food shortages, today, there is
another problem associated with the fact that part of the harvest remains unharvested. An
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important reason that unpicked apples rot in orchards, dachas, and agricultural holdings is
the low return on investment.

All of the above allows us to conclude that one of the promising ways for the de-
velopment of the agricultural industry is the introduction of robotic solutions, including
fast, high-quality, and reliable harvesting [6,7]. At the same time, the key role in such
robots should be played by an intelligent image analysis system, which is being developed,
in particular, for the tasks of identifying damaged or diseased potatoes [8,9]. First, it is
required to ensure high values of the apple recognition and detection metrics. Second, it is
required to ensure low errors in determining the spatial position of the apple relative to
the robot. Thirdly, efficient algorithms for bypassing the harvest are required, which allow
harvesting fruits as much as possible without damage. This study is largely devoted to
the first two indicated tasks. For the recognition system, the neural network architecture
YOLOv3 was chosen [10], which includes an apple class in one of 80 recognizable classes.
The solution of the second problem is based on the methods of computer optics [11] and
the use of the Intel Real Sense Depth Camera D415 [12], which, in addition to registering
an optical image in color channels of brightness, also constructs a depth map.

The second section will consider related works on neural networks used in detection
and pattern recognition problems, including agriculture and apple recognition. The third
section presents a hardware-software solution for the problem of estimating the apple
coordinates in real space. Section 4 is devoted to the study of the errors obtained as a result
of the presented solution. In the conclusion, the main results of the work are presented. It
should be noted that a known neural network was used in this article, but in this work,
we did not set the task of developing and training an algorithm for detecting apples but
rather considered a new application of the YOLOv3 architecture modified for this task.
The novelty of this paper is the assessment of the quality of the modified algorithm for
detecting and positioning on apples.

2. Related Works

The task of detecting objects in computer vision is closely related to the task of pattern
recognition. The first successful detectors using convolutional neural network technology
were networks of the R-CNN architecture [13]. Inside the proposed solution, the CaffeNet
architecture (a type of the AlexNet network) [14] was used to recognize objects in an
arbitrarily selected rectangular region. At the same time, the algorithm worked rather
slowly, and the proposal of regions for performing the recognition procedure was carried
out using the selective search method. A modification of such a network was the Fast
R-CNN network [15], which projected the regions proposed by selective search onto a
once calculated feature map, and to refine the coordinates of the bounding rectangles, a
regression block was additionally used since the sizes of the feature map and the original
image were different and did not allow proportionally performing an integer projection of
the regions. However, the performance of the selective selection method was poor. In this
regard, the Fast R-CNN architecture was replaced by the Faster R-CNN architecture [16].
The main advantage of this approach was the proposal of regions already directly on the
feature map, which made it possible, firstly, to use additional information of the feature
space and knowingly avoid places with a low probability of the appearance of objects. This
was achieved by introducing a specialized neural network into the image analysis process
to suggest regions.

However, the accuracy of detector networks significantly decreased with the metrics
of networks that solve only the recognition problem. At the same time, the speed of work
was still unacceptable for use in real-time systems. A significant increase in computing
performance relative to the R-CNN family was provided by the so-called Single Shot—
Multibox Detector. Such networks perform localization and recognition procedures for a
large number of regions in one iteration. An example is the neural networks of YOLO [17],
SSD [18], RetinaNet [19] architectures, and others.
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The networks of the YOLO (You Only Look Once) architecture should be empha-
sized [17]. Currently, there is a whole family of similar architectures, and significant
progress in the quality of detection and performance has been achieved with the advent
of the third version named YOLOv3 [20]. At the same time, by analogy with the idea
of the R-CNN family, a separate pattern recognition task is also performed. YOLOv3
uses the DarkNet-53 neural network [21], which is a more complex convolutional net-
work architecture compared to the previously discussed AlexNet. The selective region
search method is not used in YOLO-based detection methods; instead, the input image
is scaled and initially divided into square regions, in which recognition takes place using
DarkNet-53. In each square, three bounding rectangles are constructed, and the object
presence probability of each known type within such an area is estimated. In this case,
the bounding rectangles can be of different sizes, and the use of square division allows
leaving the detection area with the greatest confidence, cutting off those that capture
only part of the object. For processing video sequences, YOLO allows processing each
frame in one pass, which allows processing video images with sufficient computing
power of the processor [22].

So, this network has also proved itself well in the problems of fruit recognition
on trees [23]. Nevertheless, the authors of [23] consider only a part concerning the
processing of individual image frames. Despite the rather high metrics of accuracy and
completeness, YOLOv3 does not allow estimating the real distances to objects from the
image received from one camera. Article [24] recommends many preliminary opera-
tions to improve the quality of detectors. However, the authors also do not consider
the problem of determining the coordinates of apples in three-dimensional space. The
authors of [25] show that customized training and the use of image augmentation [26]
lead to an increase in the quality of such systems. Xuan G. et al. [27] achieve f-measure in-
dices up to 91–94% under different illumination conditions on green apples and 94–95%
on red apples. The authors of [28], in addition to apples, add pears to the recogni-
tion system based on YOLOv3 and suggest using Kalman filtering for tracking fruits
while moving.

Work [29] is devoted to the use of the Intel Real Sense Depth Camera D435 for estimat-
ing the distance from the robot to obstacles when constructing a trajectory. Finally, in [30],
a comparative analysis of the characteristics of the Real Sense camera line is presented,
and in [31], a comparative analysis of depth cameras with laser scanning technologies is
performed, showing the sensitivity of both approaches to noise.

Thus, this review shows that despite the presence of research in the field of computer
vision algorithms for recognizing apples and works devoted to measuring the depth and
assessing the coordinates of objects, the literature does not fully describe methods that
combine data from the results of image processing and depth maps in this task. Next,
it is worth considering the solution to this problem concerning an intelligent system for
estimating the location of apples in 3D space. During the development phase of the
primary solution, the YOLOv3 architecture (combination of speed and accuracy) and the
Real Sense D415 camera (still available on the market for purchase) were chosen. At the
same time, the technology for estimating coordinates when switching to another device for
constructing depth maps, for example, Microsoft Kinnect, can also be used for the operation
of the system, but it will be necessary to take into account the alignment of frames from
different channels.

3. Materials and Methods

When describing the materials and methods used in the article, the hardware and
software parts of the system should be distinguished separately. In particular, the Intel
Real Sense Depth Camera D415 was used to record the video sequence of images. Image
processing was carried out based on a laptop ASUS TUF FX504 (CPU Intel Core i7-8750,
2.2 GHz).
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The software implementation was carried out in the Python programming language
using the pre-trained YOLOv3 architecture and the TensorFlow deep learning library. In
addition, the pyrealsense2 module was used, which provides convenient functions for
working with Real Sense cameras, as well as the OpenCV library, which allows registering
images and video providing convenient visualization of processing results in real time.

At this stage, the experiments were carried out in laboratory conditions, namely, on
the territory of the engineering center of the Financial University under the Government of
the Russian Federation (Moscow, Russia).

Figure 1 shows the architecture of the YOLOv3 convolutional neural network [20].
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Figure 1. YOLOv3 network architecture.

From the presented figure, it can be seen that the selected model has 106 convolutional
layers. This model can also detect objects of various sizes. It consists of standard convolu-
tional layers, residual blocks, detection layers, and unsampling layers. It should be noted
that in this article, the detector uses the weights of the pre-trained model, and there is no
training process.

In the absence of sports balls and oranges on apple trees in Russia, these classes were
also combined with the “apple” class. Figure 2 shows the camera used in the article.

Figure 3a,b show images of the color and depth channels of the camera, respectively,
using the specialized software Intel Real Sense Viewer, and Figure 4 shows a frame with
detections processed using OpenCV and the pyrealsense2 module.

It can be seen that the camera selects the distances to objects in the range of 0–4 m.
Moreover, at each point of the depth map, the specialized color of the image corresponds
to the distance to this point in space.

Figure 4 shows that using the YOLOv3 network and Real Sense camera allows de-
tecting objects of different classes and calculating the distance to them. In this case, it is
considered that the distance to the object is the distance to its center, i.e., to the center of the
bounding rectangle of the detected object. In particular, for the image presented in Figure 4,
the following objects were found: a person and a cell phone.
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From Figure 4, it can be seen that the depth map is used to measure the distance
from the center of the camera to a specific point. However, such a map lacks information
about the object’s shifts relative to the camera in the X, Y, and Z planes. In this case,
for the detected objects, there are the coordinates of the upper left point in pixels as
well as the width and height of the bounding rectangle in pixels. The problem arises
of converting the coordinates of objects in relative (to the upper left corner) pixels into
millimeters relative to the center of the camera, since information about the distance in
millimeters comes from the depth map. To solve this problem, it is possible to use the
following relations [32]:

X[mm] = dx0,y0
(Cx−x0[px])

fx
,

Y[mm] = dx0,y0
(Cy−y0[px])

fy
,

(1)

where X[mm] is the projection of the distance relative to the center of the image on the X
axis (in mm), Y[mm] is the projection of the distance relative to the center of the image on
the Y axis (in mm), dx0,y0 is the value of the depth map at a point with a coordinate (x0, y0)
(in mm), Cx is the coordinate of the center of the image along the X axis (in pixels), Cy is
the coordinate of the center of the image along the Y axis (in pixels), fx and fy are internal
parameters of the optical system of the camera used to obtain the image (focal lengths
along the X and Y axes), (x0, y0) is the coordinate of the center of the detected object in the
image in pixels.

When calculating the distance to an object along the X-axis in accordance with
Equation (1), it is necessary to take into account the offset of the RGB camera module
from the center of Real Sense:

X′[mm] = X[mm]− 35 (2)

where X′[mm] is the unbiased projection of the distance from the center of the camera to
the object along the X axis (in mm), 35 (mm) is the offset for the Intel Real Sense Depth
Camera D415.
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Finally, knowing the absolute distance to the object and calculating from (1) and (2) its
projection on the X and Y axes, it is possible to calculate the projection on the Z-axis based
on the geometric meaning of the distance:

Z[mm] =
√

d2
x0,y0
− X′[mm]2 −Y[mm]2. (3)

Thus, Equations (1)–(3) fully describe the estimate of the coordinates of the detected
apple relative to the center of the camera and can be used to correctly aim the grabber.

However, as can be seen from Figure 4, the detection and measurement of distances
for all types of objects trained by YOLOv3 take place. In this regard, the algorithm
was modified in such a way that after recognizing objects at each frame of the video
sequence, it is checked whether it belongs to the classes “apple”, “orange”, and “sports
ball”. The addition was made taking into account the existing probability that YOLOv3
takes an apple for these types of objects. The final processing scheme is shown in
Figure 5.

Based on the presented algorithm, the processing is carried out until the apples are
found. The developed program provides for a forced interruption by the user.

It also should be noted that the transformation of the coordinate system in the image,
in which the upper left point corresponds to zero on both axes, occurs in such a way that
zero corresponds to the central position on the image, i.e., the absence of displacement
of the object relative to the camera. This allows, through additional transformations, to
use the properties of a symmetric coordinate system and to perceive positive deviations
along the X axis as indicating that the object is to the right of the camera and negative ones
indicating that it is to the left. The system works similarly with respect to the Y axis: with
positive values, it is possible to say that the object is above the camera, and with negative
values, it is lower.
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In the next section, the main results of the proposed solution are considered.

4. Results

The proposed solution is based on YOLOv3 and an Intel Real Sense Depth Camera.
The experiments were carried out in a laboratory, but in the future, the investigation of
the algorithm on real apple trees is planned. Figure 6 shows an example of the result of
detecting and estimating coordinates.
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In this case, in addition to the coordinates themselves, the probabilities of assigning
an object to the class “apple” are also indicated. Table 1 presents such characteristics as
Precision and Recall depending on the threshold at which it is decided that the detected
object is indeed an apple. The analysis is performed for processing 200 frames at different
positions of the apples. It should be noted that distance to apples during the experiment
did not exceed 1.5 m.

Table 1. Precision and recall of recognition.

Probability Threshold, C 0.25 0.5 0.75

Precision 1.0 1.0 1.0
Recall 0.90 0.84 0.69

It should be noted that in binary classification (apple—not apple), the value of Precision
is determined as TP

TP+FP , where TP is the number of True Positive detections of apples during
1 min of processing, FP is the number of False Positive detections of apples during 1 min
of processing. Table 1 shows the maximum Precision, since our algorithm gives apple
labels only for apples. As for Recall, it is determined as TP

TP+FN , where TP is the number
of True Positive detections of apples during 1 min processing, FN is the number of False
Negative detections of apples during 1 min processing. So, it is possible to see that using
big probability thresholds, the algorithm skips many more apples on some frames of
the video.

The low results of the Recall metric in Table 1 are associated not only with a decrease
in the threshold but also with the fact that the detection worsens with the distance of apples
from the camera. In the next experiment, the error in measuring the coordinates of apples
relative to the camera was estimated. It should be noted that it is important to initially
calibrate the camera so that the X, Y, and Z planes are in a perpendicular position relative
to it. Otherwise, when calculating coordinates, it is worth taking into account the camera
tilt angles along the corresponding axes. All measurements presented below were carried
out based on the calculation of the zero angle, i.e., such that the projection coincides with
the measured distance. Table 2 shows the coordinates (X, Y, Z) estimates obtained using
measuring instruments (index 0) and using the Intel Real Sense Depth Camera D415 and
YOLOv3 (index 1).

The column «position» indicates different apples’ locations during coordinates esti-
mation. The new variables are introduced in Table 2. Let us explain them. In Table 2, the
following parameters were calculated:

• Square Error along the X, Y and Z axes:

SExi = (x0i − x1i)
2, SEyi = (y0i − y1i)

2, SEzi = (z0i − z1i)
2. (4)

• Euclidean distance to the apple using measuring instruments:

D0i =
√

x2
0i + y2

0i + z2
0i. (5)

• Euclidean distance to the apple using Real Sense:

D1i =
√

x2
1i + y2

1i + z2
1i. (6)

• Square Error of distance estimation:

SEdi = (D0i − D1i)
2. (7)
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Table 2. Estimation of the coordinate measurement error.

Apple 1

Position X1 mm X0 mm SEx
mm2 Y1 mm Y0 mm

SEy

mm2 Z1 mm Z0 mm SEz
mm2

D1
mm

D0
mm

SEd
mm2

1 −114 −110 16 −33 −27 36 958 948 100 965 955 100

2 −56 −60 16 −14 −25 121 296 290 36 302 297 25

3 38 36 4 19 16 9 802 798 16 803 799 16

4 118 116 4 90 90 0 465 472 49 488 494 36

5 −128 −117 121 −106 −115 81 361 372 121 397 407 100

6 204 189 225 202 196 36 760 762 4 812 809 9

Apple 2

Position X1 mm X0 mm SEx
mm2 Y1 mm Y0 mm

SEy

mm2 Z1 mm Z0 mm SEz
mm2

D1
mm

D0
mm

SEd
mm2

1 −37 −31 36 −27 −20 49 941 936 25 942 937 25

2 69 68 1 −22 −17 25 449 436 169 455 442 169

3 −180 −168 144 130 122 64 1121 1096 625 1143 1115 784

4 318 322 16 286 294 64 765 754 121 876 871 25

5 −310 −317 49 −189 −195 36 526 531 25 639 648 81

6 98 104 36 −211 −200 121 355 360 25 424 425 1

Apple 3

Position X1 mm X0 mm SEx
mm2 Y1 mm Y0 mm

SEy

mm2 Z1 mm Z0 mm SEz
mm2

D1
mm

D0
mm

SEd
mm2

1 139 150 121 7 16 81 1101 1083 324 1110 1093 289

2 −20 −22 4 107 112 25 897 890 49 904 897 49

3 −212 −207 25 189 198 81 382 388 36 476 482 36

4 318 326 64 295 288 49 1308 1278 900 1378 1350 784

5 −188 −185 9 −212 −216 16 655 655 0 714 714 0

6 −312 −322 100 204 201 9 420 428 64 562 572 100

MSE
(mm2) 55.06 50.17 149.39 146.06

RMSE
(mm) 7.42 7.08 12.22 12.09

The calculated values of the mean square errors and the root mean square errors
show sufficiently the high accuracy of the coordinate estimation algorithm. In this case,
the greatest errors occur along the Z axis, the distances along which can reach much
larger values. To determine the influence of the absolute value of the displacement of
objects relative to the camera, it is possible to construct the corresponding scatter diagrams
between instrumental and software measurements. Figure 7 shows scatters for all axes and
distance measurements.

The analysis of the dependencies presented in Figure 7 allows us to conclude that
the estimation for all coordinates occurs with high accuracy (the index of determination
between the estimates and the measured values of R2 > 0.99 for all axes).
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Taking into account the dependencies shown in Figure 8c,d it is possible to adjust the
accuracy of determining the coordinates and reduce the positioning error.

To estimate the homoscedasticity of the residuals, it is necessary to construct their
scatter diagrams. The visualizations are shown in Figure 8. The analysis of scatter
diagrams shows that concerning the X and Y axes, there is no correlation of errors with
the real values of the distance projections. However, there is some negative correlation
for the Z axis. In particular, there is an increase in the absolute value of the error with
increasing distance. Moreover, this phenomenon also affects the errors in the estimation
of the distance. This is probably due to several reasons. First, concerning the plane
perpendicular to the Z axis, the camera was not completely calibrated to a zero angle.
This is also confirmed by the fact that at small Z values, errors are also grouped above
zero. In addition, the camera angle of view does not allow detecting apples at large
offset distances X and Y.
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Finally, the average processing time of one frame containing apples was measured
with the calculation of coordinates. On the CPU specified in Section 3, the performance
was 2.52± 0.87 frames per second. For the task of picking apples, this time is not crit-
ical, since the ratio of the time spent on detecting apples and estimating their coordi-
nates to the time spent on picking is negligible. Since the Intel CPU was used in this
research, it is possible to increase performance implementing the proposed solution in
OpenVINO [33] and high-efficiency algorithms [34]. Another possibility is to use GPUs and
YOLOv5 architecture.

5. Conclusions

The article presents an algorithm for joint detection, recognition of apples, and
their relative coordinate estimation. As a result of the study, it was proposed to use the
YOLOv3 neural network to solve the problem of image detection and recognition. At the



Symmetry 2022, 14, 148 13 of 14

same time, the “apple” class has been extended with some similar objects. The optimal
probability threshold of getting high Precision and Recall scores is 0.2–0.3. At the same
time, the value of the Recall metric is close to 90%, and there are no false positives. Object
coordinates are calculated by the optical transformation of relative coordinates in the
image pixel space to real coordinates using Intel Real Sense depth maps. The analysis
showed that the root mean square errors are not large in measuring the coordinates. All
errors are about 7–12 mm on average. However, the error increases with the distance
of objects from the camera, which may be due to its tilt. In the future, it is planned to
additionally take into account this error source. In addition, the average performance is
about 2.5 frames per second. In the future, it is planned to use the YOLOv5 model to
increase the processing speed.
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