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Abstract: Picture fuzzy sets (PFSs) can be used to handle real-life problems with uncertainty and
vagueness more effectively than intuitionistic fuzzy sets (IFSs). In the process of information aggre-
gation, many aggregation operators under PFSs are used by different authors in different fields. In
this article, a multi-attribute decision-making (MADM) problem is introduced utilizing harmonic
mean aggregation operators with trapezoidal fuzzy number (TrFN) under picture fuzzy information.
Three harmonic mean operators are developed namely trapezoidal picture fuzzy weighted harmonic
mean (TrPFWHM) operator, trapezoidal picture fuzzy order weighted harmonic mean (TrPFOWHM)
operator and trapezoidal picture fuzzy hybrid harmonic mean (TrPFHHM) operator. The related
properties about these operators are also studied. At last, an MADM problem is considered to
interrelate among these operators. Furthermore, a numerical instance is considered to explain the
productivity of the proposed operators.

Keywords: trapezoidal picture fuzzy number (TrPFN); TrPFWHM operator; TrPFOWHM operator;
TrPFHHM operator; MADM

1. Introduction

MADM plays a vital role in decision-making science. It is important to various field
such as economics, engineering and management. Due to the uncertainty and vagueness of
data, it is very laborious to consider the attribute values as real numbers. FSs theory fixed
this issue by considering the membership grades of the elements. In the present day, many
researchers are interested about the subject. In an MADM problem information aggregation
is a common process to ranking the alternatives. The main contribution of this study is
development of harmonic aggregation operator under TrPFN. We propose three operators:
TrPFWHM, TrPFOWHM and TrPFHHM operators and their related properties.

1.1. Research Background

In 1965, Zadeh [1] proposed FSs theory which is an augmentation of crisp set and can
deal with uncertainty and vagueness. In FSs theory, a membership grade of the element is
available which indicates the importance of the element. Attanassov [2] introduced IFSs
theory which is an augmentation of FSs theory. In IFSs, there is a membership (µ) grade
and a non-membership (ν) grade of the element, such that their sum does not exceed
1—that is, µ + ν ≤ 1. It is seen that FSs are IFSs but IFSs are not necessarily FSs. IFSs theory
has been applied by various researchers in different fields. Attanassov and Gargov [3]
proposed the interval-valued intuitionistic fuzzy set (IVIFS) theory. However, the concept
of neutrality was not present in the IFSs theory. As, for example, in the voting process, the
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voters are divided in three groups: yes, no, and refusal. The group “yes” means that the
voters select the candidate; the group “no” means that the voters do not select the candidate;
the group “refusal” means that the voters neither select nor reject the candidate. For this
issue, Cuong [4,5] introduced PFSs in which positive membership grade (µ), negative
membership grade (ν) as well as neutral membership grade (η) is present, such that their
sum does not exceed 1—that is, µ + η + ν ≤ 1.

1.2. Literature Review

Zadeh [1] replace ordinary set theory by FS theory to fix uncertainty and fuzziness in
a real-life situation. In FSs theory, the sum of membership grades of belongingness and not
belongingness of an element is exactly equal to 1. This problem motivates the researchers to
extend the FSs theory. There are several extension of Zadeh’s FSs theory, among which these
extensions, IFSs, Pythagorean fuzzy set (PFSs), Fermatean fuzzy set (FFSs), Picture fuzzy
set (PFSs), etc., are often used in the literature. In the year 1986, Attanassov [2,3] introduced
IFSs theory, which is the generalization of ordinary FSs theory containing membership,
non-membership and indeterminacy degree and also in the year 1989 expanded it in IVIFSs
theory. Later in the year 2013, Cuong [4–6] introduced PFSs theory in place of Attanassov’s
IFSs theory. For the MADM problem, the aggregation of information in a real scenario
may not always be easy. In this regard, various aggregation operators under IFSs, PFSs,
FFSs are developed by various authors. Along with Xu, [7] proposed aggregation operators
under IFSs. Xu and Yager [8] developed some geometric aggregation operators under IFSs.
Harmonic mean reduces the effect of asymmetric distribution of data, which is the turning
point of information aggregation. For instance, Xu [9] developed harmonic aggregation
operators. Power Harmonic aggregation operators under Trapezoidal intuitionistic fuzzy
sets (TrIFSs) environment and harmonic aggregation operators under IFSs are developed
by Das and Guha [10,11]. For an issue in IFSs, aggregation operators are developed by
using PFSs. Garg [12] proposed an MADM problem by using aggregation operators under
PFSs. Jana and Pal [13] proposed a assessment of enterprise performance by hamacher
aggregation operators under PFSs. Jana [14] and coworkers also proposed an MADM
problem under PFSs utilizing Dombi operations. Later different aggregation operators,
similarity measures, correlation coefficient, distance measure under PFSs are developed by
various authors for smooth running of MADM problem [15–33]. Applications of hesitant
fuzzy set (HFSs) are useful in MADM problem for information aggregation. Donyatalab,
Farrokhizadeh, and Seyfi [34] proposed harmonic mean aggregation operators in spherical
fuzzy environment. Zhao, Xu, and Cui [35] developed a group decision making under
hesitant fuzzy harmonic mean operators. Zhou, Balezentis, and Streimikiene [36] proposed
weighted Bonferroni harmonic mean operator. Lalotra and Sing [37] proposed an MADM
problem under HFSs and applied it in knowledge measure. Saikia, Garg and Dutta [38]
proposed an MADM problem with novel distance measure under HFSs. Rahman and
Abdullah [39] presented Einstein hybrid aggregation operators under IFSs and applied
them to the MADM problem. In the existing literature, aggregation was made simple
by using TrFN under IFSs, PFSs, FFSs. For instance, Shaw and Roy [40] proposed some
arithmetic mean operator under TrIFN. Aydin, Kahraman, and Kabak [41] developed
an MADM method for harmonic mean operators under trapezoidal Pythagorean fuzzy
number. Deli [42] proposed a TOPSIS method using TrFN under HFSs and applied it to the
robot selection process. Many researchers have introduced aggregation operators under
IFSs, PFSs, and FFSs. In this article, we have introduced the score and accuracy function to
rank the TrPFN and developed TrPFWHM, TrPFOWHM, and TrPFHHM operators which
are discussed in the upcoming section.

1.3. Motivation

Due to the presence of a neutrality degree in PFSs, it plays an important role in the
selection process. Suppose in an area there are 1000 voters for a candidate, among which,
500 vote for one candidate, 300 vote for the other candidates, and the remaining 200 voters
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either bypass their vote to “NOTA” or elect not to vote. TrPFN is the hybridization of PFN
and TrFN. There are various harmonic aggregation operators present, but only in the PFSs
environment. In this paper, we propose a harmonic aggregation operator under TrPFN, due
to the presence of neutral membership grades. The harmonic mean operator is the factually
usable operator in the information aggregation. If, in the problem, there are exceptional
alternatives, then it is very useful for the decision makers, because the information that the
harmonic mean operator gives is less important to the exceptional case of preferences. We
give an example to illustrate this: Suppose the marks of 10 students in mathematics of a
class are given. The obtained marks are 35, 47, 43, 37, 99, 27, 29, 31, 30, and 41 out of 100.
We see that 99 is very high mark compared to the other values. We calculate arithmetic
mean and harmonic mean as follows:

Arithmetic mean =
35 + 47 + 43 + 37 + 99 + 27 + 29 + 31 + 30 + 41

10
= 41.90.

Harmonic mean =
10

1
35 + 1

47 + 1
43 + 1

37 + 1
99 + 1

27 + 1
29 + 1

31 + 1
30 + 1

41
= 36.80.

If 99 is replaced by 49 and we calculate the arithmetic mean and harmonic mean,
then we have the result: respectively, 36.90 and 35.46. Therefore, the result obtained by
harmonic mean is better than arithmetic mean. Harmonic mean reduced the effect of the
abnormal value 99 to the mean. This motivated us to work with picture fuzzy harmonic
mean operator.

1.4. Framework of This Study

The paper is arranged as follows: After the introduction, Section 2 contains some
preliminary concepts of PFSs, TrPFNs, harmonic mean (HM), and weighted harmonic mean
(WHM), and some useful operations related to this paper. Section 3 contains information
regarding the TrPFWHM operator, TrPFOWHM operator, and TrPFHHM operator and
their related properties. An MADM problem related to these operators is constructed
using TrPFWHM and TrPFHHM operators in Section 4. A numerical instance and a
comparative study of the proposed method is given in Section 5 to illustrate the advantage
of the proposed method. All results and discussion are in Section 6. Section 7 contains
the conclusions and future scope of the proposed work.

2. Preliminaries
2.1. Basics of Picture Fuzzy Number (PFN) and TrPFN

In this portion, we discuss some primary concepts about PFSs, PFN, and TrPFNs and
some useful operations related to this paper.

Definition 1 ([4]). Let a non-empty set, X , be known as the universal set. A PFS P on X is
defined as

P = {(x, µ(x), η(x), ν(x)) : x ∈ X},

where µ(x) : X → [0, 1] is called degree of positive membership, η(x) : X → [0, 1] is called
degree of neutral membership, and ν(x) : X → [0, 1] is called degree of negative membership.
The membership function satisfying 0 ≤ µ(x) + η(x) + ν(x) ≤ 1. Furthermore, π(x) =
1 − µ(x) − η(x) − ν(x) is called degree of refusal. For simplicity we denote the PFSs P =
{(x, µ(x), η(x), ν(x)) : x ∈ X} as P = (µ, η, ν) and called PFNs.

Definition 2 ([14]). Let P1 = (µ1, η1, ν1) and P2 = (µ2, η2, ν2) be two PFNs over the universal
set X . Then, the subsequent operations are as follows:

1. P̄1 = (ν1, η1, µ1).
2. P1 ∧ P2 = (min{µ1, µ2}, max{η1, η2}, max{ν1, ν2}).
3. P1 ∨ P2 = (max{µ1, µ2}, min{η1, η2}, min{ν1, ν2}).
4. P1 ⊕P2 = (µ1 + µ2 − µ1µ2, η1η2, ν1ν2).
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5. P1 ⊗P2 = (µ1µ2, η1 + η2 − η1η2, ν1 + ν2 − ν1ν2).
6. λP1 = (1− (1− µ1)

λ, ηλ
1 , νλ

1 ).
7. Pλ

1 = (µλ
1 , 1− (1− η1)

λ, 1− (1− ν1)
λ)

Definition 3 ([15]). The membership function of the TrFN T = ( f̂ , ê, ĥ, ĝ) is given by

µT (x) =



0 when x < f̂ ,
x− f̂
ê− f̂

when f̂ ≤ x ≤ ê,

1 when ê ≤ x ≤ ĥ,
x−ĝ
ĥ−ĝ

when ĥ ≤ x ≤ ĝ,

0 when x > ĝ.

Definition 4 ([41]). Let f̂ , ê, ĥ, ĝ be non zero number in [0, 1]. Then P = [( f̂ , ê, ĥ, ĝ); µ, η, ν]
over the universal set X is called positive TrPFN.

Definition 5 ([41]). Let P1 = [( f̂1, ê1, ĥ1, ĝ1); µ1, η1, ν1] and P2 = [( f̂2, ê2, ĥ2, ĝ2); µ2, η2, ν2] be
two positive TrPFNs. Then, the subsequent operations are as follows:

1. P1 + P2 = [( f̂1 + f̂2, ê1 + ê2, ĥ1 + ĥ2, ĝ1 + ĝ2); µ1 + µ2 − µ1µ2, η1η2, ν1ν2].
2. P1 ×P2 = [( f̂1 f̂2, ê1 ê2, ĥ1ĥ2, t1 ĝ2); µ1µ2, η1 + η2 − η1η2, ν1 + ν2 − ν1ν2]

3. λP1 = [(λ f̂1, λê1, λĥ1, λĝ1); 1− (1− µ1)
λ, ηλ

1 , νλ
1 ], λ ≥ 0.

4. Pλ = [( f̂ λ
1 , êλ

1 , ĥλ
1 , ĝλ

1 ); µλ
1 , 1− (1− η1)

λ, 1− (1− ν1)
λ], λ ≥ 0.

Definition 6 ([41]). Let P = [( f̂ , ê, ĥ, ĝ); µ, η, ν] be a positive TrPFN, then

1
P = P−1 = [(

1
ĝ

,
1
ĥ

,
1
ê

,
1
f̂
); µ, η, ν]. (1)

2.2. HM and WHM

Definition 7 ([41]). Let ã1, ã2, . . . ãk be k real numbers. Then the HM of k numbers is calculated as

Mharmonic(ã1, ã2, . . . ãk) =
k

1
ã1
+ 1

ã2
+ . . . + 1

ãk

=
k

k
∑

r=1

1
ãr

. (2)

Definition 8 ([41]). Let ã1, ã2, . . . ãk be k real numbers. Then the WHM of k numbers is calculated as

Mweighted harmonic(ã1, ã2, . . . ãk) =
k

τ̂1
ã1
+ τ̂2

ã2
+ . . . + τ̂k

ãk

=
k

k
∑

r=1

τ̂r
ãr

(3)

where, the weight vector τ̂ = (τ̂1, τ̂2, . . . , τ̂k)
T of ar for r = 1, 2, . . . , k and

k
∑

r=1
τ̂r = 1.

3. Different WHM Operators for TrPFN

Definition 9. Let Pr = [( f̂r, êr, ĥr, ĝr); µr, ηr, νr] be a collection of positive TrPFNs for r =

1, 2, . . . , k. A TrPFWHM operator is a mapping f ξ
TrPFWHM : P k → P and

f ξ̂
TrPFWHM(P1,P2, . . . ,Pk) =

1
k
∑

r=1

ξ̂r
Pr

(4)

where, ξ̂ = (ξ̂1, ξ̂2, . . . , ξ̂k)
T is the associated weight vector of Pr for r = 1, 2, . . . , k and

k
∑

r=1
ξ̂r = 1.
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Theorem 1. Let Pr =
[
( f̂r, êr, ĥr, ĝr); µr, ηr, νr

]
be a collection of positive TrPFNs for r =

1, 2, . . . , k and the associated weight vector of Pr is ξ̂ = (ξ̂1, ξ̂2, . . . , ξ̂k)
T for r = 1, 2, . . . , k and

k
∑

r=1
ξ̂r = 1 then

f ξ̂
TrPFWHM(P1,P2, . . . ,Pk)

=


 1

k
∑

r=1

ξ̂r
f̂r

, 1
k
∑

r=1

ξ̂r
êr

, 1
k
∑

r=1

ξ̂r
ĥr

, 1
k
∑

r=1

ξ̂r
ĝr

; 1−∏k
r=1(1− µr)

ξ̂r , ∏k
r=1 η

ξ̂r
r , ∏k

r=1 ν
ξ̂r
r

 (5)

Proof. When k = 2, then

f ξ̂
TrPFWHM(P1,P2) =

1
2
∑

r=1

ξ̂r
Pr

=
1

ξ̂1
P1

+ ξ̂2
P2

=
1

ξ̂1
[( f̂1,ê1,ĥ1,ĝ1);µ1,η1,ν1]

+ ξ̂2
[( f̂2,ê2,ĥ2,ĝ2);µ2,η2,ν2]

=
1

ξ̂1

[(
1
ĝ1

, 1
ĥ1

, 1
ê1

, 1
f̂1

)
; µ1, η1, ν1

]
+ ξ̂2

[(
1
ĝ2

, 1
ĥ2

, 1
ê2

, 1
f̂2

)
; µ2, η2, ν2

]
=

1[(
ξ̂1
ĝ1

, ξ̂1
ĥ1

, ξ̂1
ê1

, ξ̂1
f̂1

)
; 1− (1− µ1)ξ̂1 , η

ξ̂1
1 , ν

ξ̂1
1

]
+
[(

ξ̂2
t2

, ξ̂2
ĥ2

, ξ̂2
ê2

, ξ̂2
f̂2

)
; 1− (1− µ2)ξ̂2 , η

ξ̂2
2 , ν

ξ̂2
2

]
= 1[(

ξ̂1
ĝ1
+

ξ̂2
ĝ2

, ξ̂1
ĥ1
+

ξ̂2
ĥ2

, ξ̂1
ê1
+

ξ̂2
ê2

, ξ̂1
f̂1
+

ξ̂2
f̂2

)
;1−(1−µ1)

ξ̂1+1−(1−µ2)
ξ̂2−

(
1−(1−µ1)

ξ̂1

)(
1−(1−µ2)

ξ̂2

)
,η

ξ̂1
1 η

ξ̂2
2 ,ν

ξ̂1
1 ν

ξ̂2
2

]

=
1[(

2
∑

r=1

ξ̂r
ĝr

,
2
∑

r=1

ξ̂r
ĥr

,
2
∑

r=1

ξ̂r
êr

,
2
∑

r=1

ξ̂r
f̂r

)
; 1−

2
∏

r=1
(1− µr)ξ̂r ,

2
∏

r=1
η

ξ̂r
r ,

2
∏

r=1
ν

ξ̂r
r

]

=


 1

2
∑

r=1

ξ̂r
f̂r

,
1

2
∑

r=1

ξ̂r
êr

,
1

2
∑

r=1

ξ̂r
ĥr

,
1

2
∑

r=1

ξ̂r
ĝr

; 1−
2

∏
r=1

(1− µr)
ξ̂r ,

2

∏
r=1

η
ξ̂r
r ,

2

∏
r=1

ν
ξ̂r
r


Assume that the Theorem 1 is true for k = q.

∴ f ξ̂
TrPFWHM(P1,P2, . . . ,Pq)

=


 1

q
∑

r=1

ξ̂r
f̂r

,
1

q
∑

r=1

ξ̂r
êr

,
1

q
∑

r=1

ξ̂r
ĥr

,
1

q
∑

r=1

ξ̂r
ĝr

; 1−
q

∏
r=1

(1− µr)
ξ̂r ,

q

∏
r=1

η
ξ̂r
r ,

q

∏
r=1

ν
ξ̂r
r


∴ f ξ̂

TrPFWHM(P1,P2, . . . ,Pq,Pq+1) =
1

q
∑

r=1

ξ̂r
Pr

+
ξ̂q+1
Pq+1

=


 1

q+1
∑

r=1

ξ̂r
f̂r

,
1

q+1
∑

r=1

ξ̂r
êr

,
1

q+1
∑

r=1

ξ̂r
ĥr

,
1

q+1
∑

r=1

ξ̂r
ĝr

; 1−
q+1

∏
r=1

(1− µr)
ξ̂r ,

q+1

∏
r=1

η
ξ̂r
r ,

q+1

∏
r=1

ν
ξ̂r
r


Hence the result.
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Theorem 2 (Idempotency property). Let Pr = [( f̂r, êr, ĥr, ĝr); µr, ηr, νr] be a collection of
TrPFNs for r = 1, 2, . . . , k. If Pr = P for all r that is all are identical then,

f ξ̂
TrPFWHM(P1,P2, . . . ,Pk) = f ξ̂

TrPFWHM(P ,P , . . . ,P) = P . (6)

Proof. We know that
f ξ̂
TrPFWHM(P1,P2, . . . ,Pk)

=


 1

k
∑

r=1

ξ̂r
f̂r

,
1

k
∑

r=1

ξ̂r
êr

,
1

k
∑

r=1

ξ̂r
ĥr

,
1

k
∑

r=1

ξ̂r
ĝr

; 1−
k

∏
r=1

(1− µr)
ξ̂r ,

k

∏
r=1

η
ξ̂r
r ,

k

∏
r=1

ν
ξ̂r
r



=


 1(

k
∑

r=1
ξ̂r

)
f̂

,
1(

k
∑

r=1
ξ̂r

)
ê

,
1(

k
∑

r=1
ξ̂r

)
ĥ

,
1(

k
∑

r=1
ξ̂r

)
ĝ

; 1− (1− µ)

k
∑

r=1
ξ̂r

, η

k
∑

r=1
ξ̂r

, ν

k
∑

r=1
ξ̂r



=

 1
1
f̂

,
1
1
ê

,
1
1
ĥ

,
1
1
ĝ

; 1− (1− µ), η, ν

 = [( f̂ , ê, ĥ, ĝ); µ, η, ν] = P .

Hence the result.

Theorem 3 (Monotonicity property). Let Pr = [( f̂r, êr, ĥr, ĝr); µr, ηr, νr] and
P ′r = [( f̂ ′r , ê′r, ĥ′r, ĝ′r); µ′r, η′r, ν′r] be two collection of TrPFNs. If f̂r ≤ f̂ ′r , êr ≤ ê′r, ĥr ≤ ĥ′r,
ĝr ≤ ĝ′r, µr ≤ µ′r, ηr ≥ η′r, and νr ≥ ν′r. Then

f ξ̂
TrPFWHM(P1,P2, . . . ,Pk) ≤ f ξ̂

TrPFWHM(P ′1,P ′2, . . . ,P ′k) (7)

Proof. Since f̂r ≤ f̂ ′r and ξ̂r ≥ 0 for all r.

∴
1
f̂r
≥ 1

f̂ ′r
⇒ ξ̂r

f̂r
≥ ξ̂r

f̂ ′r
⇒

k

∑
r=1

ξ̂r

f̂r
≥

k

∑
r=1

ξ̂r

f̂ ′r
⇒ 1

k
∑

r=1

ξ̂r
f̂r

≤ 1
k
∑

r=1

ξ̂r
f̂ ′r

Similarly we have the other relations

1
k
∑

r=1

ξ̂r
êr

≤ 1
k
∑

r=1

ξ̂r
ê′r

,
1

k
∑

r=1

ξ̂r
ĥr

≤ 1
k
∑

r=1

ξ̂r
ĥ′r

,
1

k
∑

r=1

ξ̂r
ĝr

≤ 1
k
∑

r=1

ξ̂r
ĝ′r

Again

µr ≤ µ′r ⇒ −µr ≥ −µ′r ⇒ (1− µr) ≥ (1− µ′r)⇒ (1− µr)
ξ̂r ≥ (1− µ′r)

ξ̂r

⇒
k

∏
r=1

(1− µr)
ξ̂r ≥

k

∏
r=1

(
1− µ′r

)ξ̂r ⇒ 1−
k

∏
r=1

(1− µr)
ξ̂r ≤ 1−

k

∏
r=1

(
1− µ′r

)ξ̂r , ξ̂r ≥ 0

ηr ≥ η′r ⇒ η
ξ̂r
r ≥ η

′ξ̂r
r ⇒

k

∏
r=1

η
ξ̂r
r ≥

k

∏
r=1

η
′ξ̂r
r

Similarly
k

∏
r=1

ν
ξ̂r
r ≥

k

∏
r=1

ν
′ξ̂r
r
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∴


 1

k
∑

r=1

ξ̂r
f̂r

,
1

k
∑

r=1

ξ̂r
êr

,
1

k
∑

r=1

ξ̂r
ĥr

,
1

k
∑

r=1

ξ̂r
ĝr

; µr, ηr, νr

 ≤

 1

k
∑

r=1

ξ̂r
f̂ ′r

,
1

k
∑

r=1

ξ̂r
ê′r

,
1

k
∑

r=1

ξ̂r
ĥ′r

,
1

k
∑

r=1

ξ̂r
ĝ′r

; µ′r, η′r, ν′r


⇒ f ξ̂

TrPFWHM(P1,P2, . . . ,Pk) ≤ f ξ̂
TrPFWHM(P ′1,P ′2, . . . ,P ′k)

Hence the result.

Theorem 4 (Boundedness property). Let Pr = [( f̂r, êr, ĥr, ĝr); µr, ηr, νr] be a collection of posi-
tive TrPFNs. LetP− = [(min{ f̂r}, min{êr}, min{ĥr}, min{ĝr}); min{µr}, max{ηr}, max{νr}]
and P+ = [(max{ f̂r}, max{êr}, max{ĥr}, max{ĝr}); max{µr}, min{ηr}, min{νr}]. Then

P− ≤ f ξ̂
TrPFWHM(P1,P2, . . . ,Pk) ≤ P+ (8)

Proof. Since

min{ f̂r} ≤ f̂r ≤ max{ f̂r} ⇒
1

min{ f̂r}
≥ 1

f̂r
≥ 1

max{ f̂r}

⇒ ξ̂r

min{ f̂r}
≥ ξ̂r

f̂r
≥ ξ̂r

max{ f̂r}
, ξ̂r ≥ 0∀r ⇒

k

∑
r=1

ξ̂r

min{ f̂r}
≥

k

∑
r=1

ξ̂r

f̂r
≥

k

∑
r=1

ξ̂r

max{ f̂r}

⇒ 1
k
∑

r=1

ξ̂r
min{ f̂r}

≤ 1
k
∑

r=1

ξ̂r
f̂r

≤ 1
k
∑

r=1

ξ̂r
max{ f̂r}

Similarly the other relations are as follows

1
k
∑

r=1

ξ̂r
min{êr}

≤ 1
k
∑

r=1

ξ̂r
êr

≤ 1
k
∑

r=1

ξ̂r
max{êr}

1
k
∑

r=1

ξ̂r
min{ĥr}

≤ 1
k
∑

r=1

ξ̂r
ĥr

≤ 1
k
∑

r=1

ξ̂r
max{ĥr}

1
k
∑

r=1

ξ̂r
min{ĝr}

≤ 1
k
∑

r=1

ξ̂r
ĝr

≤ 1
k
∑

r=1

ξ̂r
max{ĝr}

Again,

min{µr} ≤ µr ≤ max{µr} ⇒ (1−min{µr}) ≥ (1− µr) ≥ (1−max{µr})

⇒ (1−min{µr})ξ̂r ≥ (1− µr)
ξ̂r ≥ (1−max{µr})ξ̂r , ξ̂r ≥ 0, ∀r

⇒
k

∏
r=1

(1−min{µr})ξ̂r ≥
k

∏
r=1

(1− µr)
ξ̂r ≥

k

∏
r=1

(1−max{µr})ξ̂r

⇒ 1−
k

∏
r=1

(1−min{µr})ξ̂r ≤ 1−
k

∏
r=1

(1− µr)
ξ̂r ≤ 1−

k

∏
r=1

(1−max{µr})ξ̂r

and
min{ηr} ≤ ηr ≤ max{ηr} ⇒ (min{ηr})ξ̂r ≤ (ηr)

ξ̂r ≤ (max{ηr})ξ̂r
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⇒
k

∏
r=1

(min{ηr})ξ̂r ≤
k

∏
r=1

(ηr)
ξ̂r ≤

k

∏
r=1

(max{ηr})ξ̂r

Similarly,
k

∏
r=1

(min{νr})ξ̂r ≤
k

∏
r=1

(νr)
ξ̂r ≤

k

∏
r=1

(max{νr})ξ̂r

∴ P− ≤ f ξ̂
TrPFWHM(P1,P2, . . . ,Pk) ≤ P+

Hence the result.

Theorem 5 (Commutativity property). Let Pr = [( f̂r, êr, ĥr, ĝr); µr, ηr, νr] and
P ′r = [( f̂ ′r , ê′r, ĥ′r, ĝ′r); µ′r, η′r, ν′r] be two sets of positive trapezoidal picture number for r = 1, 2, . . . , k.
Then

f ξ̂
TrPFWHM(P1,P2, . . . ,Pk) = f ξ̂

TrPFWHM(P ′1,P ′2, . . . ,P ′k). (9)

where P ′r is any permutation of Pr for r = 1, 2, . . . , k.

Proof. We have from Equation (5)

f ξ̂
TrPFWHM(P1,P2, . . . ,Pk)

=


 1

k
∑

r=1

ξ̂r
f̂r

,
1

k
∑

r=1

ξ̂r
êr

,
1

k
∑

r=1

ξ̂r
ĥr

,
1

k
∑

r=1

ξ̂r
ĝr

; 1−
k

∏
r=1

(1− µr)
ξ̂r ,

k

∏
r=1

η
ξ̂r
r ,

k

∏
r=1

ν
ξ̂r
r


Since (P ′1,P ′2, . . . ,P ′k) is any permutation of (P1,P2, . . . ,Pk).
Therefore

 1
k
∑

r=1

ξ̂r
f̂r

,
1

k
∑

r=1

ξ̂r
êr

,
1

k
∑

r=1

ξ̂r
ĥr

,
1

k
∑

r=1

ξ̂r
ĝr

; 1−
k

∏
r=1

(1− µr)
ξ̂r ,

k

∏
r=1

η
ξ̂r
r ,

k

∏
r=1

ν
ξ̂r
r



=


 1

k
∑

r=1

ξ̂r
f̂ ′r

,
1

k
∑

r=1

ξ̂r
ê′r

,
1

k
∑

r=1

ξ̂r
ĥ′r

,
1

k
∑

r=1

ξ̂r
ĝ′r

; 1−
k

∏
r=1

(
1− µ′r

)ξ̂r ,
k

∏
r=1

(η′r)
ξ̂r ,

k

∏
r=1

(ν′r)
ξ̂r

.

Thus
f ξ̂
TrPFWHM(P1,P2, . . . ,Pk) = f ξ̂

TrPFWHM(P ′1,P ′2, . . . ,P ′k).

Hence the result.

Example 1. Evaluations given by three decision makers in form of TrFN under picture fuzzy
information. Let P1 = [(0.2, 0.4, 0.4, 0.5); 0.4, 0.2, 0.3], P2 = [(0.7, 0.6, 0.6, 0.6); 0.5, 0.1, 0.4],
P3 = [(0.8, 0.7, 0.3, 0.6); 0.3, 0.2, 0.4] be three positive TrPFN. Let the decision makers weight vector
is ξ̂ = (0.3, 0.4, 0.3)T . Then the complete solution is calculated by using the TrPFWHM operator

f ξ̂
TrPFWHM(P1,P2, . . . ,Pk)

=

[(
1

0.3
0.2 + 0.4

0.7 + 0.3
0.8

,
1

0.3
0.4 + 0.4

0.6 + 0.3
0.7

,
1

0.3
0.4 + 0.4

0.6 + 0.3
0.3

,
1

0.3
0.5 + 0.4

0.4 + 0.3
0.6

)
;

1− (1− 0.4)0.3 × (1− 0.5)0.4 × (1− 0.3)0.3, 0.20.3 × 0.10.4 × 0.20.3, 0.30.3 × 0.40.4 × 0.40.3
]

= [(0.41, 0.54, 0.41, 0.48); 0.42, 0.15, 0.37].
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Now we define score functions and accuracy functions for TrPFN.

Definition 10. Let P = [( f̂ , ê, ĥ, ĝ); µ, η, ν] be a positive TrPFN. Then

S(P) = f̂ + ê + ĥ + ĝ
4

× 1 + µ− ν

2
(10)

is called score function and

A(P) = f̂ + ê + ĥ + ĝ
4

× µ− ν

2
(11)

is called accuracy function.

Definition 11. Let Pr = [( f̂r, êr, ĥr, ĝr); µr, ηr, νr] be a collection of positive TrPFNs for r =

1, 2, . . . , k. A TrPFOWHM operator is a mapping f ξ̂
TrPFOWHM : P k → P and

f ξ̂
TrPFOWHM(P1,P2, . . . ,Pk) =

1
k
∑

r=1

ξ̂r
Pσ(r)

, (12)

where the associated weight vector ξ̂ = (ξ̂1, ξ̂2, . . . , ξ̂k)
T of Pr such that ξ̂r ∈ [0, 1],

k
∑

r=1
ξ̂r = 1 and

{σ1, σ2, . . . , σk} be any permutation such that Pσ(r) ≤ Pσ(r−1) for r = 2, 3, . . . , k.

Theorem 6. LetPr = [( f̂r, êr, ĥr, ĝr); µr, ηr, νr] be a collection of positive TrPFNs for r = 1, 2, . . . , k

and the weight vector ξ̂ = (ξ̂1, ξ̂2, . . . , ξ̂k)
T of Pr such that ξ̂r ∈ [0, 1],

k
∑

r=1
ξ̂r = 1 then

f ξ̂
TrPFOWHM(P1,P2, . . . ,Pk)

=


 1

k
∑

r=1

ξ̂r
f̂σ(r)

,
1

k
∑

r=1

ξ̂r
êσ(r)

,
1

k
∑

r=1

ξ̂r
ĥσ(r)

,
1

k
∑

r=1

ξ̂r
ĝσ(r)

; 1−
k

∏
r=1

(
1− µσ(r)

)ξ̂r
,

k

∏
r=1

η
ξ̂r
σ(r),

k

∏
r=1

ν
ξ̂r
σ(r)

 (13)

where {σ1, σ2, . . . , σk} be any permutation such that Pσ(r) ≤ Pσ(r−1) for r = 2, 3, . . . , k.

Proof. Proof is same as Theorem 1.

Theorem 7 (Idempotency property). Let Pr = [( f̂r, êr, ĥr, ĝr); µr, ηr, νr] be a collection of
TrPFNs. If Pr = P for all r that is all are identical then,

f ξ̂
TrPFOWHM(P1,P2, . . . ,Pk) = f ξ̂

TrPFOWHM(P ,P , . . . ,P) = P . (14)

Proof. Proof is same as Theorem 2.

Theorem 8 (Monotonicity property). Let Pr = [( f̂r, êr, ĥr, ĝr); µr, ηr, νr] and
P ′r = [( f̂ ′r , ê′r, ĥ′r, ĝ′r); µ′r, η′r, ν′r] be two collection of TrPFNs. If f̂r ≤ f̂ ′r , êr ≤ ê′r, ĥr ≤ ĥ′r,
ĝr ≤ ĝ′r, µr ≤ µ′r, ηr ≥ η′r, and νr ≥ ν′r. Then

f ξ̂
TrPFOWHM(P1,P2, . . . ,Pk) ≤ f ξ̂

TrPFOWHM(P ′1,P ′2, . . . ,P ′k) (15)

Proof. Proof is same as Theorem 3.
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Theorem 9. (Boundedness property) LetPr = [( f̂r, êr, ĥr, ĝr); µr, ηr, νr] be a collection of positive
TrPFNs. Let P− = [(min{ f̂r}, min{êr}, min{ĥr}, min{ĝr}); min{µr}, max{ηr}, max{νr}]
and P+ = [(max{ f̂r}, max{êr}, max{ĥr}, max{ĝr}); max{µr}, min{ηr}, min{νr}]. Then

P− ≤ f ξ̂
TrPFOWHM(P1,P2, . . . ,Pk) ≤ P+ (16)

Proof. Proof is same as Theorem 4.

Theorem 10 (Commutativity property). Let Pr = [( f̂r, êr, ĥr, ĝr); µr, ηr, νr] and
P ′r = [( f̂ ′r , ê′r, ĥ′r, ĝ′r); µ′r, η′r, ν′r] be two sets of positive TrPFN. Then

f ξ̂
TrPFOWHM(P1,P2, . . . ,Pk) = f ξ̂

TrPFOWHM(P ′1,P ′2, . . . ,P ′k). (17)

where P ′r is any permutation of Pr for r = 1, 2, . . . , k.

Proof. Proof is same as Theorem 5.

Example 2. Evaluations given by three decision makers in form of TrPFN picture fuzzy in-
formation. Let P1 = [(0.2, 0.4, 0.4, 0.5); 0.4, 0.2, 0.3], P2 = [(0.7, 0.6, 0.6, 0.6); 0.5, 0.1, 0.4],
P3 = [(0.8, 0.7, 0.3, 0.6); 0.3, 0.2, 0.4] be three positive TrPFN. Let the decision makers weight
vector ξ̂ = (0.3, 0.4, 0.3)T . Now we compute the score functions of the TrPFN as

Sc(P1) =
0.2 + 0.4 + 0.4 + 0.5

4
.
1 + 0.4− 0.3

2
= 0.2602.

Sc(P2) =
0.7 + 0.6 + 0.6 + 0.4

4
.
1 + 0.5− 0.4

2
= 0.3162.

Sc(P3) =
0.8 + 0.7 + 0.3 + 0.6

4
.
1 + 0.3− 0.4

2
= 0.2700.

Therefore, the order is P2 � P3 � P1. Then, the completed solution is calculated by using the
TrPFOWHM operator

f ξ̂
TrPFOWHM(P1,P2,P3)

=

[(
1

0.3
0.7 + 0.4

0.8 + 0.3
0.2

,
1

0.3
0.6 + 0.4

0.7 + 0.3
0.4

,
1

0.3
0.4 + 0.4

0.3 + 0.3
0.4

,
1

0.3
0.4 + 0.4

0.6 + 0.3
0.5

)
;

1− (1− 0.5)0.3 × (1− 0.3)0.4 × (1− 0.4)0.3, 0.10.3 × 0.20.4 × 0.20.3, 0.40.3 × 0.40.4 × 0.30.3
]

= [(0.41, 0.55, 0.39, 0.50); 0.40, 0.16, 0.37].

Definition 12. Let Pr = [( f̂r, êr, ĥr, ĝr); µr, ηr, νr] be a collection of positive TrPFNs for r =

1, 2, . . . , k. A TrPFHHM operator is a mapping f ξ̂,χ̂
TrPFHHM : P k → P then

f ξ̂,χ̂
TrPFHHM(P1,P2, . . . ,Pk) =

1
k
∑

r=1

χ̂r
P ′σ(r)

(18)

where, the rth largest TrPFN P ′
σ(r) is calculated by P ′r = kξ̂rPr for r=1,2,. . . ,k. Here k is called

balancing factor. The weight vector ξ̂ = (ξ̂1, ξ̂2, . . . , ξ̂k)
T of Pr, ξ̂r ∈ [0, 1] such that

k
∑

r=1
ξ̂r = 1.

χ̂ = (χ̂1, χ̂2, . . . , χ̂k)
T be the position vector.

Theorem 11. Let Pr = [( f̂r, êr, ĥr, ĝr); µr, ηr, νr] be a collection of positive TrPFNs for r =
1, 2, . . . , k. Then
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f ξ̂,χ̂
TrPFHHM(P1,P2, . . . ,Pk)

=


 1

k
∑

r=1

χ̂r
f̂ ′
σ(r)

,
1

k
∑

r=1

χ̂r
ê′

σ(r)

,
1

k
∑

r=1

χ̂r
ĥ′

σ(r)

,
1

k
∑

r=1

χ̂r
ĝ′

σ(r)

; 1−
k

∏
r=1

(1− µ′σ(r))
χ̂r ,

k

∏
r=1

(η′σ(r))
χ̂r ,

k

∏
r=1

(ν′σ(r))
χ̂r

 (19)

where χ̂ = (χ̂1, χ̂2, . . . , χ̂k)
T be an associated weight vector such that

k
∑

r=1
χ̂r = 1.

Proof. Proof is same as Theorem 1.

Specially, if ξ̂ = ( 1
k , 1

k , . . . , 1
k )

T then TrPFHHM operators becomes TrPFOWHM op-
erators and if χ̂ = ( 1

k , 1
k , . . . , 1

k )
T then TrPFHHM operators becomes TrPFWHM opera-

tors. Thus, we say that TrPFHHM operator is a generalization of TrPFWHM and TrP-
FOWHM operators.

Example 3. Evaluations given by three decision makers in form of TrPFN under picture fuzzy
information. Let P1 = [(0.2, 0.4, 0.4, 0.5); 0.4, 0.2, 0.3], P2 = [(0.7, 0.6, 0.6, 0.4); 0.5, 0.1, 0.4],
P3 = [(0.8, 0.7, 0.3, 0.6); 0.3, 0.2, 0.4] be three positive TrPFN. Let ξ̂ = (0.3, 0.4, 0.3)T be the
weighting vector of the decision makers and χ̂ = (0.4, 0.2, 0.4)T be the position vector.

The hybrid TrPFN are given by

P̃ ′1 = 3× 0.3× [(0.2, 0.4, 0.4, 0.5); 0.4, 0.2, 0.3]

= [(0.9× 0.2, 0.9× 0.4, 0.9× 0.4, 0.9× 0.5); 1− (1− 0.4)0.9, 0.20.9, 0.30.9]

= [(0.18, 0.36, 0.36, 0.45); 0.37, 0.23, 0.34],

P̃ ′2 = 3× 0.4× [(0.7, 0.6, 0.6, 0.4); 0.5, 0.1, 0.4]

= [(1.2× 0.7, 1.2× 0.6, 1.2× 0.6, 1.2× 0.4); 1− (1− 0.5)1.2, 0.11.2, 0.41.2]

= [(0.84, 0.72, 0.72, 0.48); 0.56, 0.06, 0.33],

and
P̃ ′3 = 3× 0.3× [(0.8, 0.7, 0.3, 0.6); 0.3, 0.2, 0.4]

= [(0.9× 0.8, 0.9× 0.7, 0.9× 0.3, 0.9× 0.6); 1− (1− 0.3)0.9, 0.20.9, 0.40.9]

= [(0.72, 0.63, 0.27, 0.54); 0.27, 0.23, 0.44].

Now we can calculate the score of this hybrid TrPFN using score functions

Sc(P̃ ′1) =
0.18 + 0.36 + 0.36 + 0.45

4
× 1 + 0.37− 0.34

2
= 0.1738.

Sc(P̃ ′2) =
0.84 + 0.72 + 0.72 + 0.48

4
× 1 + 0.56− 0.33

2
= 0.4243.

Sc(P̃ ′3) =
0.72 + 0.63 + 0.27 + 0.54

4
× 1 + 0.27− 0.44

2
= 0.2241.

Therefore the order of the hybrid TrPFN is P̃ ′2 � P̃ ′3 � P̃ ′1. Then the completed solution is
calculated by TrPFHHM operator

f ξ̂,χ̂
TrPFHHM(P̃ ′1, P̃ ′2, P̃ ′3)
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=

[(
1

0.4
0.84 + 0.2

0.72 + 0.4
0.18

,
1

0.4
0.72 + 0.2

0.63 + 0.4
0.36

,
1

0.4
0.72 + 0.2

0.27 + 0.4
0.36

,
1

0.4
0.48 + 0.2

0.54 + 0.4
0.45

)
;

1− (1− 0.56)0.4 × (1− 0.27)0.2 × (1− 0.37)0.4, 0.060.4 × 0.230.2 × 0.230.4, 0.330.4 × 0.440.2 × 0.340.4
]

= [(0.34, 0.50, 0.41, 0.48); 0.44, 0.13, 0.35].

4. Materials and Methods

In this portion, we shall present an MADM problem with TrFN under picture fuzzy
information using TrPFHHM operator. Let Br be the set of discrete alternatives for
r = 1, 2, . . . , p. Es be the set of attributes for s = 1, 2, . . . , k and D̃l be the decision makers
for (l = 1, 2, . . . , q). The matrix representation of the MADM problem is given below where
the element Brs means that r th alternative satisfies s th attribute.

D̃ = [B̃l
rs]p× k =


B11 B12 . . . B1k
B21 B22 . . . B2k

...
...

. . .
...

Bp1 Bp2 . . . Bpk.

 (20)

Let the weight vector ξ̂ = (ξ̂1, ξ̂2, . . . , ξ̂k)
T of the attributes be such that

k
∑

r=1
ξ̂r = 1

and the weight vector τ̂ = (τ̂1, τ̂2, . . . , τ̂q)T of the q decision makers with
q
∑

l=1
τ̂l = 1. Let

the associated weight vector be χ̂ = (χ̂1, χ̂2, . . . , χ̂k)
T with

k
∑

r=1
χ̂r = 1. In the Algorithm 1,

utilizing TrPFHHM operator we solve the MADM problem.

Algorithm 1:
Input: To the selection of best possible alternative.
Output: Best alternative.
1. Identify the alternatives and attributes and then construct the decision matrix

D̃ = [B̃l
rs]p×k, where B̃l

rs is the trapezoidal picture fuzzy number of the form
[( f̂ , ê, ĥ, ĝ); µ, η, ν] given by the q decision maker.

2. Convert the matrix D̃ = [B̃l
rs]p×k to the normalize matrix D̃′ = [B̃′ lrs]p×k by the

following property:

B̃′ lrs =


[(

f̂ l
rs

vmax
, êl

rs
vmax

, ĥl
rs

vmax
, ĝl

rs
vmax

)
; µl

rs, ηl
rs, νl

rs

]
for benefit attributes.[(

f̂ l
rs

vmax
, êl

rs
vmax

, ĥl
rs

vmax
, ĝl

rs
vmax

)
; νl

rs, ηl
rs, µl

rs

]
for cost attributes.

where vmax = max{ f̂ l
rs, êl

rs, ĥl
rs, ĝl

rs}, r = 1, 2, . . . , p, s = 1, 2, . . . , k,
and l = 1, 2, . . . , q.

3. Consider the weight vector ξ̂ = (ξ̂1, ξ̂2, . . . , ξ̂k)
T of the attributes. Furthermore,

identify
the weight vector τ̂ = (τ̂1, τ̂2, . . . , τ̂p)T of the decision makers to their
background, knowledge, and experience. Determine the associated position
vector χ̂ = (χ̂1, χ̂2, . . . , χ̂k)

T .
4. Calculate the individual ratings of each alternative for each decision maker

from normalized decision matrix by TrPFWHM operator.
5. Calculate the final ratings of the alternative by TrPFHHM operator and

compute their score by score functions (10) to ranking.
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5. Numerical Example

In this portion, we shall present a numerical instance to illustrate the flexibility of
the proposed method. A telecom company has decided that they will setup a tower
at a particular place in Midnapore town. The company always wants to put the tower
in the right place, because once installed it is very expansive to move. Furthermore,
they have to keep in mind that people from all corners of the town will get all kinds of
facilities. The opinion of the person in which place the tower will be erected has to be taken.
The company employ three experts to fix the place in the Midnapore town. The expert will
evaluate four places: Keranitola (B1), Sepoi Bazar (B2), Rangamati (B3), and Ashokenagar
(B4) according to four attributes. The attributes are as follows:

1. Population of locality (E1): A telecom company expects more customers all the time,
because more customers equals greater profit. So, the experts will wish to choose a
locality with a larger population. Further, it does not happen that all the people of a
locality will be the customers of that telecom company. They may be the customers of
another company. So, more population of a locality is important to install a tower.

2. Commercial environment (E2): If the commercial environment of a locality is good
then it is convenient to do business. Commercial environment means that there is
school, college, hospital, shopping mall, etc., around the locality.

3. Eco-friendly (E3): The telecom company wants to install the tower without any harm
to the environment. The company always takes care of the beauty of the environment
so that the tower can be installed. If there are some large trees next to it, they take care
of the trees. So, it is important that the locality will be eco-friendly to the company.

4. Cost (E4): Before choosing the place, the company should decide how much it will
cost and they should fix their maximum budget, including management cost.

6. Result and Discussion

The weight vector for the attribute set by the telecom company as
ξ̂ = (0.20, 0.15, 0.45, 0.20)T . Here, three attributes E1, E2, and E3 are benefit attributes
and E4 is cost attribute. The weight vector of the expert is τ̂ = (0.40, 0.35, 0.25)T and the
associated weight vector is χ̂ = (0.35, 0.40, 0.25)T . The three experts give their ratings
which are displayed in Tables 1–3. The normalized decision matrix is given by Tables 4–6.

Table 1. Decision maker 1 responses.

E1 E2 E3 E4

B1
1 [(0.6, 0.4, 0.7, 0.9); 0.55, 0.34, 0.11] [(0.5, 0.5, 0.7, 0.6); 0.60, 0.25, 0.10] [(0.6, 0.4, 0.7, 0.8); 0.61, 0.19, 0.18] [(0.7, 0.8, 0.5, 0.6); 0.57, 0.21, 0.17]
B1

2 [(0.2, 0.3, 0.5, 0.7); 0.65, 0.15, 0.15] [(0.6, 0.5, 0.7, 0.3); 0.54, 0.25, 0.18] [(0.5, 0.4, 0.6, 0.9); 0.59, 0.19, 0.18] [(0.7, 0.6, 0.2, 0.3); 0.75, 0.09, 0.15]
B1

3 [(0.5, 0.3, 0.6, 0.2); 0.25, 0.45, 0.25] [(0.3, 0.2, 0.7, 0.3); 0.45, 0.35, 0.14] [(0.5, 0.4, 0.7, 0.8); 0.51, 0.17, 0.27] [(0.3, 0.2, 0.7, 0.8); 0.49, 0.27, 0.19]
B1

4 [(0.4, 0.6, 0.7, 0.2); 0.31, 0.43, 0.25] [(0.5, 0.2, 0.7, 0.9); 0.58, 0.13, 0.19] [(0.6, 0.7, 0.3, 0.4); 0.56, 0.24, 0.20] [(0.3, 0.4, 0.2, 0.1); 0.48, 0.26, 0.21]

Table 2. Decision maker 2 responses.

E1 E2 E3 E4

B2
1 [(0.4, 0.7, 0.8, 0.2); 0.53, 0.29, 0.11] [(0.4, 0.4, 0.7, 0.3); 0.47, 0.12, 0.34] [(0.3, 0.5, 0.4, 0.8); 0.35, 0.19, 0.43] [(0.2, 0.7, 0.4, 0.5); 0.65, 0.13, 0.17]
B2

2 [(0.3, 0.5, 0.4, 0.7); 0.42, 0.28, 0.19] [(0.2, 0.4, 0.2, 0.7); 0.49, 0.23, 0.28] [(0.5, 0.3, 0.7, 0.9); 0.59, 0.09, 0.27] [(0.4, 0.3, 0.2, 0.8); 0.61, 0.09, 0.29]
B2

3 [(0.4, 0.7, 0.2, 0.5); 0.31, 0.11, 0.51] [(0.5, 0.2, 0.9, 0.6); 0.63, 0.08, 0.21] [(0.3, 0.4, 0.7, 0.5); 0.59, 0.13, 0.22] [(0.2, 0.5, 0.7, 0.2); 0.58, 0.15, 0.23]
B2

4 [(0.5, 0.3, 0.6, 0.8); 0.72, 0.05, 0.19] [(0.6, 0.4, 0.5, 0.2); 0.71, 0.18, 0.06] [(0.3, 0.2, 0.5, 0.6); 0.65, 0.15, 0.18] [(0.4, 0.2, 0.8, 0.7); 0.61, 0.14, 0.21]

Table 3. Decision maker 3 responses.

E1 E2 E3 E4

B3
1 [(0.4, 0.2, 0.7, 0.5); 0.52, 0.22, 0.21] [(0.5, 0.2, 0.7, 0.4); 0.09, 0.78, 0.08] [(0.4, 0.3, 0.5, 0.7); 0.07, 0.82, 0.07] [(0.4, 0.1, 0.5, 0.8); 0.12, 0.76, 0.09]
B3

2 [(0.1, 0.5, 0.7, 0.2); 0.11, 0.75, 0.10] [(0.2, 0.4, 0.5, 0.3); 0.63, 0.12, 0.17] [(0.3, 0.5, 0.7, 0.3); 0.52, 0.22, 0.17] [(0.3, 0.5, 0.8, 0.1); 0.11, 0.59, 0.09]
B3

3 [(0.4, 0.2, 0.5, 0.7); 0.71, 0.09, 0.12] [(0.3, 0.7, 0.5, 0.1); 0.49, 0.21, 0.22] [(0.4, 0.5, 0.3, 0.8); 0.17, 0.58, 0.08] [(0.5, 0.7, 0.4, 0.8); 0.53, 0.22, 0.24]
B3

4 [(0.1, 0.7, 0.5, 0.9); 0.12, 0.75, 0.06] [(0.2, 0.8, 0.6, 0.8); 0.50, 0.20, 0.20] [(0.3, 0.2, 0.5, 0.1); 0.22, 0.51, 0.10] [(0.2, 0.4, 0.8, 0.1); 0.58, 0.09, 0.08]
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Table 4. Normalized responses by decision maker 1.

E1 E2 E3 E4

B1
1 [(0.67, 0.44, 0.78, 1.00); 0.55, 0.34, 0.11] [(0.71, 0.71, 1.00, 0.86); 0.60, 0.25, 0.10] [(0.75, 0.50, 0.87, 1.00); 0.61, 0.19, 0.18] [(0.87, 1.00, 0.62, 0.75); 0.17, 0.21, 0.57]
B1

2 [(0.29, 0.43, 0.71, 1.00); 0.65, 0.15, 0.15] [(0.86, 0.71, 1.00, 0.43); 0.54, 0.25, 0.18] [(0.56, 0.44, 0.67, 1.00); 0.59, 0.19, 0.18] [(1.00, 0.86, 0.29, 0.43); 0.15, 0.09, 0.75]
B1

3 [(0.83, 0.50, 1.00, 0.33); 0.25, 0.45, 0.25] [(0.43, 0.29, 1.00, 0.43); 0.45, 0.35, 0.14] [(0.63, 0.50, 0.88, 1.00); 0.51, 0.17, 0.27] [(0.38, 0.25, 0.88, 1.00); 0.19, 0.27, 0.49]
B1

4 [(0.57, 0.86, 1.00, 0.29); 0.31, 0.43, 0.25] [(0.56, 0.22, 0.78, 1.00); 0.58, 0.13, 0.19] [(0.86, 1.00, 0.43, 0.57); 0.56, 0.24, 0.20] [(0.75, 1.00, 0.50, 0.25); 0.21, 0.26, 0.48]

Table 5. Normalized responses by decision maker 2.

E1 E2 E3 E4

B2
1 [(0.50, 0.88, 1.00, 0.25); 0.53, 0.29, 0.11] [(0.57, 0.57, 1.00, 0.43); 0.47, 0.12, 0.34] [(0.38, 0.63, 0.50, 1.00); 0.35, 0.19, 0.43] [(0.29, 1.00, 0.57, 0.71); 0.17, 0.13, 0.65]
B2

2 [(0.43, 0.71, 0.57, 1.00); 0.42, 0.28, 0.19] [(0.29, 0.57, 0.29, 1.00); 0.49, 0.23, 0.28] [(0.56, 0.33, 0.78, 0.90); 0.59, 0.09, 0.27] [(0.50, 0.38, 0.25, 1.00); 0.29, 0.09, 0.61]
B2

3 [(0.57, 1.00, 0.29, 0.71); 0.31, 0.11, 0.51] [(0.56, 0.22, 1.00, 0.67); 0.63, 0.08, 0.21] [(0.43, 0.57, 1.00, 0.71); 0.59, 0.13, 0.22] [(0.29, 0.71, 1.00, 0.29); 0.23, 0.15, 0.58]
B2

4 [(0.63, 0.38, 0.75, 1.00); 0.72, 0.05, 0.19] [(1.00, 0.67, 0.83, 0.33); 0.71, 0.18, 0.06] [(0.50, 0.33, 0.83, 1.00); 0.65, 0.15, 0.18] [(0.50, 0.25, 1.00, 0.88); 0.21, 0.14, 0.61]

Table 6. Normalized responses by decision maker 3.

E1 E2 E3 E4

B3
1 [(0.57, 0.29, 1.00, 0.71); 0.52, 0.22, 0.21] [(0.71, 0.29, 1.00, 0.57); 0.09, 0.78, 0.08] [(0.57, 0.43, 0.71, 1.00); 0.07, 0.82, 0.07] [(0.50, 0.13, 0.63, 1.00); 0.09, 0.76, 0.12]
B3

2 [(0.14, 0.71, 1.00, 0.29); 0.11, 0.75, 0.10] [(0.40, 0.80, 1.00, 0.60); 0.63, 0.12, 0.17] [(0.43, 0.71, 1.00, 0.43); 0.52, 0.22, 0.17] [(0.38, 0.63, 1.00, 0.12); 0.09, 0.59, 0.11]
B3

3 [(0.57, 0.29, 0.71, 1.00); 0.71, 0.09, 0.12] [(0.43, 1.00, 0.71, 0.14); 0.49, 0.21, 0.22] [(0.50, 0.63, 0.38, 1.00); 0.17, 0.58, 0.08] [(0.63, 0.88, 0.25, 1.00); 0.24, 0.22, 0.53]
B3

4 [(0.11, 0.78, 0.56, 1.00); 0.12, 0.75, 0.06] [(0.25, 1.00, 0.75, 1.00); 0.50, 0.20, 0.20] [(0.60, 0.40, 1.00, 0.20); 0.22, 0.51, 0.10] [(0.25, 0.50, 1.00, 0.12); 0.08, 0.09, 0.58]

6.1. Decision Process

In this portion, we shall talk about the decision process step by step.

1. At first we calculate the individual ratings of each alternatives by utilizing the
TrPFWHM operator given by Equation (5), as follows:

B̃′ lr = f ξ̂
TrPFWHM(B̃′ lrs, B̃′

l
rs, B̃′

l
rs, B̃′

l
rs) =

 1
4
∑

r=1

ξ̂r
f̂r

,
1

4
∑

r=1

ξ̂r
êr

,
1

4
∑

r=1

ξ̂r
ĥr

,
1

4
∑

r=1

ξ̂r
ĝr

; 1−
4

∏
r=1

(1− µr),
4

∏
r=1

ηr,
4

∏
r=1

νr

.

Therefore we have from Table 4,

B̃′11 = f ξ̂
TrPFWHM(B̃′111, B̃′112, B̃′113, B̃′114) = [(0.75, 0.57, 0.80, 0.92); 0.53, 0.23, 0.19].

B̃′12 = f ξ̂
TrPFWHM(B̃′121, B̃′122, B̃′123, B̃′124) = [(0.54, 0.65, 0.56, 0.68); 0.53, 0.16, 0.23].

B̃′13 = f ξ̂
TrPFWHM(B̃′131, B̃′132, B̃′133, B̃′134) = [(0.55, 0.38, 0.92, 0.62); 0.40, 0.21, 0.27].

B̃′14 = f ξ̂
TrPFWHM(B̃′141, B̃′142, B̃′143, B̃′144) = [(0.71, 0.64, 0.54, 0.41); 0.46, 0.25, 0.25].

Similarly we have from Tables 5 and 6,

B̃′21 = f ξ̂
TrPFWHM(B̃′211, B̃′212, B̃′213, B̃′214) = [(0.39, 0.71, 0.62, 0.53); 0.38, 0.18, 0.34].

B̃′22 = f ξ̂
TrPFWHM(B̃′221, B̃′222, B̃′223, B̃′224) = [(0.46, 0.41, 0.44, 0.95); 0.49, 0.13, 0.30].

B̃′23 = f ξ̂
TrPFWHM(B̃′231, B̃′232, B̃′233, B̃′234) = [(0.42, 0.51, 0.67, 0.55); 0.49, 0.12, 0.31].

B̃′24 = f ξ̂
TrPFWHM(B̃′241, B̃′142, B̃′243, B̃′244) = [(0.56, 0.34, 0.84, 0.75); 0.62, 0.12, 0.20].

B̃′31 = f ξ̂
TrPFWHM(B̃′311, B̃′312, B̃′313, B̃′314) = [(0.57, 0.26, 0.77, 0.84); 0.19, 0.61, 0.10].
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B̃′32 = f ξ̂
TrPFWHM(B̃′321, B̃′322, B̃′323, B̃′324) = [(0.30, 0.70, 1.00, 0.27); 0.41, 0.31, 0.14].

B̃′33 = f ξ̂
TrPFWHM(B̃′331, B̃′332, B̃′333, B̃′334) = [(0.52, 0.56, 0.40, 0.52); 0.38, 0.28, 0.14].

B̃′34 = f ξ̂
TrPFWHM(B̃′341, B̃′342, B̃′343, B̃′344) = [(0.25, 0.52, 0.83, 0.23); 0.23, 0.34, 0.14].

2. In this step, we calculate B̃′′ li = nτ̂lB̃′
l
i as follows:

B̃′′11 = 4× 0.40× [(0.75, 0.57, 0.80, 0.92); 0.53, 0.23, 0.19]

= [(0.75× 1.6, 0.57× 1.6, 0.80× 1.6, 0.92× 1.6); 1− (1− 0.53)1.6, 0.231.6, 0.191.6]

= [(1.20, 0.91, 1.28, 1.47); 0.70, 0.09, 0.07].

Similarly the other values are

B̃′′21 = [(0.86, 1.04, 0.90, 1.09); 0.70, 0.05, 0.09].

B̃′′31 = [(0.88, 0.61, 1.47, 0.99); 0.56, 0.08, 0.12].

B̃′′41 = [(1.14, 1.02, 0.86, 0.66); 0.63, 0.11, 0.11].

B̃′′12 = [(0.55, 0.99, 0.87, 0.74); 0.49, 0.09, 0.22].

B̃′′22 = [(0.64, 0.57, 0.62, 1.33); 0.61, 0.06, 0.18].

B̃′′32 = [(0.59, 0.71, 0.94, 0.77); 0.61, 0.05, 0.19].

B̃′′42 = [(0.78, 0.48, 1.18, 1.05); 0.79, 0.05, 0.10].

B̃′′13 = [(0.57, 0.26, 0.77, 0.84); 0.19, 0.61, 0.10].

B̃′′23 = [(0.30, 0.70, 1.00, 0.27); 0.41, 0.31, 0.14].

B̃′′33 = [(0.52, 0.56, 0.40, 0.52); 0.38, 0.28, 0.14].

B̃′′43 = [(0.25, 0.52, 0.83, 0.23); 0.23, 0.34, 0.14].

3. Next the score functions of each B̃′′ li is calculated as follows:

Sc(B̃′′11) =
1.20 + 0.91 + 1.28 + 1.47

4
× 1 + 0.70− 0.07

2

= 1.215× 0.815 = 0.9902.

Similarly the other values are obtained. So Sc(B̃′′12) = 0.7829, Sc(B̃′′13) = 0.7110,
Sc(B̃′′14) = 0.6992, Sc(B̃′′21) = 0.5001, Sc(B̃′′22) = 0.5648, Sc(B̃′′23) = 0.5343, Sc(B̃′′24) =
0.7373, Sc(B̃′′31) = 0.3324, Sc(B̃′′32) = 0.3604, Sc(B̃′′33) = 0.3100, Sc(B̃′′34) = 0.2493.

4. In this step, we arrange B̃′′ li with respect to each decision makers using their score

functions. The arrangement are as follows: B̃′′11 � B̃′′
2
1 � B̃′′

3
1, B̃′′12 � B̃′′

2
2 � B̃′′

3
2,

B̃′′13 � B̃′′
2
3 � B̃′′

3
3, B̃′′24 � B̃′′

1
4 � B̃′′

3
4.

5. In this step, the overall ratings of the decision makers utilizing TrPFHHM operator
given by Equation (19) is calculated as follows:
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B1 = f ξ̂,ω̂
TrPFHHM(B̃′′11, B̃′′21, B̃′′31)

=

[(
1

0.35
1.20 + 0.40

0.55 + 0.25
0.57

,
1

0.35
0.91 + 0.40

0.99 + 0.25
0.26

,
1

0.35
1.28 + 0.40

0.87 + 0.25
0.77

,
1

0.35
1.47 + 0.40

0.74 + 0.25
0.84

)
;

1− (1− 0.70)0.35 × (1− 0.49)0.40 × (1− 0.19)0.25, 0.090.35 × 0.090.40 × 0.610.25, 0.070.35 × 0.220.40 × 0.100.25
]

= [(0.69, 0.57, 0.94, 0.93); 0.52, 0.14, 0.12].

Similarly, the other aggregated values are
B2 = [(0.54, 0.72, 0.78, 0.65); 0.60, 0.08, 0.13],
B3 = [(0.64, 0.63, 0.78, 0.74); 0.54, 0.09, 0.15],
and B4 = [(0.56, 0.62, 0.94, 0.49); 0.64, 0.11, 0.11].

6. In the last step, the score functions of the alternatives is calculated using Equation (10)
Sc(B1) = 0.5478, Sc(B2) = 0.4943, Sc(B3) = 0.4848, and Sc(B4) = 0.4992. The ar-
rangement of the alternative is B1 � B4 � B2 � B3.

6.2. Comparative Study

In this article, the proposed method has been studied under picture fuzzy information
with TrFN. We have utilized TrPFWHM and TrPFHHM operators to aggregate the infor-
mation. PFNs play a major part in ranking of the alternatives due to present of its neutral
membership degree. Aydin et al. [41] has studied MADM problem under pythagorean
fuzzy number. We have compared our method to Aydin’s [41] method, taking the neutral
membership degree equal to 0. Furthermore, we have compared our proposed operator to
Garg’s [12] method and it is seen that the ranking of the alternative is B4 ≈ B2 � B3 � B1.
Two alternatives decide their first position by score function in [12]. However, the ranking
of the alternative is B4 � B2 � B3 � B1 by accuracy function in [12]. So, the most desirable
alternative is B4 by Garg’s method. The compared results are shown in Table 7. It is evident
that the most desirable alternative is B2 in Aydin’s method and it is B4 in Garg’s method,
but in the proposed method, the most desirable alternative is B1.

Table 7. Comparative table.

Method Sc(B1) Sc(B2) Sc(B3) Sc(B4) Ranking Order

Aydin [41] 0.2692 0.2845 0.2761 0.2821 B2 � B4 � B3 � B1

Garg [12] 0.2600 0.3900 0.2900 0.3900 B4 ≈ B2 � B3 � B1

Proposed method 0.5478 0.4943 0.4848 0.4992 B1 � B4 � B2 � B3

6.3. Discussion: Advantages and Disadvantages

Some of the advantages of this study are given below.

• The main advantage of the proposed operators is that the presence of neutral member-
ship grades.

• If there is a situation where the object (element) requires a neutrality degree, then
Aydin, Kahraman, and Kabak’s [41] method fails.

• A real-life instance of mobile tower site selection is presented utilizing a TrPFWHM
and TrPFHHM operator.

The disadvantages of this study are as follows:

• If the values of membership grade, neutral membership grade, and non-membership
grade are high in terms of the importance of alternatives, then these operators may not
be applicable.
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• All the data must be given. However, collection of membership values may not
be easy.

6.4. Limitations

Some of the limitations of the proposed work are

• The result of the proposed work are made by using only TrPFWHM and TrPFHHM operators.
• Data collection in real environment may not be easy always.
• If the membership values of the attributes are taken in different environment then this

method failed.

7. Conclusions

Information aggregation plays a major part in decision-making process. In the existing
papers, the authors have studied aggregation operators under IFSs. In this article, we have
introduced some aggregation operators, including TrPFWHM, TrPFOWHM, and TrPFHHM
operators. We have introduced a score and accuracy function for TrPFNs. We have studied
idempotency, monotonicity, boundedness, and commutativity properties of these operators.
We have developed an MADM problem, utilizing the proposed operators. A real-life
instance has been considered to illustrate the productivity of the proposed operators.
Finally, we have compared our proposed method to the existing method to illustrate the
advantages of the proposed operators. In future, we will extend the method to other FSs
and apply it for image processing and pattern recognition.
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