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Abstract: Spirals, tilings, and hyperbolic geometry are important mathematical topics with outstand-
ing aesthetic elements. Nonetheless, research on their aesthetic visualization is extremely limited.
In this paper, we give a simple method for creating Escher-like hyperbolic spiral patterns. To this
end, we first present a fast algorithm to construct Euclidean spiral tilings with cyclic symmetry. Then,
based on a one-to-one mapping between Euclidean and hyperbolic spaces, we establish two simple
approaches for constructing spiral tilings in hyperbolic models. Finally, we use wallpaper templates
to render such tilings, which results in the desired Escher-like hyperbolic spiral patterns. The method
proposed is able to generate a great variety of visually appealing patterns.

Keywords: spiral; tiling; hyperbolic geometry; visualization; Escher

1. Introduction

Spirals are sometimes called the “curve of nature” since they make up the general
laws of animals, plant growth [1], and the universe at large. In nature, for both plants and
animals, their appearance, living habits, growth tendency, and other aspects are closely
related to spirals. In particular, spiral rules are more complex and diverse in the animal
kingdom. For example, hawks approach their prey in a spiral path; insects approach a light
source in a spiral orbit. There are various spirals on animal horns and on snail shells, which
are the products of the gradual succession of new and old structures.

There are spiral phenomena not only on creatures on Earth but also in the celestial
motion of the galaxy. The Milky Way is a super large spiral structure, the center of which is
the densest star gathering, known as the “galactic core”. The surrounding stars rotate in
the same direction around the silver core, known as the “silver disk” in China. The rotation
of the silver core drives the rotations of the silver disk, which extends from the inside to
the outside, forming the spectacular scene known as the galaxy [2]. Due to its attractive
aesthetics, there are many studies dedicated to spirals. With the develop of computer
graphics, there also are many interesting methods used to create aesthetic spiral patterns
automatically; see [3–9].

Why is nature so predisposed to spirals? It is believed that this is due to the continuous
optimization of structures no matter what their scale during the process of evolution. For
instance, the spiral seed arrangement of sunflowers not only makes it hold more seeds but
also makes the seed disk stronger. Therefore, sunflowers with their spiral symmetry would
gradually dominate in the survival of the fittest [10,11].

The hyperbolic geometry founded by Gauss, Bolyai, and Lobachevsky at the end of
the 19th century broke the monopoly of Euclidean geometry. It solved the outstanding
parallel postulate problem for two thousand years, which caused a profound revolution in
the concept of geometry and space. Looking back on history, we clearly see that hyperbolic
geometry has become the prelude and preparation for the emergence of relativity in the
20th century [12,13]. Nonetheless, a notable problem is that the study on spiral structures of
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hyperbolic characteristic is extremely limited; people only defined several simple equations
of hyperbolic spirals on Poincaré disc; see some examples shown in Figure 1 [14,15]. In fact,
as an important geometric space, the structure of hyperbolic tilings is well studied; see some
hyperbolic tilings and Escher-like hyperbolic patterns shown in Figures 2 and 3 [16–18].
However, it seems that no one has attempted to visualize spiral tilings with hyperbolic
features [19]. Due to the attractive aesthetics of spirals and hyperbolic geometry, it is natural
to consider the visualization of hyperbolic spiral patterns. The purpose of this paper is to
fill this gap.

(a) (b) (c) (d) (e)

Figure 1. (a) Hyperbolic Archimedean spiral. (b) Hyperbolic Fermat spiral. (c) Hyperbolic reciprocal
spiral. (d) Hyperbolic lotus spiral. (e) Hyperbolic golden spiral.

In this paper, we explore the method of visualizing hyperbolic spiral patterns. The
rest of this paper is organized as follows. In Section 2, we propose a simple method to
construct Euclidean spiral tilings of cyclic symmetry. In Section 3, based on a one-to-one
correspondence between Euclidean plane and Poincaré disk as well as a conformal mapping
between Poincaré and upper-half models, we first present two ways to construct hyperbolic
spiral tilings. Then, to obtain Escher-like hyperbolic spiral patterns, we use wallpaper templates
to render such hyperbolic spiral tilings. Finally, we conclude the paper in Section 4.

(a) (b) (c)

Figure 2. (a) A hyperbolic tiling of T(3, 7, 2) symmetry. (b) A hyperbolic tiling of T(4, 4, 4) symmetry.
(c) A hyperbolic tiling of T(6, 4, 3) symmetry.

(a) (b) (c)

Figure 3. (a) An Escher-like Boar-girl-bat pattern of T(3, 4, 3) symmetry. (b) An Escher-like man
pattern of T(3, 4, 4) symmetry. (c) An Escher-like pattern of T(4, 5, 4) symmetry.
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2. Construction of Euclidean Spiral Tilings with Cyclic Symmetry

In this section, we consider the construction of spiral tilings with cyclic symmetry
in detail. It should be pointed out that the work carried out in this paper is an extension
of [20]. We extend the results of the discussion in Euclidean space to hyperbolic space.
Everything discussed in this section is similarly discussed in [20] (including Algorithm 1).
However, for the sake of completeness and ease of reading, we summarize it again in a
concise and easy-to-understand manner.

A logarithmic spiral is a curve in which the angle between pole diameter and its tangent
is a constant. In this section, based on the logarithmic spiral, we consider the construction
of cyclic spiral tilings in the Euclidean plane from the point of view of a symmetric group.
We start by considering the equation associated with a logarithmic spiral in the polar
coordinate system.

Let ρ = ρ(θ) be the polar curve in which the slope between the tangent and pole
diameter is k = cot(τ). That is, τ is the angle between pole diameter and its tangent. Then,
we have

cos τ
ρ′(θ)√

ρ′2(θ) + ρ2(θ)
(1a)

and

sin τ =
ρ(θ)√

ρ′2(θ) + ρ2(θ)
, (1b)

by which we obtain

cot τ =
ρ′(θ)

ρ(θ)
. (2)

Rearranging the integral of (2), we finally obtain

ρ(θ) = c0eθ cot τ , θ ∈ R, where constant c0 ∈ R. (3)

To construct the spiral tilings of cyclic symmetry, we adopt a concise form of (3) as

ρ(θ) = ekθ . (4)

We next introduce some terms of symmetry groups and tilings. The symmetry of a
tiling is a congruent or an isometric transformation. A tiling’s symmetry group comprises
all its symmetries. A set of generators with respect to G is a subset of G in which products
comprise entire symmetries of G. The fundamental region Ω associated with G is a region
in which transformed copies under the action of G just cover the entire plane, without
overlapping and interstices. Geometrically, we can use Ω to tile the whole plane and to
obtain a tiling with G symmetry [19,21].

Assume i is the square root of −1 (i.e., i =
√
−1). Denote R+, Z+, and C as sets of

positive real numbers, positive integers, and complex numbers, respectively. Consider a
group Ψm

n generated by
g1(z) = e

2π
n iz (5a)

and
g2(z) = e−

2π
m (k+i)z, (5b)

where k ∈ R+, n, m ∈ Z+, and z ∈ C. According to the theory of complex analysis,
obviously, g1 is equivalent to a counterclockwise rotation of 2π

n about the origin. The
geometrical meaning of g2 is a bit complex. It is equivalent to a reduced transformation of
e−

2π
n cot τ first and, then, follows a clockwise rotation of 2π

n about the origin. Consequently,
g2 is a clockwise spiral contraction.
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Let Ω be a region bounded by lines

ζ1(θ) =
2π

m
, (6)

ζ2(θ) = 0 (7)

and spiral arcs

ω1(θ) = ekθ with θ ∈
[

0,
2π

m

]
, (8)

ω2(θ) = ekθ with θ ∈
[

2π

n
,

2π

n
+

2π

m

]
. (9)

Equivalently, Ω can be represented as

Ω = {z|0 ≤ arg(z) ≤ 2π

m
, earg(z) ≤ |z| ≤ earg(z)+ 2π

n }, (10)

where arg(z) ∈ [0, 2π) is the main argument of z. We next investigate the action of Ω under
symmetry group Ψm

n =< g1, g2 >. Let ρ1(θ) be the counterclockwise rotation of 2π
n of the

spiral ρ(θ), i.e.,
ρ1(θ) = ekθ+ 2π

n . (11)

Let Π be a spiral arm-like region bounded by ρ1(θ) and ρ(θ). More precisely,

Π = {z|e2jπ ≤ |z|e− arg(z) ≤ e
2π
n +2jπ , j = 0,±1,±2,±3, · · ·}. (12)

On the other hand, Π can be also regarded as an arm-like tiling resulting from g2 and Ω,
i.e.,

Π =
+∞⊔

k=−∞

gk
2(Ω). (13)

According to the geometrically meaning of g1, we have

C =
n⊔

p=1

∞⊔
k=−∞

gp
1 (gk

2(Ω)). (14)

In other words, we can use tile Ω, g1 and g2 to construct a spiral tiling. Thus, the Ω defined
in (10) is a fundamental region associated with Ψm

n . Figure 4 shows the geometric sketch
of Ω.

By (14), in Figure 5, we show three cyclic spiral tilings on the Euclidean plane. For
clarity, adjacent tiles in the spiral tiling are colored differently.

According to the geometrical meaning of Ω, for z ∈ C \ Ω, there exists a certain
equivalence point z0 ∈ Ω, which can be realized by the following four steps:

1. Let n1 =

⌊
arg(z)

2π
m

⌋
∈ Z+ and z1 = g−n1

2 (z), where bχc represents the maximum integer

less than χ. We have 0 ≤ arg(z1) ≤ 2π
m .

2. Suppose e2n2kπ ≤ z1 · e− arg(z1)(k+i) ≤ e2(n2+1)kπ for certain n2 ∈ Z (note that z1 · e− arg(z1)(k+i)

is a real number). Let n2 =
⌊

ln |z1|−k arg(z1)
2kπ

⌋
and z2 = z1 · e− arg(z1)(k+i) · e−2n2kπ . Then,

z2 ∈ [1, e2kπ ] is a real number.

3. Let n3 =
⌊

z2 · e−
2kπ

n

⌋
∈ Z+ and z3 = z2 · e−

2n3kπ
n . Then, z3 ∈ [1, e

2kπ
n ].

4. z0 = z3 · earg(z1)(k+i) ∈ Ω.

For future use, we call this algorithm Spiral Algorithm and summarize the correspond-
ing pseudocode in Algorithm 1.
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Algorithm 1: Transforming a point into Ω symmetrically.

Input: k ∈ R+, m, n ∈ Z+, m ≥ 2, n ≥ 2, n|m – parameters defining the spiral
tiling of the Ψm

n symmetry; z ∈ C \Ω.
Output: z0 ∈ Ω – symmetrically placed point of z.

1 TRANSFORMTOFUNDAMENTALREGION(z, k, m, n)
2 n1 =

⌊
m arg(z)

2π

⌋
3 z1 = g−n1

2 (z)

4 n2 =
⌊

ln |z1|−k arg(z1)
2kπ

⌋
5 z2 = z1 · e− arg(z1)(k+i) · e−2n2kπ

6 n3 =
⌊

z2 · e−
2kπ

n

⌋
7 z3 = z2 · e−

2n3kπ
n

8 z0 = z3 · earg(z1)(k+i)

9 return z0

Figure 4. The blue region Ω enclosed by lines ζ1 and ζ2, and spiral arcs ω1 and ω2 is a fundamental
region with respect to symmetry group Ψm

n .

(a) (b) (c)

Figure 5. (a) A cyclic spiral tiling of Ψ7
3 (k = 0.2) symmetry. (b) A cyclic spiral tiling of Ψ6

5 (k = 0.15)
symmetry. (c) A cyclic spiral tiling of Ψ5

7 (k = 0.12) symmetry.

3. Hyperbolic Spiral Tilings and Patterns on Poincaré and Upper-Half Models

With the preparations in Section 2, in this section, we first present a method to construct
spiral tilings on hyperbolic space. Then, to produce Escher-like hyperbolic patterns, we use
wallpaper templates to render hyperbolic spiral tilings.
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There are many different models for representing hyperbolic geometry in the Euclidian
setting. In this paper, we restrict our discussion on Poincaré model

D = {w| p w p< 1, w ∈ C} (15)

and upper half-plane model

H2 = {h|im(h) > 0, h ∈ C}. (16)

A mapping is conformal (angle preserving) at point u if it preserves the angles oriented
between curves through u with respect to their orientation. Conformal mappings preserve
the angles and shapes of infinitesimally small figures but not necessarily those patterns
size. The conformal mapping between D and H2 is

w = F(h) =
1 + hi
h + 1

, h ∈ H2, w ∈ D. (17)

For w ∈ D, the distance between w and the origin of D can be defined as

1
2

ln
1 + |w|
1− |w| . (18)

Let ∂D be the boundary of D. By (18), we see that ∂D is the infinity of Poincaré model.
Consider a one-to-one correspondence between Euclidean plane and Poincaré disk as

z = M(w) =
1
2

ln
1 + |w|
1− |w| e

arg(w), w ∈ D. (19)

H = {z|z = M(w) =
1
2

ln
1 + |w|
1− |w| e

arg(w), w ∈ D}. (20)

Given k ∈ R+, n, m ∈ Z+, we summarize how to produce spiral tilings on Poincaré
model D. First, by (19), for w ∈ D, we compute the corresponding point z; namely, this
point ‘z’ is regarded as ‘z’ in Algorithm 1. Second, by the Spiral Algorithm established in
Section 2, we use g1 and g2 to find the symmetrically placed point z0 ∈ Ω associated with z.
According to this method, we can produce spiral tilings on Poincaré disc.

In Figure 6, we show six tilings obtained in this manner. We see that tiles near the
origin of D have the similar structure as that in Figure 5. However, as tiles move toward to
infinite boundary of D, they become narrower and longer, and all of the tiles cannot cover
entire Euclidean plane.

By the one-to-one conformal mapping (17) and the creation method of Figure 6, we
can similarly produce hyperbolic spiral tilings on the upper half-plane model; see the four
tilings shown in Figure 7. As this model is an infinite space, tilings in Figure 7 are displayed
in a relatively interesting area [−1.25, 1.25][0.0001, 1]. The further away from the central
area, the less obvious the spiral feature of the tilings.

By template, we mean the rectangle pattern decorated with recognisable motifs (such
as animals or plants). It is well-known that wallpaper templates that have periodicity along
the horizontal and vertical directions can be used to render spiral patterns [20,22,23].

Assume z0 is a point in the fundamental region Ω with respect to group Ψm
n . To

produce Escher-like patterns, we need to color coordinates (u, v) of z0 correctly, which can
be achieved by using argument and modulus of z0. The u coordinate is given by

u =
m arg(z0)

2π
, (21)

while the formula for the v coordinate is given by
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v =
|z0| − 1

e
2π
n − 1

. (22)

Figure 8 shows six Escher-like hyperbolic spiral patterns on a Poincaré disc. We see
that, in the region near the origin of Poincaré disc, those patterns have Euclidean spi-
rals. Figure 9 shows four Escher-like hyperbolic spiral patterns on the upper half-plane.
Although a spiral feature is not obvious in the upper half-plane model, the resulting
Escher-like patterns are still visually appealing due to the intrinsic symmetries of hyper-
bolic geometry.

(a) (b) (c)

(d) (e) (f)

Figure 6. (a) Spiral tilings of Ψ8
2 (k = 0.1) symmetry on a Poincaré disc. (b) Spiral tilings of Ψ13

2
(k = 0.3) symmetry on a Poincaré disc. (c) Spiral tilings of Ψ5

3 (k = 0.2) symmetry on a Poincaré
disc. (d) Spiral tilings of Ψ10

4 (k = 0.25) symmetry on a Poincaré disc. (e) Spiral tilings of Ψ6
6 (k = 0.4)

symmetry on a Poincaré disc. (f) Spiral tilings of Ψ8
8 (k = 0.25) symmetry on a Poincaré disc.

(a) (b)

(c) (d)

Figure 7. (a) Spiral tilings of Ψ4
4 (k = 0.3) symmetry on an upper half-plane. (b) Spiral tilings of Ψ5

5
(k = 0.35) symmetry on an upper half-plane. (c) Spiral tilings of Ψ4

6 (k = 0.25) symmetry on an upper
half-plane. (d) Spiral tilings of Ψ6

8 (k = 0.4) symmetry on an upper half-plane.
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(a) (b)

(c) (d)

(e) (f)

Figure 8. (a) An Escher-like bird pattern of Ψ5
3 (k = 0.35) symmetry on a Poincaré disc. (b) An Escher-

like cat-fish pattern of Ψ4
4 (k = 0.5) symmetry on a Poincaré disc. (c) An Escher-like fish pattern of

Ψ4
4 (k = 0.45) symmetry on a Poincaré disc. (d) An Escher-like butterfly pattern of Ψ6

4 (k = 0.25)
symmetry on a Poincaré disc. (e) An Escher-like pterodactyl pattern of Ψ3

6 (k = 0.5) symmetry on a
Poincaré disc. (f) An Escher-like dog pattern of Ψ6

4 (k = 0.255) symmetry on a Poincaré disc. The top
left of each pattern is the wallpaper template rendered in the pattern.
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(a)

(b)

(c)

(d)

Figure 9. (a) An Escher-like fish pattern of Ψ4
4 (k = 0.3) symmetry on the upper half-plane. (b) An

Escher-like kangaroo pattern of Ψ5
5 (k = 0.35) symmetry on the upper half-plane. (c) An Escher-like

fish pattern of Ψ4
6 (k = 0.25) symmetry on the upper half-plane. (d) An Escher-like bee pattern of Ψ6

8
(k = 0.4) symmetry on the upper half-plane. The right side of each pattern is the wallpaper template
rendered in the pattern.

4. Conclusions

In this paper, we presented a simple method for visualizing hyperbolic spiral tilings
and creating Escher-like patterns on tilings. To this end, we first introduced an approach
for constructing spiral tilings in the Euclidean plane. Then, using the one-to-one corre-
spondence between the Euclidean plane and the Poincaré disk, we introduce two ways
to construct spiral tilings on the hyperbolic models. Finally, we specified the way to use
wallpaper templates to render hyperbolic spiral tilings and to obtain Escher-like patterns.
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The method proposed is thus able to generate a great variety of Escher-like hyperbolic
spiral patterns.
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Appendix A. Some Less Appealing Hyperbolic Spiral Patterns

In Section 3, we explored Poincaré and upper-half models. It is well-known that there
are still many other hyperbolic models and interesting mappings. In practice, we attempted
several other mappings. However, the resulting patterns are not as appealing as that in
Figures 8 and 9. Nonetheless, we show three more mappings here as an inspiration so that
the interested readers can attempt other similar cases.

Let
K = {k| p k p< 1, k ∈ C} (A1)

be the hyperbolic Klein model. The conformal mapping between D and K is

w = G(k) =
k

1 +
√

1− |k|2
, k ∈ K, w ∈ D. (A2)

Let G be a strip region defined as

G = {g|g ∈ C, −1 < im(g) < 1}. (A3)

The conformal mapping between D and G is

w = M(g) =
e

π
2 g − 1

e
π
2 g + 1

, g ∈ G, w ∈ D. (A4)

Let N be the circle inversion defined as

w = N(z) =

{
1
z , if |z| ≥ 1,
z, if |z| < 1,

(A5)

https://en.tessellations-nicolas.com/
https://en.tessellations-nicolas.com/
http://www.tess-elation.co.uk/new-hom
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where z ∈ C and w ∈ D.
According to conformal mappings (A2), (A4), and (A5), by the same strategy as

described in Section 3, we can similarly produce hyperbolic spiral tilings and patterns on
the Klein, strip, and circle inversion models; see Figures A1–A4.

(a) (b)

(c)

(d)

(e) (f)

Figure A1. (a) Spiral tilings of Ψ3
7 (k = 0.5) symmetry on the Klein model. (b) Spiral tilings of Ψ3

4
(k = 0.5) symmetry on the Klein model. (c) Spiral tilings of Ψ8

4 (k = 0.3) symmetry on the strip
model. (d) Spiral tilings of Ψ6

6 (k = 0.2) symmetry on the strip model. (e) Spiral tilings of Ψ3
4 (k = 0.5)

symmetry obtained by circle inversion. (f) Spiral tilings of Ψ4
4 (k = 0.4) symmetry obtained by

circle inversion.
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(a) (b)

(c) (d)

Figure A2. (a) An Escher-like frog-fish pattern of Ψ5
5 (k = 0.35) symmetry on the Klein model. (b) An

Escher-like fish pattern of Ψ6
6 (k = 0.4) symmetry on the Klein model. (c) An Escher-like fish-bird

pattern of Ψ5
5 (k = 0.4) symmetry on the Klein model. (d) An Escher-like frog pattern of Ψ3

3 (k = 0.2)
symmetry on the Klein model. The top left of each pattern is the wallpaper template rendered in
the pattern.

Although Klein and Poincaré have different metrics, the resulting Escher-like patterns
in Figure A2 on the Klein model have similar structures as that in Figure 8 on the Poincaré
model. It is not surprising since, the majority of the points in the unit disc mapping (A2)
are approximately equal to a scale transformation. Thus, the patterns on the two models
have no obvious difference.

For the Escher-like patterns in Figure A3 on the strip model, the space distorts too
much and the resulting patterns are not visually appealing. As mapping (A5) fixes D and
transforms points out of D into D, for the Escher-like patterns in Figure A4, the middle
part of patterns has a disc structure similar to that in Figure 8 and Figure A2, while for the
region out of the disc, there is an obvious Euclidean spiral structure.
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(a)

(b)

(c)

(d)

Figure A3. (a) An Escher-like bird pattern of Ψ6
3 (k = 0.4) symmetry on the strip model. (b) An

Escher-like fish-bird pattern of Ψ6
6 (k = 0.3) symmetry on the strip model. (c) An Escher-like bee

pattern of Ψ6
6 (k = 0.2) symmetry on the strip model. (d) An Escher-like bird pattern of Ψ8

4 (k = 0.3)
symmetry on the strip model. The right side of each pattern is the wallpaper template rendered in
the pattern.
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(a) (b)

(c) (d)

Figure A4. (a) An Escher-like bird pattern of Ψ3
4 (k = 0.5) symmetry obtained by circle inversion.

(b) An Escher-like fish pattern of Ψ3
4 (k = 0.4) symmetry obtained by circle inversion. (c) An Escher-

like man pattern of Ψ6
3 (k = 0.4) symmetry obtained by circle inversion. (d) An Escher-like pterodactyl

pattern of Ψ5
3 (k = 0.35) symmetry obtained by circle inversion. The right side of each pattern is the

wallpaper template rendered in the pattern.
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