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Abstract: Several software tools for the simulation and analysis of biochemical reaction networks
have been developed in the last decades; however, assessing and comparing their computational
performance in executing the typical tasks of computational systems biology can be limited by the
lack of a standardized benchmarking approach. To overcome these limitations, we propose here a
novel tool, named SMGen, designed to automatically generate synthetic models of reaction networks
that, by construction, are characterized by relevant features (e.g., system connectivity and reaction
discreteness) and non-trivial emergent dynamics of real biochemical networks. The generation
of synthetic models in SMGen is based on the definition of an undirected graph consisting of a
single connected component that, generally, results in a computationally demanding task; to speed
up the overall process, SMGen exploits a main–worker paradigm. SMGen is also provided with
a user-friendly graphical user interface, which allows the user to easily set up all the parameters
required to generate a set of synthetic models with any number of reactions and species. We analysed
the computational performance of SMGen by generating batches of symmetric and asymmetric
reaction-based models (RBMs) of increasing size, showing how a different number of reactions
and/or species affects the generation time. Our results show that when the number of reactions is
higher than the number of species, SMGen has to identify and correct a large number of errors during
the creation process of the RBMs, a circumstance that increases the running time. Still, SMGen can
generate synthetic models with hundreds of species and reactions in less than 7 s.

Keywords: synthetic models; reaction-based models; biochemical networks; systems biology

1. Introduction

Systems biology is a multidisciplinary research field that combines mathematical,
computational, and experimental expertise to understand and predict the behaviour of
complex biological systems [1,2]. Among the different formalisms that can be used to
describe intracellular processes, reaction-based models (RBMs) [3–5] are the most suitable
for obtaining a detailed comprehension of the mechanisms that control the emergent
behaviour of the system under analysis [4]. The analysis of RBMs can be used to drive
the design of focused lab experiments; to this aim, computational tasks such as parameter
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estimation (PE), sensitivity analysis (SA), and parameter sweep analysis (PSA) are generally
applied [1,5–7]. Unfortunately, these computational tasks require the execution of huge
amounts of simulations, so that the capabilities of biochemical simulators running on
central processing units (CPUs) (see, e.g., [8–10]) can be easily overtaken. Thus, several
simulators exploiting graphics processing units (GPUs) have been lately introduced to
reduce the running times (see, e.g., [11–19]).

A crucial point, whenever new simulators are designed and implemented, regards
the evaluation of their computational performance and their efficiency in executing the
aforementioned demanding tasks. In this context, RBMs represent a key means as they can
be exploited to run both stochastic simulation algorithms and (deterministic) numerical
integration methods. Although there are more than 1000 models of real biochemical
systems publicly available on BioModels [20,21], some of which characterized by hundreds
of species and reactions, the majority of these models do not follow the law of mass-action.
In addition, these models do not have the structural characteristics (e.g., the number of
species and the number of reactions) necessary to perform a fair comparison among the
simulators under different scenarios. Only a limited number of RBMs is present in the
literature (e.g., signal transduction pathways [22–24] or metabolic pathways [25]). Thus,
the lack of detailed RBMs, especially those characterized by hundreds or thousands of
reactions and molecular species, hampers the possibility of performing a thorough analysis
of the performance of these simulators.

The computational performance of several GPU-powered tools has already been
assessed using randomly generated synthetic RBMs [13,18,19]. However, only a few
generators of biochemical models have been proposed so far, hindering the possibility
of having a common and well-defined benchmarking approach. For instance, Komarov
et al. [13,14] developed a tool to generate synthetic networks, which was then used to
test the performance of their GPU-based simulators. Given the number of reactants, the
type of reactions to be included in the RBM, and the total number of reactions, they
generated synthetic RBMs by exploiting a hash table to avoid duplicates. The tool was
then modified by randomly sampling the values of the initial concentrations of the species
from a uniform distribution and the kinetic constants from a logarithmic distribution [18].
Another known and established model generator is the reaction mechanism generator
(RMG) [26], which was specifically developed to create synthetic chemical processes. RMG
exploits an extensible set of 45 reaction families to generate elementary reactions from
chemical species, while the reaction rates are estimated using a database of known rate
rules and reaction templates. RMG relies on graphs to represent the chemical structures and
trees to represent thermodynamic and kinetic data. Due to its peculiarities, RMG was used
to, e.g., automatically create kinetic models for the conversion of bio-oil to syngas through
gasification [27]. Finally, other tools, such as Moleculizer [28], were introduced for the
generation of reaction systems to obtain a deeper understanding of transduction networks.

Despite the efforts done to automatically define synthetic models, all these generators
share a common drawback, that is, they have a limited flexibility and can generate only
a restricted set of biochemical networks and processes. As a matter of fact, the existing
methods generally do not perform any check on the generated models, while some of them
can only be used to create a restricted set of models (e.g., RMG can generate only elementary
reactions). Moreover, in the case of the approach proposed by Komarov et al., even though
it can generate first- and second-order reactions, including degradation and production
reactions—which are the most common reactions in real biochemical networks—the tool is
not publicly available.

Considering the impelling necessity of defining a common benchmarking approach
that allows for fairly evaluating and comparing different simulation approaches [29], we
propose here a novel tool, named SMGen, designed to automatically generate synthetic
biological networks codified as RBMs, which allow to obtain non-trivial dynamics. It is
worth mentioning that we were mainly interested in the generation of RBMs suitable for
the analysis and comparison of the performance of biochemical simulators. An example of
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such RMBs is a model composed of plausible reactions (e.g., transformation, production,
and degradation reactions, which are common in real biochemical networks) leading to
non-trivial dynamics. For instance, in the case of a dynamics that instantly exhausts all
reactants, some of the most advanced integration algorithms are able to simulate such
stable and/or flat dynamics in just one computation step, thus hampering the possibility
of a fair comparison among the different simulation approaches.

In addition, SMGen overcomes the existing approaches and tools, which generally do
not allow for using different probability distributions for the initialization of the species
amounts and the kinetic constants. The possibility of exploiting different probability
distributions for the initialization of these parameters is an important feature offered
by SMGen, since the effort required for the simulation of a model can drastically vary
according to its initial parameterization (i.e., species amounts and kinetic constants).

SMGen adheres to well-defined structural characteristics based on graph theory and
linear-algebra properties; in particular, it exploits the definition of an undirected graph
with a single connected component, which makes the whole generation process a computa-
tionally demanding task. To overcome this limitation, on the one hand, SMGen internally
codifies all data structures by means of sparse matrices as well as ad-hoc structures specifi-
cally designed to avoid worthless values that would increase the running time required to
generate RBMs. On the other hand, SMGen is able to drastically reduce the computational
time by exploiting a main–worker paradigm used to distribute the overall generation
process of RBMs onto multi-core CPUs. We show that SMGen can create, in less than 7 s,
synthetic RBMs with hundreds of chemical species and molecular reactions, whose dynam-
ics exhibit non trivial characteristics of real biochemical networks. Among the different
features provided by SMGen, it allows for easily generating both symmetric and asymmet-
ric RBMs: symmetric RBMs are composed of a number of species equal to the number of
reactions, while, in asymmetric RBMs, the number of species can be lower than the number
of reactions or vice-versa. From a computational point of view, the concept of symmetry is
crucial in the analysis of complex networks to measure their information and entropy [30].
In addition, considering that every RBM can be converted into a corresponding system of
coupled ordinary differential equations (ODEs), studying the symmetries of the system of
ODEs can reveal the intrinsic properties of the system of interest. Ohlsson et al. pointed
out that an alternative analysis of the system of ODEs can be carried out by considering the
symmetries of the system solutions, aiming at formalizing the structures and behaviour
of the underlying dynamics of biological systems [31]. Moreover, the possibility of evalu-
ating GPU-powered simulators using symmetric and asymmetric RBMs is fundamental
to understand their performance under different conditions. Indeed, a fair comparison
would allow the user to select the best simulator based on characteristics of the RBM that
has to be analysed. Thanks to its features and efficiency, SMGen was used to generate
the synthetic RBMs necessary to realize a thorough comparison of the performance of
different meta-heuristics in solving the PE problem of biochemical networks [3,5], which
is one of the most common and difficult computational issues in systems biology. The
outcome of such analyses showed that some well-known and widely used meta-heuristics,
generally able to outperform all competitors in the optimization of benchmark functions,
obtained poor performance when used to solve the PE problem. Moreover, SMGen was
exploited to generate symmetric and asymmetric RBMs required for the in-depth analyses
and comparisons of the computational performance of different biochemical simulators,
and to highlight their peculiarities [19]. These analyses allowed for determining the best
simulator to employ under specific conditions, such as the size of the RBM and the total
number of simulations to perform. SMGen can also be used for the generation of biochemi-
cal networks to investigate the performance of approaches specifically designed to tackle
other well-known and computationally demanding tasks in systems biology (e.g., SA and
PSA [1,7]).

SMGen allows also for exporting the generated RBMs into the Systems Biology
Markup Language (SBML) [32], Version 4 Level 2, and into the BioSimWare standard [33],
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which is used by different GPU-powered simulators. Thus, we designed and developed
SMGen to be a unifying, user-friendly, and standalone tool freely accessible to the systems
biology community. The RBMs can be easily generated by using the provided user-friendly
graphical user interface (GUI), which was designed to help the users in setting all the
parameters required to generate the desired RBMs.

The manuscript is structured as follows. Section 2 describes the mathematical formal-
ism of RBMs, as well as the structural characteristics that must be complied to generate
synthetic biological networks. In addition, we provide all the algorithms and details at the
basis of SMGen. Section 3 shows the experimental results achieved by SMGen. Finally, a
discussion and conclusive remarks are provided in Section 4.

2. Materials and Methods
2.1. Reaction-Based Models

An RBM is defined by specifying the set S = {S1, . . . , SN} of N molecular species,
and the set R = {R1, . . . , RM} of M biochemical reactions that describe the interactions
among the species appearing in S . Each reaction Ri, with i = 1, . . . , M, is defined as:

Ri :
N

∑
j=1

aijSj
ki−→

N

∑
j=1

bijSj, (1)

where aij and bij ∈ N are the stoichiometric coefficients, and ki ∈ R+ is the kinetic constant
associated with Ri. The stoichiometric coefficients specify how many molecules of species
Sj, with j = 1, . . . , N, appear either as reactants or products in reaction Ri. Note that some
species might not appear in a reaction, so that the corresponding stoichiometric coefficient
will be equal to 0. The order of a reaction is equal to the total number of molecules (of the
same or different species) that appear as reactants in that reaction.

Each RBM can be written in the compact matrix-vector form AS K−→ BS, where S =
[S1 · · · SN ]

> is the N-dimensional column vector of the molecular species, K = [k1 · · · kM]>

is the M-dimensional column vector of the kinetic constants, while A, B ∈ NM×N are
the stoichiometric matrices, whose non-negative elements [A]i,j and [B]i,j correspond to
the stoichiometric coefficients aij and bij of the reactants and products of the reactions,
respectively.

Starting from an RBM and assuming the law of mass-action [34–36], the system of
coupled ODEs corresponding to the RBM can be derived as follows:

dX
dt

= (B−A)T [K ◦ XA], (2)

where each ODE describes the variation in time of a species’ concentration. In Equation (2),
the N-dimensional vector X = [X1 · · ·XN ] represents the concentration values of species
S1, . . . , SN , while XA is the vector-matrix exponentiation form [34]; the symbol ◦ denotes
the entry-by-entry matrix multiplication (Hadamard product).

2.2. SMGen

In order to generate synthetic models of biochemical networks, SMGen complies with
specific structural characteristics that the RBMs have to satisfy, that is:

• System connectivity: a biochemical network can be represented as an undirected graph
with a single connected component, where the nodes represent the molecular species,
and the edges correspond to the species interactions. This representation easily allows
for ensuring the system connectivity, a property that is strictly required to guarantee
that each species Sj ∈ S , with j = 1, . . . , N, will be involved in at least one reaction
Ri ∈ R, with i = 1, . . . , M.
To be more precise, as a first step, an undirected graph with a single connected
component is built. This undirected graph is randomly generated by using N − 1
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edges and by taking into account the maximum number of reactants and products,
obtaining a connected biochemical reaction network. It is worth noting that a graph
with a single connected component can be built if and only if the following condition
is met:

(maxnumr + maxnump)×M > N,

where maxnumr and maxnump are the maximum number of reactants and products,
respectively. As a second step, starting from the initial undirected graph, the stoichio-
metric matrices are generated. The stoichiometric matrices can be viewed and treated
as a Petri net [37,38] that, in turn, can be considered as a bipartite graph. Then, the
stoichiometric matrices are randomly updated by adding and removing connections
among the species, always taking into consideration the maximum number of reac-
tants and products. Note that the initial connections, which correspond to the edges
of the initial undirected graph, are never removed to ensure that all the species are in-
volved in at least one reaction, maintaining the whole biochemical network connected.
We designed an algorithm (see Algorithm A1) that builds the graph, composed of a
single connected component, with the minimum number of edges that are needed to
connect all the nodes.

• Maximum number of reactants and products: for each reaction Ri ∈ R, with i = 1, . . . , M,
the number of reactants and the number of products cannot be arbitrarily large but has
to be lower than or equal to a user-defined value (i.e., maxnumr and maxnump ). Stated
otherwise, the maximum order of the generated reactions should be fixed. SMGen
does not explicitly account for conservation conditions during the generation of the
RBMs; however, it can generate reactions that are akin to, e.g., protein modifications
or conformational changes, thus resulting in two biochemical species whose sum is
constant during the simulation.

• Linear independence: to ensure that each reaction Ri, with i = 1, . . . , M, is endowed with
plausible characteristics of a real biochemical reaction, the vectors of the stoichiometric
coefficients of the reactants and products involved in Ri must be linearly independent.
An example of an unrealistic reaction consists in increasing or decreasing the amount

of a species starting from one molecule of the species itself, e.g., Ri : Sj
ki−→ αSj, with

α > 1. Since the linear independence is evaluated between the reactants and the
products of each reaction, it is related to the number of species and reactions. Thus, it
could happen that when the number of species is much higher than the number of
reactions it is not possible to build a graph with a single connected component. In
such a case, duplicated reactions or linear-dependent vectors between reactants and
products of some reactions will occur. On the contrary, it is always possible to build a
graph, composed of a single connected component, when the number of reactions is
much higher than the number of species.

• Reaction discreteness: each reaction Ri, with i = 1, . . . , M, must appear only once in the
network; that is, duplicated reactions are not allowed.

SMGen is provided with a user-friendly GUI (see Figure 1) that allows the user to
easily set up all the parameters required to generate the desired synthetic RBMs:

• the number of species N and the number of reactions M;
• the maximum number of reactants and products maxnumr and maxnump that might

appear in any reaction;
• the probability distribution Ds that is used to initialize the species amounts (to be

chosen among uniform, normal, logarithmic, or log-normal distributions). Note that
all species amounts are initialized using the same distribution probability;

• the minimum and maximum values mins and maxs for the initial species amounts (to
be specified either as number of molecules or concentrations);

• the probability distribution Dr that is used to set the values of the kinetic constants (to
be chosen among uniform, normal, logarithmic, or log-normal distributions). Note
that all kinetic constants are generated using the same distribution probability;
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• the minimum and maximum values minr and maxr for the kinetic constants;
• the total number of RBMs that the user wants to generate;
• the output format file to export the generated RBMs (i.e., BioSimWare [33] and

SBML [32]);
• the mean and standard deviation values µs and σs for the initial amounts—as well

as the mean and standard deviation values µr and σr for the kinetic constants—must
also be provided if the normal or log-normal distributions are selected.

Figure 1. Graphical user interface of SMGen. The user can set all the parameters to generate the
desired RBMs, i.e., number of species and reactions, maximum number of reactants and products,
probability distribution for the initial amounts and kinetic constants, and the output format file (i.e.,
BioSimWare, SBML).

Figure 2 shows a high-level scheme of the proposed implementation of SMGen, which
exploits the main–worker paradigm to speed up the generation of the RBMs [39]. The user
can specify the number of processes P—otherwise automatically set to the minimum value
3—which are used as follows:

• Proc1 manages the GUI;
• Proc2 is the main process that orchestrates the computation;
• Procp, with p = 3, . . . , P, are the worker processes.
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GUI

Main

WorkerWorkerWorkerWorker

Proc1

Proc2

ProcPProc3 Proc4 Procp-1

... ...

Figure 2. Scheme of the main–worker implementation of SMGen. The main process (Proc2) orches-
trates all the available workers (Procp, with p = 3, . . . , P), which generate the RBMs in a distributed
computing fashion.

The whole functioning of SMGen can be summarized as follows:

• the user interacts with the GUI, managed by Proc1, to fill in all the required values for
the parameters necessary to create the RBMs;

• Proc1 sends the values of all parameters to the main process (Proc2), which allocates
the resources and distributes the work to the workers (Procp, with p = 3, . . . , P);

• each worker (Procp, with p = 3, . . . , P) generates an RBM. As soon as a worker
terminates its execution, it communicates to the main process that the RBM has been
created. If necessary, the main process assigns the generation of other RBMs to idle
workers. When all the required RBMs are obtained, the workers enter in the death
state, while the main process waits for further instructions from Proc1.

The workflow of each worker consists in 9 different phases, in which a specific
algorithm is executed (see Figure 3).

Reaction graph
initialization

Yes

No

Have errors 
occurred?

Start

End

Initialization of data
structures containing

reactants and products

Random generation of
stoichiometric coefficients

Check if A and B are
linearly independent

Check if the reactions are
unique

Correction of the reactions

Random generation of
reactions' kinetic

parameters

Random generation of
species' initial amounts

Algorithm A1 Algorithm A2

Algorithm A4 Algorithm A3

Algorithm A5

Algorithm A8 Algorithm A9

Algorithm 1

Check if A and B are
linearly independent

Algorithm A7

Algorithm A6

Figure 3. Workflow of a single worker execution. First, the graph of the reactions is randomly
initialized and then converted into the data structures used to store the reactants and products.
Second, the stoichiometric coefficients are randomly generated and the consistency of the reactants
and products is verified. Third, the initial amounts of the species and the kinetic parameters of the
reactions are randomly generated using the probability distributions specified by the user.
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The pseudo-code reported in Algorithm 1 briefly summarizes all the steps required
to generate a single RBM; the pseudo-code of the procedures invoked within Algorithm 1
are reported in Appendix A. For the sake of clarity, Table 1 lists the symbols used in the
following description and in the pseudo-codes.

Algorithm 1 SMGen: workflow of a single worker execution.

1: function GENERATOR(M, N, maxnump , maxnumr ,Ds,Dr, mins, maxs, minr, maxr, µs, σs, µr, σr)
2: ## Algorithm A1
3: G← GRAPH_GEN(N)
4: ## Algorithm A2
5: A, B← STOICH_MATRICES_GEN(M, N, G)
6: AI J[·], BI J[·]← [ ] .
7: for i = 1 to M do .
8: for j = 1 to N do .
9: if A[i, j] == 1 then .

10: AI J ← AI J � 〈i, j〉 .

11: if B[i, j] == 1 then .
12: BI J ← BI J � 〈i, j〉 .

13: ## Algorithm A3
14: A, B← STOICH_COEFFICIENTS_GEN(A, B, M, N, maxnumr , maxnump , AI J, BI J)
15: ## Algorithm A4
16: errLinDep ←LINEAR_INDEPENDENCE_MATRIX(A, B, M)
17: ## Algorithm A5
18: errRepeat ←UNIQUE_REACTIONS(A, B, M)
19: while errLinDep ∧ errRepeat are not empty do
20: rowsErr ← unique(errLinDep � errRepeat)
21: ## Algorithm A6
22: A, B← CORRECTION_REACTIONS(A, B, rowsErr, AI J, BI J, maxnumr , maxnump )
23: ## Algorithm A7
24: errLinDep ← LINEAR_INDEPENDENCE_REACTION(A, B, rowsErr)
25: ## Algorithm A5
26: errRepeat ←UNIQUE_REACTIONS(A, B, M)

27: ## Algorithm A8
28: M0 ← AMOUNTS_GEN(N,Ds, mins, maxs, µs, σs)
29: ## Algorithm A9
30: K← KINETIC_CONSTANTS_GEN(M,Dr, minr, maxr, µr, σr)

.→ the instructions shown in lines 6–12 are required to build the structure of the initial graph of the reactions.

The steps performed by each worker to generate an RBM are the following:

1. Given the parameters provided by the user, the graph representing the species and
their interactions is randomly initialized (line 3 of Algorithm 1; see Algorithm A1).

2. The adjacency matrix of the graph generated in Step 1 is converted into the stoichio-
metric matrices A and B (line 5 of Algorithm 1; see Algorithm A2). Note that the
instructions in lines 6–17 of Algorithm 1 are required to build the data structure of the
initial graph, which is then modified.

3. The stoichiometric coefficients are randomly generated (line 19 of Algorithm 1; see
Algorithm A3).

4. For each reaction Ri, with i = 1, . . . , M, the linear independence between the reactants
and products is verified (line 21 of Algorithm 1; see Algorithm A4).

5. The uniqueness of each reaction in the RBM is verified (line 23 of Algorithm 1; see
Algorithm A5).

6. Any error in the RBM identified in the previous steps is corrected (line 27 of Algorithm 1;
see Algorithm A6); the linear independence and the uniqueness of the reactions
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in the modified RBM are iteratively verified (lines 29 and 31 of Algorithm 1; see
Algorithms A5 and A7, respectively).

7. The initial amounts of the species are generated according to the chosen probability
distribution (line 33 of Algorithm 1; see Algorithm A8). If a species appears only as
a reactant in the whole RBM, its amount is set to remain unaltered. The rationale
behind this is double: on the one hand, we avoid the possibility of creating reactions
that could be applied at most once, which is a highly improbable situation in bio-
logical systems; on the other hand, we mimic the non-limiting availability of some
biochemical resources, for instance, it might be used to reproduce the execution of
in vitro experiments where some species are continually introduced in the systems to
keep their amount constant [40].

8. The kinetic constants of the reactions are generated according to the chosen probability
distribution (line 35 of Algorithm 1; see Algorithm A9).

SMGen was developed using the Python programming language and exploiting
mpi4py [41], which provides bindings of the message passing interface (MPI) specifications
for Python to leverage multi-core CPUs [42]. The open-source code of SMGen is available
on GitLab (https://gitlab.com/sgr34/smgen, accessed on 2 December 2021) under the
GNU GPL-3 license. In addition, it can be easily installed using the Python package installer
pip (https://pypi.org/project/smgenerator, accessed on 2 December 2021).

Table 1. List of symbols used in the pseudo-code of algorithms at the basis of SMGen.

Symbol Description

M Number of reactions composing the RBM

N Number of species involved in the RBM

maxnumr Maximum number of the reactants

maxnump Maximum number of the products

M0 Array of the initial amounts

K Array of the kinetic constants

A Stoichiometric matrix of the reagents

B Stoichiometric matrix of the products

G Adjacency matrix of the graph of the reactions

Ds Probability distribution for the initial amounts

mins Minimum value of the initial amounts

maxs Maximum value of the initial amounts

µs Mean of the normal and log-normal distributions for the initial amounts

σs
Standard deviation of the normal and log-normal distributions for the
initial amounts

Dr Probability distribution for the kinetic constants

minr Minimum value of the kinetic constants

maxr Maximum value of the kinetic constants

µr Mean of the normal and log-normal distributions for the initial amounts

σr
Standard deviation of the normal and log-normal distributions for the
kinetic constants amounts

� The concatenation operator

https://gitlab.com/sgr34/smgen
https://pypi.org/project/smgenerator
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3. Results

We analysed the performance of SMGen regarding both its capability of creating RBMs
characterized by non-trivial dynamics and the computational time required to generate
sets of RBMs of increasing size. All tests were executed on a workstation equipped with
an Intel Core i7-8750H CPU (clock 4.1 GHz), 16 GB of RAM, and a Samsung 970 EVO
solid-state drive NVMe PCIe (up to 3400 MB/s and 1500 MB/s read and write speeds,
respectively), running on Ubuntu 20.04 LTS.

As a first batch of tests, we generated 100 synthetic RBMs characterized by a limited
number of reactions and species (4 and 5, respectively), and we analysed their character-
istics and dynamics. We set to 3 both the maximum number of reactants maxnumr and
products maxnump . We sampled the initial amounts of species from a normal distribution
with mean µs = 5 and standard deviation σs = 5, considering a minimum value mins = 0
and a maximum value maxs = 10. The kinetic constants were sampled from a logarithmic
distribution with minimum value minr = 10−16 and maximum value maxr = 10.

Table 2 shows the list of reactions along with the kinetic constants of one of these
100 synthetic RBMs. Since the species X0 appears only as a reactant, its amount will be
kept constant during the simulation. The initial molecular amounts of all species—given as
the number of molecules—are listed in Table 3. This small RBM includes the basic “cascade
of reactions” structure typically observed in signalling pathways, starting from the source
represented by species X0 and X4, toward species X2 and X3.

We simulated the dynamics of this RBM for 50 time steps (arbitrary units) using
FiCoS [19], and the achieved dynamics are shown in Figure 4. These plots evidence that,
although the RBM was randomly generated by SMGen, the simulated behaviour is non-
trivial (e.g., the reactants were not instantly exhausted, resulting in flat dynamics). The
capability of generating synthetic RBMs that exhibit non-trivial dynamics is fundamental to
perform in-depth computational analyses and comparisons among any existing and novel
simulators. Indeed, in the case of stable or flat dynamics, or when the overall behaviour
of the network is extremely fast and all the reactants are immediately depleted, some of
the most advanced integration algorithms can simulate the emergent dynamics in just one
computation step [19]. In such a case, the computational performance of the simulation
tools is only partially assessed, thus hindering a fair comparison among the tools.

Table 2. List of the reactions of an RBM with 4 reactions and 5 species generated by SMGen.

No. Reagents Products Constant

R1 X0 + X4 X3 4.295× 10−5

R2 X4 X1 + 2X2 2.207× 10−2

R3 X4 X2 + X4 7.070× 10−4

R4 X1 + X4 X2 + X3 4.613× 10−2

Table 3. Initial molecular amounts of the RBM generated by SMGen shown in Table 2.

Species Initial Amount

X0 4
X1 8
X2 7
X3 8
X4 1
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Figure 4. Dynamics of the species of the synthetic RBM generated by SMGen shown in Table 2.

As a second batch of tests, we evaluated the computational performance of SMGen
exploiting the main–worker paradigm running on 4 distinct cores of the CPU. First, we
considered the generation of symmetric RBMs with an increasing number of species
and reactions (i.e., M = N = 2x, with x = 2, . . . , 9). The initial amounts and kinetic
constants were randomly sampled from a uniform distribution with minimum values
mins = minr = 0 and maximum values maxs = maxr = 10. We also varied the maximum
numbers of reactants and products considering the set of values {2, 3, 4}, and setting
maxnumr = maxnump . For each of the resulting 24 parameters combinations, we created
100 RBMs to collect statistically sound results about the performance of SMGen. As
described in Section 2, two kinds of error can occur during the generation of an RBM:
a linear dependence between reactants and products, and duplicated reactions. Since
the correction of these errors is one of the most time-consuming phases of SMGen, we
separately measured the generation time, which indicates the running time spent by SMGen
to generate an RBM, and the saving time, which refers to the writing operations on the
solid-state drive. Figure 5 shows the average running time required by SMGen to generate
and save an RBM. As expected, both the generation and the saving time increase along with
the number of species and reactions of the RBM. Moreover, we observed that the maximum
number of reactants and products have a slight impact on both the generation and the
saving time; in most of the cases, increasing these values resulted in a higher running time.

2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4
4x4 8x8 16x16 32x32 64x64 128x128 256x256 512x512

10-2
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100
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Saving
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m

e 
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Figure 5. Average generation time (yellow bars) and average saving time (green bars) required by
SMGen to generate a symmetric RBM. Note that the y-axis is in logarithmic scale.
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Finally, we exploited SMGen for the creation of asymmetric RBMs to evaluate how
a different number of species and reactions affects the running time. As in the case
of symmetric RBMs, we measured both the generation time and the saving time. The
asymmetric RBMs were created as follows:

• we set the number of species N ∈ {4, 8, 16, 32, 64}, and then we varied the number of
reactions M ∈ {2N, 4N, 8N};

• we set the number of reactions M ∈ {4, 8, 16, 32, 64}, and then we varied the number
of species N ∈ {2M, 4M, 8M};

• we varied both the maximum numbers of reactants maxnumr and products maxnump in
{2, 3, 4}.
In such a way, we obtained a total of 90 different combinations of the parameters to be

tested (i.e., number of species, number of reactions, and maximum number of reactants and
products); as in the previous tests, for each combination we generated 100 RBMs to collect
statistically sound results. Figure 6 shows the average running time required to create
RBMs with dimensions N ×M, highlighting once again that both the generation time and
the saving time increase along with the size of the RBMs. As in the case of symmetric
RBMs, we observed the same effect due to the maximum number of reactants and products
allowed in the reactions. As expected, when there are more reactions than species (bottom
panel in Figure 6), the generation times is higher than the opposite situation (top panel in
Figure 6). This circumstance is due to the potential higher number of errors that SMGen
has to identify and correct. Indeed, when M� N, the probability that repeated reactions
are randomly generated is higher than the case when N � M, because the number of
admissible reactions strictly depends on the number of species.

2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4
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Figure 6. Average generation time (yellow bars) and average saving time (green bars) required
by SMGen to generate an asymmetric RBM with more species than reactions (top), and with more
reactions than species (bottom). Note that the y-axes are in logarithmic scale.
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4. Conclusions

In this work we presented SMGen, a generator of synthetic RBMs displaying the
characteristics of real biochemical networks, which can be exploited to create benchmarks
for the evaluation of novel and existing simulators. In particular, SMGen is suitable for
GPU-based simulators, since their performance can drastically change with the number of
chemical species and reactions composing an RBM. Indeed, given the system of coupled
ODEs corresponding to a RBM, the resolution of the system of ODEs can be performed in a
parallel fashion, where each ODE is resolved by a thread. Since each ODE is related to a
specific chemical species, the higher the number of species the higher the parallelization,
which increases the computational performance of the simulator. On the contrary, consid-
ering that the number of the reactions composing the biological system is roughly related
to the length of each ODE, in terms of the mathematical complexity, the higher the number
of reactions the higher the number of operations that must be performed by each thread,
leading to a higher running time [18,19].

SMGen was developed in Python and was designed to be a unifying, user-friendly,
and standalone tool. In addition, SMGen exploits the main–worker paradigm to speed up
the generation of RBMs; this was implemented using the mpi4py [41] library, where the first
process manages the GUI, the second one is the main process, and all the other processes
are the workers that generate the RBMs in a distributed computing fashion. Thanks to the
GUI of SMGen, the user can easily set up all the parameters characterizing the required
RBMs, e.g., the number of species and reactions, the maximum number of reactants and
products per reaction, the probability distributions (uniform, normal, logarithmic, and log-
normal) to generate the initial amounts of the species and the values of the kinetic constants
associated with the reactions, and the output file format to save the RBMs. It is noteworthy
that the performance of SMGen is not affected by the choice of different distributions for
the sampling of the species amounts and kinetic constants. On the contrary, different
distributions can drastically affect the dynamics of the model (see, e.g., the Brusselator
model [38,43]). The analysis of the features of the generated models, according to different
distributions, will be addressed in a future work.

We assessed the capabilities of SMGen for the creation of RBMs characterized by
non-trivial behaviour, and we presented an example of a synthetic RBM together with
the simulated dynamics. We also tested the computational performance of SMGen by
generating batches of symmetric and asymmetric RBMs of increasing size, showing the
impact of the number of reactions and species, and of the number of reactants and products
per reaction, on the generation times. We observed that when the number of reactions is
higher than the number of species, SMGen generally identifies and corrects high numbers
of errors during the creation process of the RBMs, a circumstance that inevitably increases
the overall running time.

As a future extension of this work, we plan to develop an application programming
interface (API), so that SMGen can be seamlessly integrated into other processing pipelines,
tools, and simulators. We are also developing a well-documented command-line interface,
which will be released together with the API, to increase the user experience as well as
the integrability with the existing approaches. Another feature that could be introduced
is a module for the visualization of the networks, especially those that do not consist in
a huge number of entities; indeed, the visualization of networks composed of thousands
of species and reactions might not provide relevant information to the user. We will also
introduce a new feature specifically developed to generate feedback loops in synthetic
RBMs, exploiting the theory of Petri nets [37,38]. Feedback loops are fundamental elements
of biological processes that lead to the establishment of oscillatory regimes and non-linear
dynamics [22]. Moreover, we plan to develop a function to rescale the kinetic constants
by taking into account the number of reactants involved in the reactions, as the order of
magnitude and the value of each kinetic constant are related to the number of reactants
composing the corresponding reaction. In the current version of SMGen, we assumed that
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all reactions follow the law of mass-action; we will implement additional kinetics (e.g.,
Michaelis–Menten and Hill kinetics [44,45]) in the future.

SMGen relies on graph theory and linear-algebra properties to comply with specific
structural characteristics that are essential to create synthetic but real RBMs. Nevertheless,
the current version of SMGen does not exploit network graphlets and motifs, which char-
acterize families of real biological networks. Graphlets are induced sub-graphs appearing
at any frequency because they are independent of the network’s null model (i.e., a random
graph model defined by a probability distribution), while network motifs are repeated
sub-graphs appearing with a frequency higher than in random graphs and depending on
the network’s null model [46]. Graphlets have been used to analyse local network struc-
tures and to cluster different network types [46]. Probabilistic graphlets have also been
developed to analyse the local wiring patterns of probabilistic networks. When applied
to study biological networks, probabilistic graphlets resulted in a robust tool, which was
able to capture the information underlying biological networks thanks to the capabilities
of managing the low-signal topology information [47]. Graphlets can also be used to
measure the structural similarity among large networks, calculating the graphlet degree
distribution [48]. Motifs can be used to study autoregulation, single-input modules, dense
overlapping regulons, and feedback loops as well as to reveal answers to many important
biological questions [49,50]. The frequencies of the motifs were also exploited as classifiers
for the selection of the network models [51]. Studying the motifs is also fundamental to
understand the stability and robustness of the biological networks in response to small
perturbations [52]. As a matter of fact, Prill et al. showed that the stability and robustness of
a network is strictly related to the relative abundance of the motifs [52]. This result suggests
that the structural organization of a biological network can be highly related to the dynamic
properties of the small network motifs. We plan to extend SMGen to incorporate network
graphlets and motifs during the generation of the RBMs, to obtain synthetic models with
an improved biological significance.

In addition, we will modify the random generation of the kinetic constants to take
into account the fact that different biological processes can operate on different time
scales. In order to introduce this modification, as a first step, the reactions will be grouped
into different families based on the biological process that they describe (e.g., protein
or mRNA degradation, transcription rates, translation rates). Then, for each family of
reactions, a different probability distribution will be used to sample the kinetic constants
to reflect the time scale of the described biological process. We are also investigating the
possibility of generating models characterized by specific emergent dynamical aspects
(e.g., stable oscillatory regimes, state switching, and multi-stability [16]). We derived a set
of heuristics to detect these conditions from the time-series, based on the combination of
SMGen with GPU-powered stochastic simulators [16]. Still, regardless of the acceleration
used, robustly detecting these phenomena is computationally challenging because some
parameterizations might lead to very stiff models, which, in turn, might require a very long
running time. Thus, we are investigating alternative approaches to guide the generation of
synthetic models having such features. In particular, we are considering the possibility of
providing a set of “functional modules”, i.e, a group of already parameterized reactions
implementing specific behaviours. These modules could be coerced into the synthetic
models generated by SMGen, possibly leading to the emergence of the desired phenomena.
Finally, we plan to include an initial check of the parameter values set by the user, based
on some heuristics, to verify whether the RBMs can be actually generated as requested.
This initial step will allow for avoiding worthless calculations and to suggest useful
modifications of parameters to the user.
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Appendix A. Algorithms

We report here all the algorithms referring to the functions called by Algorithm 1,
which represents the workflow of each worker process.

Algorithm A1 Random initialization of the graph of reactions.

1: function GRAPH_GEN(N)
2: G[·, ·], v[·]← 0
3: for j = 1 to N do
4: v[j]← j
5: ind1 ← random(1, len(v))
6: ind2 ← random(1, len(v))
7: n1, n2 ← v[ind1], v[ind2]
8: v← delete(v[ind1])
9: v← delete(v[ind2])

10: G[n1, n2]← 1
11: while v is not empty do
12: if random ∈ {0, 1} == 0 then
13: ind← random(1, len(v))
14: k← v[ind]
15: v← delete(v[ind])
16: G[n1, k]← 1
17: n2 ← k
18: else
19: ind← random(1, len(v))
20: k← v[ind]
21: v← delete(v[ind])
22: G[k, n2]← 1
23: n1 ← k
24: return G

Algorithm A2 Conversion of the adjacency matrix G into the stoichiometric matrices A
and B.

1: function STOICH_MATRICES_GEN(M, N, G)
2: i← 1
3: for n1 = 1 to N do
4: for n2 = 1 to N do
5: if G[n1, n2] == 1 then
6: A[i, n1]← 1
7: B[i, n2]← 1
8: if i == M then
9: i← 1

10: else
11: i← i + 1
12: return A, B

https://gitlab.com/sgr34/smgen
https://gitlab.com/sgr34/smgen
https://pypi.org/project/smgenerator
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Algorithm A3 Generation of the random stoichiometric coefficients.

1: function STOICH_COEFFICIENTS_GEN(A, B, M, N, maxnumr , maxnump , AI J, BI J)
2: for i = 1 to M do
3: for k = 0 to maxnumr do
4: coef← random(0, maxnumr )
5: j← random(1, N)
6: if coef 6= 0 & A[i, ·] + coef− A[i, j] ≤ maxnumr then
7: A[i, j]← coef
8: else if coef == 0 & 〈i, j〉 /∈ AI J then
9: A[i, j]← coef

10: for i = 1 to M do
11: for k = 0 to maxnump do
12: coef← random(0, maxnump)

13: j← random(1, N)
14: if coef 6= 0 & B[i, ·] + coef− B[i, j] ≤ maxnump then
15: B[i, j]← coef
16: else if coef == 0 & 〈i, j〉 /∈ BI J then
17: B[i, j]← coef
18: return A, B

Algorithm A4 Checking the linear independence between stoichiometric matrices.

1: function LINEAR_INDEPENDENCE_MATRIX(A, B, M)
2: errLinDep ← [ ]
3: for i = 1 to M do
4: if A[i, ·] ∧ B[i, ·] are linearly dependent then
5: errLinDep ← errLinDep � i

6: return errLinDep

Algorithm A5 Checking if the generated reactions are unique.

1: function UNIQUE_REACTIONS(A, B, M)
2: AB, ABs← [ ]
3: errRepeat ← [ ]
4: for i = 1 to M do
5: AB[i]← A[i, ·]� B[i, ·]
6: for i = 1 to M do
7: if AB[i] is in ABs then
8: errRepeat ← errRepeat � i
9: else

10: ABs← ABs�AB[i]
11: return errRepeat
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Algorithm A6 Random correction of the repeated reactions.

1: function CORRECTION_REACTIONS(A, B, rowsErr, AI J, BI J, maxnumr , maxnump )
2: for i = 1 to len(rowsErr) do
3: A[rowsErr[i], ·]← 0
4: B[rowsErr[i], ·]← 0
5: if rowsErr[i] ∈ AI J[·, 1] then
6: for k = 1 to len(AI J) do
7: if AI J[k, 1] == rowsErr[i] then
8: A[AI J[k, 1], AI J[k, 2]]← 1
9: for c = 0 to maxnumr do

10: coef← random(0, maxnumr )
11: col← random(1, N)
12: if coef 6= 0 & A[rowsErr[i], ·] + coef− A[rowsErr[i], col] ≤ maxnumr then
13: A[rowsErr[i], col]← coef
14: else if coef == 0 & 〈rowsErr[i], col〉 /∈ AI J then
15: A[rowsErr[i], col]← coef
16: if rowsErr[i] ∈ BI J[·, 1] then
17: for k = 1 to len(BI J) do
18: if BI J[k, 1] == rowsErr[i] then
19: B[BI J[k, 1], BI J[k, 2]]← 1
20: for c = 0 to maxnump do
21: coef← random(0, maxnump)

22: col← random(1, N)
23: if coef 6= 0 & B[rowsErr[i], ·] + coef− B[rowsErr[i], col] ≤ maxnump then
24: B[rowsErr[i], col]← coef
25: else if coef == 0 & 〈rowsErr[i], col〉 /∈ BI J then
26: B[rowsErr[i], col]← coef
27: return A, B

Algorithm A7 Checking the linear independence between reactants or products.

1: function LINEAR_INDEPENDENCE_REACTION(A, B, rowsErr)
2: errLinDep ← [ ]
3: for i = 1 to len(rowsErr) do
4: if A[rowsErr[i], ·] ∧ B[rowsErr[i], ·] are linearly dependent then
5: errLinDep ← errLinDep � rowsErr[i]

6: return errLinDep

Algorithm A8 Random initialization of the amounts of the species.

1: function AMOUNTS_GEN(N,Ds, mins, maxs, µs, σs)
2: M0[·]← 0
3: if dist is Uniform or Logarithmic then
4: for j = 1 to N do
5: M0[j]← random(Ds, mins, maxs)

6: else
7: for j = 1 to N do
8: M0[j]← random(Ds, mins, maxs, µs, σs)

9: return M0
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Algorithm A9 Random generation of kinetic constants of the reactions.

1: function KINETIC_CONSTANTS_GEN(M,Dr, minr, maxr, µr, σr)
2: K[·]← 0
3: if dist is Uniform or Logarithmic then
4: for i = 1 to M do
5: K[i]← random(Dr, minr, maxr)

6: else
7: for i = 1 to M do
8: K[i]← random(Dr, minr, maxr, µr, σr)

9: return K

Appendix B. Analysis of the Properties of the RBMs Generated by SMGen

The properties of the RBMs generated by SMGen were analysed by considering the
network deficiency [53], the scale-freeness of the network [54], and the number of zero
complexes, i.e., the null species used to denote degradation reactions or the influx of
chemicals.

Network deficiency is an important structural attribute of a reaction network; indeed,
this measure gives an indication of the independence of the reaction vectors. Specifically, the
network deficiency is a non-negative integer index calculated considering three coefficients:
the number of distinct complexes n, the number of linkage classes l, and the rank of the
network r. In this notation, the complexes of a network are the entities that appear at the
head and tail of each reaction (examples of distinct complexes are A, 2A, A + B, etc.), while
the linkage classes are the sets of complexes in the various “parts” composing the network,
where complexes in a set are linked to each other, directly or indirectly, but they are not
linked to any other complex in the network. Finally, the rank of the network is exactly the
rank of its set of reaction vectors. To be more precise, the network has a rank r if there
is a subset containing r linearly independent reaction vectors, but there is not any subset
containing r + 1 linearly independent reaction vectors. The network deficiency is equal to
n− l − r. It is worth noting that networks having a deficiency equal to zero are the ones
where the reaction vectors are as independent as the partition of complexes into linkage
classes will allow.

To perform such analysis, as a first step, we generated symmetric and asymmetric
RBMs characterized by a number of species N and reactions M ranging from 4 to 64,
by also varying maxnumr and maxnump into {2, 3, 4}. Specifically, for each condition (i.e.,
N, M, maxnumr , and maxnump ), 100 RBMs were randomly created to collect statistically
sound results. We limited this analysis to the models’ size that can be generated with a
single connected component (independently from the maximum number of reactants and
products), i.e., with the following constraint:

(maxnumr + maxnump)×M > N.

Then, we calculated the network deficiency for each generated RBM, and, for each con-
dition, we calculated the median of the network deficiency values. The heatmaps depicted
in Figure A1 clearly show that the network deficiency increases when M > N. Moreover,
the maximum number of reactants and products affects the network deficiency: the higher
the maximum number of reactants and products, the higher the network deficiency. These
results are coherent with the definition of network deficiency itself. As a matter of fact,
the number of possible distinct complexes and the number of possible distinct linkage
classes increase along with N and the maximum number of reactants and products, while
the number of linearly independent reaction vectors is bounded by min(M, N). Finally,
the values obtained from this analysis are congruent with those of real biochemical mod-
els, such as the Brussellator [38,43]) (5 species and 4 reactions) with deficiency = 0, the
prokaryotes gene expression model [55] (5 species and 8 reactions) with deficiency = 1,
the heat shock response in eukaryotes model (10 species and 17 reactions) with deficiency
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= 5, the Ras/cAMP/PKA model [22] (33 species and 39 reactions) with deficiency = 7,
and the human intracellular metabolic pathway in red blood cells [56] (114 species and
226 reactions) with deficiency = 13.
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Figure A1. Heatmaps showing the median value of the network deficiency calculated on RBMs
generated by varying the number of species and reactions, and the maximum number of reactants
and products.

Biological networks, particularly metabolic networks [57], often show scale-freeness
properties [54]. In order to prove that SMGen generates biochemical reaction networks
that are characterized by this property, we converted the bipartite graph defined by the
stoichiometric matrices to a common interaction graph, where the nodes represent the
chemical species, and the edges represent reactions involving the nodes either as reactants
or products. Then, we analysed the structural properties of the generated network, and,
in particular, we investigated whether the degree distribution follows a power law distri-
bution, which is characteristic of scale-free graphs. Since the scale-free properties emerge
only for large scale networks, we generated and analysed the interaction network induced
by an RBM consisting in 10, 000 chemicals species involved in 10, 000 reactions. According
to our results, the degree distribution seems to fit well with a power law (see Figure A2),
confirming that SMGen can generate scale-free networks. It is worth noting that curated
models of this size are seldom published, because both the initial amounts of the chemical
species and the kinetic reaction rates would be difficult to collect, and, in any case, they
would represent a challenge for biochemical simulation.
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Figure A2. Degree distribution of the interaction network induced by an RBM randomly generated
using SMGen. The discrete fitted distribution is shown using linearly spaced bins.
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Finally, in order to evaluate the abundance of the zero complex appearing as reactant
or product in a reaction, we used the same set of RBMs generated to calculate the network
deficiency. As a first step, for each RBM we calculated the percentage of reactions where
the zero complex appears either as a reactant or as a product. The heatmaps reported in
Figure A3 clearly show that this value increases when M >> N. It is worth noting that the
higher the maximum number of reactants and products for each reaction, the lower the
percentage of reactions involving the zero complex. Overall, we observed that, at most, 2
out of 10 species were involved in one of such reactions. We investigated the abundance of
the zero complex in real models. In the prokaryotes gene expression model [55], the zero
complex appeared in 25% of the reactions, while it was present in 5.88% of the reactions
composing the heat shock response model [58]. Thus, the values calculated on synthetic
RBMs generated by SMGen are in agreement with those obtained from models of real
biochemical networks.
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Figure A3. Heatmaps showing the median percentage of reactions where the zero complex appears
as reactant (top) or product (bottom), calculated on RBMs generated by varying the number of
species and reactions as well as the maximum number of reactants and products
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