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Abstract: In this paper, we explore a new class of stochastic differential equations called anticipated
generalized backward doubly stochastic differential equations (AGBDSDEs), which not only involve
two symmetric integrals related to two independent Brownian motions and an integral driven by
a continuous increasing process but also include generators depending on the anticipated terms of
the solution (Y, Z). Firstly, we prove the existence and uniqueness theorem for AGBDSDEs. Further,
two comparison theorems are obtained after finding a new comparison theorem for GBDSDEs.
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1. Introduction

Nonlinear backward stochastic differential equations (BSDEs in short) were introduced
by Pardoux and Peng [1] in 1990. Since then, BSDEs have been received considerable
research attention due to their application in a lot of different research areas, for example,
mathematical finance (see El Karoui et al. [2]), stochastic control, differential games and
partial differential equations. Ref. [3] proposed a newly optimized symmetric explicit
ten-step method with phase-lag of order infinity to numerically solve the Schrodinger
equation. Pardoux and Zhang [4] introduced the following equation:

T T T
yt:g+/ f(s,Ys,Zs)ds+/ h(s,Ys)szf/ Z.dW,, t € [0,T],
Jt Jt Jt

where K; is an increasing process, to obtain a probabilistic formula for solutions of semi-
linear partial differential equations (SPDEs) with a Neumann boundary condition. Ren
and Xia [5] further investigated the above topic with reflection, then Ren and Otmani [6]
extended this problem to Levy setting.

Pardoux and Peng [7] first presented a class of backward doubly stochastic differential
equations (BDSDEs in short) to give a probabilistic representation for a class of quasilinear
stochastic partial differential equations. Then Shi et al. [8] gave a comparison theorem for
BDSDEs with Lipschitz condition on the coefficients. In this way, Boufoussi et al. [9] gave
the following generalized backward doubly stochastic differential equation:

T T T .

Y, :g+/ f(s,Ys,Zs)ds+/ h(s,YS)sz—i—/ 2(s, Y., Zs)d B s

; t t (1)

- / ZdW,, t€[0,T],
t

in which the equations not only involve a standard (forward) stochastic It6 integral dW; but
also a symmetric backward stochastic Itd integral d B ;. They first obtained the existence
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and uniqueness for the above equation, then gave the viscosity solution to one kind of
semilinear SPDE, a probabilistic representation. Hu and Ren [10] explored this problem
with an integral driven by the Levy process. Aman and Mrhardy [11] investigated the
Equation (1) with reflection.

Peng and Yang [12] introduced a new type of BSDE called anticipated BSDEs. The
generator of these equations includes not only the values of solutions of the present but also
the future. The authors found that these anticipated BSDEs have unique solutions under
Lipschitz assumptions, a comparison theorem for their solutions, and a duality between
them and stochastic differential delay equations. After the work of Peng and Yang [12],
Zhang [13] dealt with the comparison theorem of one dimensional anticipated BSDEs under
one kind of non-Lipschitz assumption. Xu [14] and zhang [15] introduced the so-called
anticipated BDSDES (ABDSDEs). They proved the existence and uniqueness of the solution
to these equations, obtained some comparison theorems in the one dimensional case, and
studied the duality between ABDSDEs and delayed SDDEs. Reference [16] investigated a
coupled system which is composed by a delayed forward doubly stochastic differential
equation and an anticipated backward doubly SDE. Recently, Wu et al. [17] proposed the
so-called anticipated GBSDEs (AGBSDEs) of the following form:

T
Y, = + /t (5, Yo, Ze, Yo ys(s), Zosg(s))ds

T T
n /t (s, e, Yo g AKs — /t Z.dW,, t € [0, T],
Y =C, Zi=m, t€[T,T+K],

where 6(-) and {(+) are given R*-valued continuous functions and for ¢(-) = 6(-),{(+)
such that:

(A1) there exists a constant K > 0 such that, forallt € [0, T|, t + ¢(t) < T+ K;

(A2) there exists a constant M > 0 such that, for all ¢ € [0, T] and for all non-negative
and integrable g(-),

T T+K T T+K
| sronds<m [ g(s)ds, [ gls+ () <M [ gls)aks
and for any interval [«, B], [« + u, + u] € [0, T + K], u > 0, we have dK([a, B]) <dKs([« +
u, B+ u]), where dK; is a measure generated by K on [0, T + K].
In this paper, we are concerned with the following anticipated GBDSDEs:

T T
Y, — YT+/t f(s,YS,ZS,YS+51(S),ZS+€(S))dS+/t (s, Yo, Yo gy06) JKs

T _ @
+ [ 805, Y Ze Yoo Zusgi)d B - [ ZaW,, te 0T,
Yy =&, Zi=mn, t€][T,T+K],

where 6;(+),i = 1,2,3, {(+) and {(-) are given R*-valued continuous functions such that
(Al) and (A2). We will prove that the solution of the above AGBDSDE exists uniquely
under proper assumptions, and two versions of one dimensional comparison theorems are
given. These results are the cornerstones of AGBDSDEs applied to the obstacle problem for
some SPDEs with the nonlinear Neumann boundary condition and some stochastic control
problems with delay.

The organization of this paper is as follows. In Section 2, some preliminaries, assump-
tions and definitions are given. In Section 3, we focus on the existence and uniqueness of
the solutions of anticipated GBDSDEs. In Section 4, two comparison theorems are given,
and in the last section, the conclusion and future work are presented.
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2. Preliminaries

Throughout the paper, we use |x| and || A ||= \/Tr(AA*) to denote the norm of a
vector x € RF and a matrix A € k x d, respectively, where A* is the transpose of A. Let
{W;;0 <t < T}and {B;0 < t < T} be two mutually independent standard Browning
motions, with values respectively in R? and R/ on a complete probability space (Q, F,P).
Let T > 0,K > 0 be fixed constants. Let A/ denote the class of P-null sets of F. For any
t € [0, T + K], we define:

Fi £ J:Ot\/]:tTH(/
where for any processes {1}, F, t = o{ny — ns;s < r < t} VN. It is worth noting that
{Fi,t € [0,T+ K]} is not a filtration because {F3},t € [0,T + K]} is increasing and

{Ffr,t € [0,T + K]} is decreasing. Let K; be a continuous, increasing and Fj-adapted
process on [0, T + K] with Ky = 0. We will use the following notations: for any n € N,

(i) M2(0,T;R") 2 {¢:Q x [0,T] — R" | ¢isa Fi-progressively measurable processes
such that || ¢ |o=E(fy lg:[dt) < co};
(i) S2([0,T;R") £ {9 : Qx [0,T] — R" | ¢ is a continuous and F;- progressively

measurable processes such that || ¢ ||§2: E( sup |q)t|2> < oo;
0<t<T

(iii) Lz(]-'T;R”) = {ff : & € R" | ¢ is a Fr-measurable random variable with E|Z|? < co}.

RK), gt 1)+ Q x BREx RO x MP(ET + KGRY) x M2(5T + KGRA) 5 [2(F;
R h(t,-,-,-) + Q x RE x M2(t, T + K;RK) — L2(F;RF). We make the following
assumptions about (&, f, g, h):

Hypothesis 1 (H1). For & € S*([T, T 4 K];R¥), 5 € M?(T, T + K; R**4), we assume for each
i ERT,

T+K T+K
E[ sup e"|ei] < oo B[ eMigdKi) < oo B[ eMlyh|Pat] < oo
te[T,T+K] T T

Hypothe51s2(H2) Foralls € [0,T), v,y € RK, 2,2/ € R*4,9(.),0'(-) € M?(s, T + K;R¥),
8(), 8 () € M?*(s, T+ K;R*?), 1,7 € [s, T + K], we have

f(s,y,2,0(r),8(F) — f(s,4/,2,0'(r), 9 (7)) |?

Cly—y' I+ llz— 2>+ E-[lo(r )—9’(r)|2]+Efs[||l9(f)—19'(7)”2]),
I8(s,y,2,0(r), 8(7)) — 8(s,y, 2,6 (r), 8 (7)) >

Clly —y'1* +EF[|0(r) — 6/ (r)] ])+061HZ—Z'||2+0¢2EE[HI9 GEEAGIE)
(y—y' h(s,y,0(r) = f(s,y/,6'(r)))
<Cly —y' P+ Bly — v/ [EZ[16(r) — 0 (r)[],

where C > 0,C < 0,6>0,0<a; <1, 0 <aj+ayM < 1are five constants.

Hypothesis 3 (H3). Forany s € [0,T],y € Rf,z € R**?,9(.) € M2(s, T + K;R¥), 0(-) €
M?2(s, T+ K;R*) 7,7 € [s, T+ K], p € RT, we have

£ (5,,2,0(r), 8(7)| < 1(s) + K(ly| + llz]l + EZ[|6(r)[] + EZ [ 8(7)II]),
g (s, y,2,6(r), 8 < 2(s) + K(ly| + [zl + EZ[|6(r)[] + EF[|8(7)]]]),
(s, y,0(r))| < 3(S)+K(Iy\+EFS[I9(T)|D,

B[ el (o)ds + [ o lga(o) s+ [ s(s) PKG) < o,



Symmetry 2022, 14, 114 4 of 14

where ;,i = 1,2,3 are three adapted processes with values in [1, +-00) and K > 0is a constant. The
first and second inequalities on the above are the Lipschitze conditions for f and g with anticipated
terms, respectively.

Definition 1. A solution for AGDSDE is a pair (Y;,Zt) € S*([0,T + K];R") x M?(0,T +
K; R”Xd) such that forany 0 <t < T,

T T
Y, :gTJr/t f(s,YS,ZS,YHMS),Zs+§(s))ds—{—/t (5, Ys, Yo sy06) JAKs
T — T
+/t g(s,YS,ZS,YS+53(S),ZS+€-(S))dBs—/t Z,dW,, te[0,T],
Yi=¢t, Zi=mn, t€[T,T+K].

3. Existence and Uniqueness Theorem

In order to obtain the existence and uniqueness result, we need the following two
priori estimates.

Proposition 1. Assume that (A1), (A2), (H1), (H2) and (H3) hold. Ff {(Y;,Z:);0 <t < T + K}
is a solution of AGBDSDE (2) and u > 0,A > max{B(1 + M) — |C|,0}, we get:

E[ sup et K|y, |2+/ et TS | 7, ||2ds+/ et A | V(124K ) < CE( sup et 7K &2
te[o T] T<t<T+K

T+K T+K
b [ ek s+ [T e R g s+ [T e g Pa

T T
b [ et gy (9)ds [ e g(s) s 4 [ oK s (5) Pk
0 0 0

where C is a constant.

Proof. In the following, we assume Kt g is a bounded random variable, and then apply
Fatou’s lemma to obtain the general result. From It6’s formula, we have:

T T
eyt+)\Kt|Yt|2 +/ €”S+/\KSHZ5”2dS+/\/ eys+/\K5|Y3|2sz — e;tT+)\KT|CT|2
t t

T T
+ 2/t elTARY, f(s, Y5, Zs, Yoi5(s) s ()45 + Z/t et (Y (s, Ys, Ysi55(s)))dKs

T ustAK T istAK
+2/t €K (Y, (s, Y, Zo, Yapy(e)r Zorg(s))d Bs 2/t PR (Y, 7 W)

T T
— V/t eHs+AKs |Y5|2dS + /t eHsTAKs Hg(sl Y., Zs, Ys+¢53( Y s+§ )szS

According to the assumptions (H2), (H3) and Yong's inequality, for any 6 > 0, we get:
2(Ys, £(5, Yo, Zs, Yors,(5) Zorg(s))) SOVl "' a7 |YS‘2 +|Zs> + E7)Y, o) +E/5‘Zs+g 9%
+ *Il/J1 (S)IZ/
20Ys, (s, Yo, Yoygy(s))) S2CIYs[? + 2B VS| E7[Y, 146 |+2|Ys||¢3(t)|

<(2C+ [C+ B)|Ys + BEZ Yoy, P + = L pa(s)2,

Cl
1 g
18(5 Yer Zs, Yora5)s Zorgo)|P S+ ) (CUVP +EZ Y509 ) + arll Zel? + a2BE7 | Zg ) 7)

+(1+6)[y2(s) .
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Consequently, we have:

2C(14+ M) +aq +apM, [T :
E[eyt+)\Kt|Yt|2 4 (1 —ay — IXZM _ ( )6 1 2 ) /t €VS+/\K>||Z5||2dS

— T
(A [T = B+ M) [ e Ay K] < Ele TR 2

T T+K
—i—(G—I—M—O—C(l—i—M)—y)/ EVS+AKS|YS\2ds+(7+CM)/ eﬂs+/\Ks|§s|2ds
t

0 0
2CM 1 TK 2 T
(5 (T glaah) [ e g s 5 [ ent K gy (5) s

3CM

T+K T T
+BM / e”s“KS|Cs|2dKS+|1C| / eFSHAKS | (6Y[2dKs + (1 4+ 6) / eFS+HAKs | (5) [2ds].
T t t

2C(1+M) 4oy +ayM

Thus, choosing 6 = =775~ + || + 1, and from Gronwall’s inequality, we can ob-

tain:

T T N
sup E[et M2+ [ eh iz, Pds + [Cen Y PaK] < CE( sup e g 2
t€[0,T] 0 0 T<t<T+K

T+K T+K T+K
+ / €HS+/\KS|CS|2d5+ / estr)LKSHWSHZdS + / eyS+/\K5|€s|2sz
T T T
T T T
[y (s) s + [ e () Ps 4 [ e g () Pk
Using the Burkholder-Davis—Gundy’s and above inequality, the desired result follows. [

Proposition 2. Denote (Y,ZE .8 hK) = (Y-Y,Zz-7,¢ =0 f-f.g-
¢, K—K'), then, for any u > |2C + B(1 + M)|, there exists a constant C > 0 such that:

Bl sup [T+ [ ob|Z,|as] < CReT E P
te[OT]

[ e s+ [ AP [ (s, Y Yo PR
+/OT‘J”AS|f(5rYs/Zs/Yeré](s)stJrg(s)) f'(s, Yo, Zs, Ys16,(s)r Zstg(s) )| ds
+ /0 Lo 505, Y, Ze, Versstop Zerzto)) — 805, Yoo Zos Yooy Zon o)) 125
PR Yo Ve ) — B 5 e Vo) P,

where Ay := ||K||¢ + K}, ||K||+ is the total variation for process K on the interval [0, t].

Proof. Similar to Proposition 1, we assume Kk is bounded random variable. From It6’s
formula, we have:

_ T _ T _ _ T o
T A A el A A R e A v A
t t t
T —
42 /t e (Yo, F(5,Yer Ze Yo (9 Zorae) — F(8 Yo ZL Y (00 Zhge)))S

o )VK,

T _ _ T _
42 / e (Yo, h(s, Yo, Y,y gy(0)) K +2 /t e (Yo, h(s, Yo, Yo gy(s)) — (5, Y0, YLy,

F
+2/ (Y, (805, Yo, Zo, Yoras(o) Zor(s) — 8 (5 Y8 Za Ve g6 Zay(s)) )4 B s)

+/t eﬂASHg(S,YS,Zs, YS+53(S)’ZS+5(S)) g (S Y/ Z/ YS/+153( ) s+§ )szS
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_ T o T _ _
= T[22 [ e Y ZidWe) +2 [ e (Yo B, Yo, Ypgy))AKs
t t
T _
+2/t e (Ys, £(5, s, Zs, Yarsy(s) Zoag(s) = F' (8 Yo Zs, Yooy (s Zorg(s)) )48
T _
+2/t eyAS <Ys/f,(srYS/ZSIY5+5l(s)rzs+§(s)) f (S Y Zl st-HSl() Z;+g(s))>ds
T =
2 [ e (T s, Yo, Yarse)) = (5 Yo Yoy (9) K]
T UAs (7 1/ . / ! ! /
+2 ] e <Ys,h (S,Ys, YS+()2(S)) h (S Y YS+(5 ( ))>sz
T UAs 1y 17l N / =y
+2/t el (Y5, (8(5, Yo, Zs, Ysiay(s)r Zoag(s)) — & (8, Ve, Z Ysvay(s) Zorg(s)))d Bs)
T
As _ 2
+/t et ||g(SIYS/ZS/ Ys+63(s)/Zs+§(s)) 8 (S Y/ Z/ Ys/+53() s+7(s) )” ds.
Through the assumptions (A1), (A2), (H2) and Yong's inequality, for any 6 > 0, we get
_ T _ T
Bl Vi 4 [ | Z)Pds +p [ e[V Al
t t
_ T 1
< BTG g [ T PAIR L [ e Y Vo) PRI
T As|1v |2 T A !
+ /t el e[ Y| ds + /t e\ £ (s, Yo, Zs, Yoyoy(s) Zstits) = (8, Yo Zs, Yoy, (5): Zorg(s)) s
AM+DC T a5 2 1-—a =M (T a5 T oAz
P aodd . OV (/t oA Y| ds+/t o4 Z, | 2ds
T P T — T _
[ SNETY, g P + [ VERZ o) |Ps) +0 [ T PaK]
t
1 T
+§/t (s, Y, Yorsy(s) = 1 (5, Ys, Yopay(s)) [PdKS

_ T _ T S
+(@C+p) [ M MTPAK 4B [ BT Y00 P,

2(ay +aoM T )

+(1+ 1 ‘(_ o — ocz]\)/l) /t e el|g(s, Y, Zs, Yoyan(s) Zoag(s) — 8 (8 Yor Zs, Yras) Zoyg(s) ) IS
1—ay —apM T - T 7=

+ (1+ W)(C(_/t BVAS|YS|2dS+/t EMAS]E/S|YS+53(S)|2dS)

T _ T S
bag [ e Z) s 4w [ AR Z, g s

Choosing 6 = u — |2C + B(1 + M)|, we have:

1

= —ap —apM (T = = 1 /T -
Bl [T+ =L 2 [ o ZRas) < BTG+ [ A Yo Yerg) PR

T
+ /t e (5, s, Zs, Yaysy(5) Zoiz(s) — £ (80 Yor Zs, Yo, (s Zswg(s)) s
5—0(1—0(2M+ 4(M+1)C 1+0€1+0€2M

C1+M VAL
+( 4 1—061—1)(2M (061+0(2M) ( + ))/t‘ ¢ ‘ S| )
14+ a1 +aoM 1—a;—aM / HAs |7 |2
2(ay + aaM) 4(M+1 M |G s
1+0€]+062M 1—0(1—IXZM / A 2 Ae 2 /
)M 1A |7 ||2d M/ #AS|Z 2K
1

T
—[2C+ B(1+ M)| /t eI (s, Y, Yiyoy(s)) = (5, Vs, Yoo o)) PG
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14+a; +ayM
170(1*062M t

T
el's lg(s, Ys, Zs, Ys+53(s)rzs+§(s)) —g'(s,Ys, Zs, Ysy6,(s)r s+g )szs}

From Gronwall’s lemma, we get:

_ T _ A _ T
sup E[et|Y, 2]+ E[ | et |Zi|2ds] < CEIeTZ0 2 + [ etln(s, Ye, i) Pl
te[0,T) 0 0

T
+/0 A £(5, Vs, Ze Yorsy(s) Zswa(s) = F (80 Yor Zs, Yo, (o), Zoig(s)) | s

/1

— T+K T+K _
A R A R ARl X

T
n /0 A (s, Vs, Yy psy(6)) — (5, Yo, Va0 PAKL

T
"’/0 eVASHg(S/ YS/ZSrYs+J3(s)rZs+§'(s)) - 35 YS,ZS,YS+53(S),Zs+€-(s))||2ds].

Using the Burkholder-Davis—Gundy’s and above inequality, the desired result follows. [

With the help of Propositions 1 and 2, we can establish the following existence and
uniqueness theorem in this part.

Theorem 1. Assume that (A1), (A2), (H1), (H2) and (H3) hold. Then, AGDDSDE (2) admits a
unique solution (Y, Z) € S?([0, T + K], R¥) x M2(0, T + K, Rk*4),

Proof. The uniqueness is easily given by Proposition 2. We now turn to prove its existence.
For u > 0, let M’% (K) represent the set of progressively measurable processes {X(t),0 <
t < T + K}, which satisfy:

T+K T+K
E / eHKi | X, |2dt + E / KGR, < oo,
0 0

and M, represents the space of progressively measurable processes {X(t),0 < t < T + K}
which are such that:

T+K
IE/ Kt X, [2dt < oco.
0

We define
B = (MZ(K))" x (M%),

Giving (U, V) € 93%, by Theorem 2.1 in [9], we can define a map ® from %’5 to %’ﬁ through
the equation:

T T
Yy = CT+/t f(s,Ys, Zs, Us+51(s)st+§(s))dS+/t (5, Ys, Us .5, (s) ) AKs
T o T
+ /t‘ g(sl YS/ ZS/ Us+53(s)/ ‘/SJrZ(S))d B s /t ZSdWS/ t S [0/ T]/
Ytzgt, Zt:T]t, t e [T,T—l—K]

In the following, we will use the Banach contraction principle to prove the existence. Let
(u,v), (U, vy e #5,(Y,2) =oU,V),(Y,2)=oU, V),

cl

—U-u,v=v-v ¥Y=Y-Y,Z=2-7,
() = f(5, Y5 Zo, Usiy 5) Vugs) = F(8 Y8 Ze U510 Vi)
(s) = 8(5, Y5, Zs, Us 1 5(6), Ver g(s)) — 8(5,Ys, Z, UL

(s) =

ras(s) Vert(s)
h(s, Ys, Ugys(5)) — h(s, Ys US/+52( ))-

= 0Ql |
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Consider the following equations:

{Yt /f ds+/ sz+/ 5)dB, - /ZdWS,te[OT]

Y, =0, Z,=0, te€|[T, T+K]
For any A, 8 > 0, in view of Itd’s formula, we have:
_ T 7 T 7 T o
E[e)xt+yl<t|yt|2 +/\/ eAs+st|Ys|2ds + ]/l/ eAs+st|YS|2dKS + / e/\s-&-stHZSHZdS]
t t Jt
T o T o T
—2E / K (Y F(s))ds + 2 / UK (V, Ti(s))dKs + E / ASTHKS |1 7(s) |[2ds
t t t

C T o C T —_
< (9+§+C)E/t 6A5+;‘KS|Y5|2dS—|—(§+061)E/t e?\SJr]/leHZSHZdS

CM T — CM T _
+ (=5~ +CM) E/t U s + (=5 +a2M)E/t AHHKS |7 |1 2ds

ral T A Ks13v 12 ﬁM T A K177 12
+(2C+/36)E/t K Y| sz+TE/t MK T, 24K,

Choosing 6 = 1675 L 2gM A = 6+ G + C+2(SM 4 CM) + 2,4 = [2C + Bo| +

1IX] %]

(% + CM) + 4, we have
IE/ /\s+ul<s|y |2ds+E/ )\s+st|Y |2sz+E/ =~ 4y ) /\s+;4Ks||ZSH2ds
— - rc =
< 3E [ T Rds 4 JE [T K + 5B [ (S et Z P,
2 Ji 2 Ji 2k 00
Thus, @ is a strict contraction on %’ﬁ equipped with the norm

1Y, Z)

T
%\}4 _ ]E[/ /\s+st|Y |2ds+/ /\s+yK |Y |2dKS +/ =4 ) /\S+VKSHZS||2dS].
0

The proof of existence is complete. [

4. Comparison Theorems

In this section, we consider one dimensional AGBDSDEs, that is, k = 1. Let us first give
a comparison theorem of GBDSDEs, which will play a key role in what follows. Assume
that, fori = 1,2, & € L>(Fr;R) and fi(t,y,z) : [0, T] x Q x R x R? — R satisfies (H1) and
(H3). Then, according to Theorem 2.1 in [9], the following GBDSDE,

Yi = §l+/st;, ds+/ sstKS+/ its,Y!,7)d'B s - /ZdWs,te[O,T], 3)

admits a unique solution (Y7, Z?) € S%([0, T]; R") x M?(0, T;R"*) for i = 1,2. We can
assert the following comparison theorem, which generalizes the Theorem 2.2 in [11].

Lemma 1. Let (Y, Z') and (Y?, Z?) be solutions of GBDSDEs (3) respectively. We suppose
that (1) ¢} > &, a5 (2) f1(t, Y}, 2}) > fA (LY Y]) or f1(1 YR, Z28) > f2(4, Y2 YF),

as., aet€[0,T]; 3) h'(t,Y}) > h2(t,Y}) or Wi (t, Y?) > h%(t,Y?),as., ae.t € [0,T];(4) g
(t, YL Z}) = &(t, YL, Y}) or g1 (t, Y2, Z2) = ¢*(t, Y2, Y?),as., ae. t € [0,T]. Then, Y} >
YZ,a.s., forallt €[0,T).

Proof. Without loss of generality, we assume that §1 > §2, a.s., and fl(t, Y},Ztl) >
24, YL ZH, ht (8, Y > B2(tY]) as., for all t € [0, T]. Denote
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Y =
fr

Y? —

Y}, Zi=2}-27}, §=8 ¢\
= fA6YEZ8) — YL 2, & = g2 (YR ZE) — g1 (6, Z4), e = (8, Y7) = I (1Y),

Using It6-Meyer’s formula and &' > ¢2, a.s., we have:
o T S o T, . T . . T )
E[Y;] —HE/t 1y, 0y | Z s :2]E/t Ys+fsds+2E/t thdes—i—E/t 1,20, 195 ds.

In view of (H3), Young's inequality 2ab < %az + 0b? and Jensen’s inequality, for any 6 > 0,
we have:

T, . . T .
ZIE/ Yt fuds SZE/ Y (2(s, Y2, Z2) —f2(t,Y;,z§))ds
t

E
_1—zx / ‘

2C 1-a
<
_(17(X1+

T
(oo (5, Y2 22) = (1, YL, 21 P

N 1—« T N
"9 s + . 1IE/t 1y,50y12:[2ds,

T, . T — T ¢
ZE/ VhedKs < ZE/ V(R (s,Y2) — (1, Y3 ))ds < ZCE/ 1y, 50y Vs[?ds,
; ] ¢ sZ
and
T T
E/t 1y, 2018 :E/t iy 0)l8" (5, Y2, 22) — g1 (Y], 1) |Pds
T . T X
SCE/ |Ys+|2ds+0¢1E/ 1{17 >O}|ZS|2dS.
¢ ¢ 52

Then, thanks to the above inequalities, we obtain:

2C 1—1)(1
1—0(1

A T A
E[Y/ [ < ( Y+ ds.

From the Gronwall’s inequality, we can obtain:
E|Y,"|2 =0, forallte [0,T].

Hence
Y! > Y?, as., forallt € [0,T].

O

Now let us turn to the study of the comparison theorem for anticipated GBDSDEs. For
i = 1,2, we first consider the following anticipated BDSDE:

. . T
Y] = ng""/ fi(s, Y4, ZL, Ysl+(sl() s+1(s) ds+/ H (s, Y5, Y;H,(s))sz
' 4)
+/ (YL ZLY. g Z;w())st—/t Zidw,, teo,T],

=3, Zi=mny, te[T,T+K]

Let us assume that (5"('),31'(-)., 5’:(~),Zi(-) satisfy (A1) and (A2), & € S*(|T, T + KJ;R),
e M2(T, T+K;R%),and (!, g% satisfies (H1) and (H3). Then, by Theorem 1, anticipated
GBDSDE (4) admits a unique solution (Y7, Z) € S?([0, T + KJ;R) x M2(0, T + K; R?) for
i=1,2.
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Theorem 2. Let (Y!,Z') and (Y2, Z?) be solutions of AGBDSDEs (4) respectively. We sup-

pose that (1) & > ¢%,as., forallt € [T,T+K]; 2) f(t, Y}, Z], Yt1+51() Zt1+g1( )) >
fz(t,ytl,z},yt2+52() Zow) orfl(t,yf,zf,yt1+5l() Ziaw) = £ Yf,yf,yfw()

2}, op)as,aet €[0,T]; (3) hl(t,yg,yt1+5l()) > h2(t, Y} Yt2+§2 ) or f1(¢, Yf,yt1+5()) >
F2(t, Y7, Yfﬂsz( ))oas, aet €0,T];4) g 1(t, Y},Z},YH& o Zfl+z (t)) :g2(t,Yt1,Yt1,Yt2 20y
Zt2+ZZ(t)) or gl (t, Y2, zf,yt Sy Ztl—l—Zl(t)) 2 (t, Y2, Y2, Ytl o ),Zt1+zl(t)),a.s.,a.e. te[o,T].

Then Y} > Y?,as., forallt € [0, T+ K].
Proof. Fori = 1,2, denote

Fity,2) = f (61,2 Y] 5 Zoagi) G (09,2 =86 Y,2 Y] i o Zovgis))
Hi(t,y) = (s,y, 5+5z<))

then (Y?, Z') is the unique solution of the following GBDSDE,

. . T . . . T . T . . . T .
Y§:§}+/ Fl(s,Y;,Z;)ds—l—/ Hl(s,y;)sz+/ Gl(s,y;,z;)cﬁﬁs—/ Zidw,, t € [0, T).
t t t t

According to Lemma 1, we can get
Y! > Y?as., forallt €[0,T],

which implies
Y! > Y?,as., forallt € [0,T+K].

O

Let us give an example.

Example 1. Let £1(t,1,2,0(1),8()) = ly| + 2| + EX[|0(r)] + 1]+ E%[| cos ()], /(1,7
0(r), 8(7)) = ¥ — |2l + E7[sin6(r)], g1(t,1,2,6(r), 8(7)) = §2(t,y,2,0(r),0(F) = y+
|z|,h (t,y,0(r)) = |y| + E7t[|arctan 8(r)|], h2(t,y,0(r)) = y — 1. Then by Theorem 2, we
can obtain Y} > Y?,a.s.,forall t € [0, T + K] as long as the assumption (1) of Theorem 2 holds.

Next, we turn to the study of another comparison theorem for anticipated GBDSDEs.
Fori = 1,2, we consider the following anticipated GBDSDE:

. . T
Y=g+ [ PO ZY 0 2 ds+/ (5, YL Yy K

i 71 i i _ i (5)
+/ CYLZLY zs{l(s))st /t Zidw,,  teo,T],

Yi=¢l, Zi=ni, t€[T,T+K]

We always assume that (4(-), él( ),0 7‘( 3, gi(.)) satisfy (A1) and (A2), & € S?([T, T + K|;R),
nte M?(T, T+ K;RY) and (f/,g") satisfy (H1) and (H3). Then, by Theorem 1, anticipated
GBDSDE (5) admits a unique solution (Y/, Z) € S2([0, T + K];R) x M?(0, T + K;R¥) for
i=1,2.

Theorem 3. Let (Y1, zl) and (Y?,Z?) be solutions of AGBDSDEs (5) respectively We sup-
pose that (1) & > ¢7,as., forallt € [T, T+K]; 2) fU(tY}, Z},Y:M Y t+§1( )) >
2 1 71 v1 . 1 1 41 2 12
P ZLY 5 00 2 ) a5 aet € 0,T); @) BNEYL Y] ) 2 WYL YD, ),
as.,aet € [0,T]; (4) for any (t,y,z) € [0,T] x R x R,y € [*(F;R%) and s € [t,T +
K],fz(t, Y,2,-,7) is increasing, that is, f2(t, Y,2,Y2,7) > f2(t, v,2,y1,7), if y2 > y; with
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. 1 1 71 y1 1 — o2 1 yv1 y2 2
]/1,]/2 e R/ (5) g (t/ Yt ’Zt’Yt—l—gl(t)/Zt—}—Zl(t)) - g (t/ Yt /Yt ’Yt+52(t),zt+zz(t)
[0, T]. Then, Y} > Y?,as., forallt € [0, T + K].

),a.s.,a.et €

Proof. Fori = 1,2, denote:

Flty ) = Fby.2 Y0y Zige) G0y D) =8 y2 Y] 5 2 )
H(ty) =1 (s, Y], )

then (Y?, Z') is the unique solution of the following GBDSDEs,
o T T T
Y = +/ Fi(s,Y!, Z1)ds +/ Hi(s, Y!)dK, +/ Gi(s, Y, Z1)d'B s
t t t
T .
- / Zidw,, t e 0,T],
t
Y =g, Zi=ni, te[T,T+K].

-2 . . .
Let f (t,y,z) = f2(t,y,z, Yt1+ 51(1) th () ), then the following GBDSDE admits a unique
solution (Y3, Z3),

3 _ 2 T2 3.3 T2 \3 T 2 v3 o1
Y} =22 +/t (s, Y3, 23)ds +/t H2(s, Y3)dK, +/t G2(s,Y?,23)d B s
T
- / Z3dW,, t e [0,T],
t

Y} =, Z}=ui, te[T,T+K]|
According to the assumptions (1), (2), (4) and Lemma 1, we can get Yt1 = Yt3, a.s., forallt e
[0, T], which implies Y!! > Y?,a.s., forallt € [0, T + K]. Let (Y4, Z*) be the unique solution
for the following GBDSDE:

T T T —
Y=gt [P ZE 0 2 s+ [ s YK + [ G5 ¥, 2B

T
- / ZXdW;,t € [0, T],
Jt
Yi=¢2, Z}t=y? te|T,T+K].
From Lemma 1 and assumptions (3), we can get YE’ > Yf,a.s., forall t € [0, T], which

implies Yt3 > Yt4,a.s., forallt € [0, T+ K]. For j > 5, define:

. T ; . . T . T . .
-1 -
Y] :g%Jr/t f2(s,Y!,Zé,YtJMI(t),Zt2+§2(t))ds+/t Hz(s,Ys])sz+/t G2(s, Y., z)d B,

T .
—/ ZIdW,, t € [0,T],
t

Y/ =g, z] =y} te[T,T+K]|

According to Lemma 1 and by induction, we can get Yt4 > Yf’ > > Ytj -1 > Ytj ,a.s., for all
t € [0, T + K]; hence, forall j > 3

Y! > Y],as., forallt € [0, T +K]. 6)
Set

7 RV R e S0 NS RS
i =Y, =Y, 4i=2-2 ,
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Pl — 2(p vl 7] yi—1 204 yl7l 71 yi=2 0
F=f (tY Zt'Yt+5() t+§2 ) fo(, LYy 2 ’Yt+5() t+§2(t))/
G =G(tY,Z) -Gt Y ', Z 7Y, A = HA(t,Y)) — HA(t, Y/ ).
Then for j > 5, (Y1, 2/) satisfies
" T . T . T .. o T .
Yl :/ ngs+/ HgszJr/ ngBs—/ ZLdW,, t € [0,T),
t t t t
Yi=0, ZJ=0, te[T,T+K].
For any A, 4,0 > 0, apply Ito’s formula to eM K |17t] ?
Jensen’s inequality, we have:

, in view of (H3), Young’s inequality,

v T N T L T v
E[e/\t+”Kf|Yg|2+A/ e/\s+yKS|Ys]|2ds+‘u/ 6A5+VKS‘YSJ|2CIK5—|—/ EAS+VKS‘Z£|2dS]
t t t
T o T e T o
= ZE/ e’\s+”KsYs]Fs]ds+2E/ TRVl AldK, +E/ SIS |G ds
t t t
C T — C T _
<(6+ §+C)E/ MK T s + (§+1x1)E/ K Z 2
t Jt

T e o T "
+CTME / AsTHKs | Y171 245 + OCE / MK | Y1124K,.
t t

Choosing = 13(1';1 +2CM,A =0+ % +C+1,u=1,wehave:
T Astuke | vip2 T st ks |97 12 T c As+uKs |57 (2
]E[/t K Y | ds—i—/t A HKs | 7] sz+/t (1— 5 — an)e 5 20 2ds]

T i T i T C i
< SEL[ MR P+ [T M T B+ [ (1= G = m)eh |2 P,

N —

Thus, we have proved that (Y*, Z¥) is a Cauchy sequence in %ﬁ with the norm,

T T T C
100 2R, = B[ &y Ps + [ty Pak, + [(1- 5 = a)e*H |z, 2as),
§ 0 0 0

soitis also a Cauchy sequence in M2 (0, T+ K; R) x M2(0, T + K; R?). Therefore, there exists
(Y,Z.) € M*(0, T+ K;R) x M?(0, T+ K;R¥) such that Y; = &2, Z; = y? for T < t < T+ K
and

T . T . T .
E[/O |Y{—Yt|2th]+E[/O |Y{—Yt|2dt]+E[/0 1Z] — Z,2d1] = 0 as j — co.

Hence, it is easy to check that, as j — oo,

1
E/ (YL ZLYI) (0 22 cage) = P8 Y Ze, Yot 22 gy ) s = 0,

i 7 2 2 2 2 2 2
]E/ S YS!ZS/Y (52(5),ZS+Z2(5)) g (S/ YS/ ZS/ YS+32(S)’ ZS+EZ(S))| dS — 0/

T . T
EH/ Zéodws—/ Zo - dWq[?] = 0.
Jt t

Furthermore, we can prove Y. € S?(0, T + K;R) through Burkholder-Davis-Gundy in-
equality. So, we conclude that (Y., Z.) solves the following AGBDSDE:



Symmetry 2022, 14, 114 13 of 14

T T
Y= Gt [ Y Ze Yo o) L s [ IG5 Y, Y2 K

T - T
2 2 2 B
[ Pz Y2 o 2 o B [ ZidWs,  te[0T)

Y; =&, Zi=yn? te|T,T+K].

Then the uniqueness part of Theorem 1 shows that Y; = Ytz,a.s.,for allt € [0,T+K].
Finally, letting j — co in (6) yields Y}! > Y?,a.s. forallt € [0,T+K]. O

Let us give an example.

Example 2. Let f'(t,y,2,0(r), (7)) = |y| + |z| + E7([|0(r)[] + E7*[| cos 0(7)|], f2(t,y, 2,
0(r), 8(7)) = y + |z + EZ[0(r)], g'(t,,2,6(r), 8(F)) = g*(t,v,2,0(r),8(F)) = arctany +
|z} (t,y,0(r)) = |y| + E”t[arctand(r)], h*(t,y,0(r)) = y — Z. Then by Theorem 3, we can
derive Y} > Y?,a.s., forall t € [0, T + K] as long as the assumption (1) of Theorem 3 holds.

5. Conclusions

In this paper, we explore a class of anticipated AGBDSDEs. We proved the existence
and uniqueness of the solutions of this kind of AGBDSDE. Moreover, two comparison
theorems are also proved. In the coming future papers, we will focus on studying this topic
and pay more attention to the applications of such equations.
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