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Abstract: In recent years, the dendritic neural model has been widely employed in various fields
because of its simple structure and inexpensive cost. Traditional numerical optimization is ineffective
for the parameter optimization problem of the dendritic neural model; it is easy to fall into local in the
optimization process, resulting in poor performance of the model. This paper proposes an intelligent
dendritic neural model firstly, which uses the intelligent optimization algorithm to optimize the
model instead of the traditional dendritic neural model with a backpropagation algorithm. The
experiment compares the performance of ten representative intelligent optimization algorithms
in six classification datasets. The optimal combination of user-defined parameters for the model
evaluates by using Taguchi’s method, systemically. The results show that the performance of an
intelligent dendritic neural model is significantly better than a traditional dendritic neural model. The
intelligent dendritic neural model has small classification errors and high accuracy, which provides
an effective approach for the application of dendritic neural model in engineering classification
problems. In addition, among ten intelligent optimization algorithms, an evolutionary algorithm
called biogeographic optimization algorithm has excellent performance, and can quickly obtain
high-quality solutions and excellent convergence speed.

Keywords: dendritic neural model (DNM); classification problems; intelligent optimization algorithm

1. Introduction

Since the dawn of the big data era, every corner of human society has accumulated a
large amount of data. There is an urgent need for computer algorithms that can properly
evaluate and utilize data, while machine learning just meets the urgent need of the era.
Classification problems, as a hot topic of machine learning, have a widespread application
in reality [1], such as common spam recognition speech recognition, tumor recognition,
bank credit loan business and so on [2,3]. For solving various classification problems,
lots of machine learning techniques have been proposed, such as decision tree [4], naïve
Bayesian classifiers [5], support vector machine [6], artificial neural networks [7], k-nearest
neighbor [8], ensemble learning [9] and so on.

Due to the high-dimensional characteristics of complex nonlinear problems, traditional
methods cannot effectively solve these problems. Among them, artificial neural network
simulates the information processing mechanism of biological neural network, which has a
good fitting effect on nonlinear problems and has been successfully used in text classifica-
tion, pattern and speech recognition. In 1943, an artificial neural network was proposed
by McCulloch and Pitts firstly [10]. This model is relatively simple but significant. In
1957, Rosenblatt came up with perceptron model, which was based on the M–P model [11].
Perceptron has fundamental principles of modern neural networks, while its structure
is consistent with the real biological nerves. However, the linear perceptron has limited
functions and cannot even solve the simple XOR problem. In 1986, with research based on
multilayer neural networks, Rumelhart put forward the backpropagation algorithm (BP)
for weight correction of a multilayer neural network [12]. It solved the learning problem
of a multilayer feedforward neural network and proved that a multilayer neural network
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has a strong learning capacity, which can complete lots of learning tasks and solve a large
number of practical problems.

With the deepening of research, engineering problems become more and more complex.
The field of machine learning is also quickly evolving, and many scholars have proposed
many different neural networks, such as a cyclic neural network [13], convolutional neural
network [14], feedforward neural network [15] and dendritic neural model [16–18].

The artificial neural network is originally constructed in the form of a perceptron [19];
almost all modern artificial neural networks use this kind of structure, but experiments in
the field of physiology have found that biological neurons are far more complex than the
above model. Studies have shown that dendritic structures contain a large number of active
ion channels, and synaptic input may have a linear effect on its adjacent synaptic input [20].
In addition, many studies have shown that the biological plasticity mechanism also plays a
local role in dendrites [21]. These characteristics greatly promote the role of local nonlin-
ear components in neuron output and endow neural networks with higher information
processing capabilities [22]. Different from other neural models, a dendritic neural model
considers the nonlinearity of synapse, and it simulates the process of the information
transmission of a neuron [17]. Because of its easy explanation and simple implementation,
it has been used by many scholars to solve various complex problems, for example, tourism
economic forecast [23], bankruptcy prediction [24], breast cancer classification [25], liver
disorders [26] and so on [27–33]. References [25,26] use traditional dendritic neural models
with backpropagation algorithm to optimize weights and thresholds. Backpropagation is
gradient descent in essence; it has poor robustness, and it is extremely easy to fall into local
traps [34]. References [27,35], respectively, proposed to use particle swarm optimization
and a states of matter search algorithm as the optimization algorithm. However, their
comparative experiment is single, and there is a lack of systematic and complete research
on the application of intelligent optimization algorithm in dendritic neural models.

With the continuous innovation of evolutionary computation, intelligent algorithm
has a rapid development and a wide range of practical applications in various fields such
as model symmetry/asymmetry, model architecture and hyper-parameters, clustering
and prediction, becoming a novel method to solve traditional optimization problems in
machine learning.

Intelligent optimization algorithm is a cluster of algorithms. With continuous research
and development, the algorithm cluster is growing, and a variety of algorithms arises at the
historic moment, most of them inspired by biological evolution in nature. A example is the
genetic algorithm (GA), which maintains and improves multiple candidate solutions based
on population method and uses population characteristics to guide search [36,37], and
another typical algorithm is the differential evolution algorithm (DE) of heuristic search
based on population [38,39]. Moreover, inspired by biogeography theory, a biogeographic
optimization algorithm (BBO) is proposed [40,41], which based on study of mathematical
model of biological species migration. As another type of intelligent optimization algo-
rithm, based on mathematical statistics theory, the estimation of distribution algorithm
realizes population search and evolution by constructing probability models. Population-
based incremental learning (PBIL) is a classical estimation of distribution algorithm [42,43].
Another kind of intelligent optimization algorithm are swarm intelligence algorithms,
inspired by natural phenomena such as particle swarm optimization (PSO) [44,45], ant
colony optimization (ACO) [46,47], artificial bee colony algorithm (ABC) [48,49] and whale
optimization algorithm (WOA) [50,51]. In recent years, the Harris hawks optimization
algorithm (HHO) inspired by the group cooperation behavior of the Harris eagle and chimp
optimization algorithm (ChOA) inspired by chimpanzee hunting behavior in its group are
new swarm intelligence optimization algorithms [52,53].

The contribution of this paper is as follows:

1. This paper proposes an intelligent dendritic neural model firstly, which uses an
intelligent optimization algorithm to optimize the model instead of the traditional
backpropagation algorithm. The experimental results show that the performance of
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the intelligent dendritic neural model is superior to the traditional dendritic neural
model, which provides an effective approach for the application of dendritic neural
model in engineering classification problems.

2. Through the comparison of scientific experiments, the effective intelligent learning
algorithm of dendritic neural model for classification problems is determined. By
comparing different types of intelligent optimization algorithms, the result shows
that the biogeographic optimization algorithm has excellent performance, can quickly
obtain high-quality solutions and has excellent convergence speed.

2. Dendritic Neural Model

There exists four layers in the dendritic neural model; they are the synaptic layer,
dendritic layer, membrane layer and soma layer. Each layer has corresponding functions
and characteristics. The detailed structure of the whole model is shown in Figure 1, where
X = {x1, x2, x3, . . . , xn} is the input data of model, m branches represent m dendritic layers
and O is actual output of model. There are weights and thresholds in each synapse. In
the training process of the model, the algorithm will continuously adjust the weights and
thresholds in each synapse to optimize the performance of the model. The specific functions
of each layer are introduced in detail below.
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Figure 1. Structure in detail of dendritic neural model.

2.1. Synaptic Layer

Input vector X = {x1, x2, x3, . . . , xn} inputs data from synapses, and the output of
synapse layer is obtained by the activation of the sigmoid function. The nodes in the
synaptic layer contain the weights and thresholds of the dendritic neural network. In the
training process of the model, the intelligent optimization algorithm needs to optimize all
the weights and thresholds in the synaptic layer. The expression of the synaptic layer is (1).

Yij =
1

e−k(ωijxi−θij)
(1)

where k is a user-defined constant. ωij and θij are the corresponding weight and thresh-
old. According to different values of ωij and θij, there are six situations: ¬ 0 < θij < ωij,
­ 0 <ωij< θij, ® ωij< θij < 0, ¯ θij< ωij< 0, ° θij < 0 <ωij and ± ωij < 0 <θij . In case ¬, the
output Yij is proportional to the output xi, which called the Excitatory state; in case ®, the
output Yij is inversely proportional to the output xi, which is called the Inhibitory state; in
cases ­ and ±, the value of the output Yij is always close to 0, which called the Constant-0
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state and in cases ¯ and °, the value of the output Yij is always close to 1, which called
the Constant-1 state. Figure 2 shows the details of the four states corresponding to the
six situations.
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2.2. Dendritic Layer

The dendrite layer multiplies results of n synaptic layers. The whole process can be
expressed as (2).

Zj =
n

∏
i=1

Yij (2)

2.3. Membrane Layer

The membrane layer is connected to m dendritic branches; the function of the mem-
brane is to perform the sum operation over the results of all branches. The whole process
can be expressed as (3).

V =
m

∑
j=1

Zj (3)

2.4. Soma Layer

Finally, the final output of the soma layer is obtained by the sigmoid function, which
can be expressed as (4).

O =
1

1 + eksoma(V−θsoma)
(4)

where ksoma and θsoma are self-defined parameters.

3. Learning Algorithms
3.1. Backpropagation Algorithm

The traditional dendritic neural model uses the backpropagation algorithm to update
weights and thresholds of the model, which adjusts the weight by backpropagation of the
training error layer by layer through the chain rule. Firstly, the least squared error between
the actual output Op and the desired output Tp of the target is obtained as follows in (5).

Ep =
1
2
(
Tp −Op

)2 (5)
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The synaptic parameters ωij and θij are updated along the negative gradient direction;
the whole process can be described as (6) and (7).

∆ωij(t) =
P
∑

p=1

∂Ep
∂ωij

∆θij(t) =
P
∑

p=1

∂Ep
∂θij

(6)

ωij(t + 1) = ωij(t)− η∆ωij(t)
θij(t + 1) = θij(t)− η∆θij(t)

(7)

where η represents the learning rate; it is usually set to 0.1. According to the structure of
the dendritic neural model in Section 2, the whole process of partial differential derivation
can be described as (8) and (9).

∂Ep
∂ωij

=
∂Ep
∂Op

∂Op
∂V

∂V
∂ZJ

∂ZJ
∂Yij

∂Yij
∂ωij

∂Ep
∂θij

=
∂Ep
∂Op

∂Op
∂V

∂V
∂ZJ

∂ZJ
∂Yij

∂Yij
∂θij

(8)

∂Ep
∂Op

= Tp −Op

∂Op
∂V = ksxie−ks(V−θs)

(1+e−ks(V−θs))
2

∂V
∂Zj

= 1

∂Zj
∂Yij

=
n
∏

l=1 and l 6=i
Yl j

∂Yij
∂ωij

= kxie
−k(ωij xi−θij)(

1+e−k(ωij xi−θij)
)2

∂Yij
∂θij

= ke−k(ωij xi−θij)(
1+e−k(ωij xi−θij)

)2

(9)

This paper introduces the intelligent optimization algorithm into the training of the
model. Different from the idea of backpropagation algorithm, the intelligent optimization
algorithm updates ω and θ by iterating to find the optimization individual. Assuming that
the input number of the dendritic neural model is n and m is the number of dendritic layers,
if a vector represents a viable solution, then Xi(iε[1, Q]) can be expressed as (10).

Xi =
{

x1
i , x2

i , . . . , xn
i
}

= {ω11, ω12, . . . , ωmn, θ11, θ12, . . . , θmn}
(10)

where Xi denotes the ith feasible solutions and ω and θ are weight and threshold in the
dendritic layer. Generally, the intelligent optimization algorithm first initializes a certain
number of feasible solutions randomly, and then iteratively optimizes all feasible solutions
according to the characteristics of different optimization algorithms until meeting the
termination conditions. The optimal solution Xbest is the optimal solution of the weight and
threshold of the dendritic neural model. In the iterative optimization process, the minimum
mean squared error (MSE) is used as a loss function to assess the quality of each feasible
solution. The minimum mean squared error is calculated by (11).

MSE(Xi) =
1

2P

P

∑
p=1

(
Tp −Op

)2 (11)

where Tp is desired output of the pth sample, and Op is the actual output of the pth sample.
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3.2. Genetic Algorithm

Referring to the genetic evolution theory of Darwin and Mendel, the genetic algorithm
was proposed by J. Holland in 1975 firstly. It was developed by simulating the biological
evolution mechanism in nature. The individual of population is called the chromosome.
The constant updating of chromosomes during iteration is called heredity. Inheritance
consists of three parts—selection, crossover and mutation. Chromosome quality is usually
evaluated by fitness function. At the beginning of the genetic algorithm is the generation of
random individuals, according to a predetermined loss function to evaluate each individual,
and giving a fitness value. Through the fitness function, the selected individuals produce
the next generation. This operation inherits the idea of survival of the fittest in nature, and
then the selected individuals combine to produce a new generation through crossover and
mutation. The new generation is better than the previous generation because it inherits the
excellent characteristics of the previous generation, and the whole population gradually
moves towards the optimal solution. According to Algorithm 1, genetic algorithm is mainly
divided into the following three parts.

(a) Selection operator: based on the assessment of individual fitness, selection operator
usually selects individuals with higher fitness and eliminates individuals with lower
fitness. The common selection methods: fitness allocation method based on proportion
or ranking, roulette selection method and so on.

(b) Crossover operator: in the process of biological evolution in nature, two chromosomes
form new chromosomes by gene recombination. Therefore, crossover is the core link
of the whole process. The design of crossover operator needs to be analyzed for each
specific question. The familiar crossover operators such as single point crossover,
uniform crossover, multi-point crossover and so on.

(c) Mutation operator: mutation changes genes inherited on chromosomes by random
selection. Mutation itself can be seen as a random algorithm, strictly speaking, an
auxiliary algorithm used to generate new individuals.

Algorithm 1: Genetic Algorithm.

Begin:
Randomly initialized population of chromosomes ({Xi}, i ∈ [1, Q])
Evaluate the fitness value for each chromosome using Equation (11)
while Termination criterion

Selection the best chromosome by Roulette Wheel Selection
Generating new chromosomes through single-point crossover and mutation
Evaluate the fitness value of the new chromosome
Replace the population’s worst chromosomes with the greatest new chromosomes
t = t + 1

end while
return the best solution

End

3.3. Differential Evolution Algorithm

In 1996, Rainer and Kenneth, to solve Chebyshev polynomials, proposed the differ-
ential evolution algorithm. The basic idea of DE is to randomly generate a group of the
initial population and randomly select three individuals in the initial population; the new
individual is generated through summing up the vector difference of two individuals with
the third individual according to certain rules. Then, it would compare the new individual
with another individual randomly selected in population. If the new individual is superior
to the compared individual, it would retain the new individual and eliminate the compared
old individual; if the new individual is inferior to the one compared with it, the algorithm
would abandon the new individual, retain the old individual compared with it and reselect
other individuals from population to generate new individuals. Repeated in this way, the
individuals of the initial population are continuously updated until the population reaches
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a certain optimal state. As shown in Algorithm 2, the process of the differential evolution
algorithm includes mutation, crossover and selection operations, which is very similar to
the genetic algorithm, but each process has a completely different meaning. It has a variety
of mutation strategies. The strategy adopted in the experiment is DE/rand/1, and the
formula is shown in (12).

Vi = Xr1 + F·(Xr2 − Xr3) (12)

Algorithm 2: Differential Evolution Algorithm.

Begin:
F0: Initial mutation operator; CR: Crossover operator
Q: Population; D: Dimension
Initialize the population and calculate the fitness of each population
while Termination criterion

Adaptive mutation operator λ = exp
(

1− G
G+1−t

)
, F = F0 ∗ 2λ

for i = 1: Q
Crossover operator: Vi = Xr1 + F·(Xr2 − Xr3)

Mutation operator: uij =

{
vi,j i f rand < CR or randi(1, D) = j
xi,j i f rand > CR or randi(1, D) 6= j

Selection operator: xi =

{
ui i f f it(ui) superior to f it(xi)

xi else
end for
t = t + 1

end while
return the best solution

End

3.4. Population-Based Incremental Learning Algorithm

PBIL guides the evolution of the population by maintaining a probability vector.
The algorithm selects the individual with the best fitness in each generation to update
the probability vector, and the next generation population is generated by the updated
probability vector sampling. Repeating these steps, the final optimal solution is obtained.
The probability vector is the core part of a population-based incremental learning algorithm.
According to Algorithm 3, the main operations related to the probability vector in the
algorithm are described below.

Algorithm 3: Population-based Incremental Learning Algorithm.

Begin:
Q: population; LR: learning factor
pm: mutation probability; MS: mutated offset value
Initialization probability vector Pt, pt

i = 0.5, i = 1, 2, . . . , L
while Termination criterion

Generate population according to Pt sampling
Evaluate the fitness of each individual according to Equation (11)
Find the individual Bt with the best fitness in the population
Update Pt according to Equations (13) and (14)
t = t + 1

end while
return the best solution

End

Assuming that the optimal individual of the current generation is Bt =
(
bt

1, bt
2, . . . , bt

L
)
,

the probability vector Pt of the current generation is updated by the following Formula (13).

pt
i = (1.0 − LR) · pt−1

i + LR·bt
i , i = 1, 2, . . . , L (13)
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where LR indicates the learning factor, which is generally set to 0.01. For each pt
i in the

probability vector Pt, if random(0, 1) is less than the mutation probability pm, the vector
value pt

i is mutated; otherwise, it is not mutated. Formula is as follows in (14).

pt∗
i = (1.0−MS) · pt

i + MS·random(0 or 1) (14)

where pt∗
i represents the ith mutated vector value of Pt, and MS represents the mutated

offset value.

3.5. Particle Swarm Optimization Algorithm

PSO is a stochastic search algorithm developed by simulating the foraging behavior of
birds. The algorithm abstracts individual birds into massless, volumetric and informative
particles. Since bird populations do not know the specific location of food at first, they can
only get the information that food is within a certain range, so bird populations adopt a
stable and simple method: search the area around the bird that is closest to the food.

Inspired by this, particle swarm optimization randomly initializes many particles in a
solution space, and each particle is given random speed and position information. Then
these particles begin to move or stay in place with the initialized speed. After sharing
information with the surrounding particles, the approximate orientation of the optimal
solution and the position information of the particles closest to the optimal solution is
obtained, and the particle moves progressively towards the optimal solution position. The
whole process is shown in Algorithm 4. The mathematical formula of particle velocity
update mode is described as follows in (15).

vt
i = ωvt−1

i + c1r1

(
pbesti − xt−1

i

)
+ c2r2

(
gbest− xt−1

i

)
(15)

where c1 and c2 are the learning factors of individual extreme and global extreme, r1 and r2
are the influence disturbance factors of individual extreme and global extreme and pbesti
and gbest are the individual extremum and global extreme in the tth iteration.

Algorithm 4: Particle Swarm Optimization Algorithm.

Begin:
Initialize population of particles ({Xi}, i ∈ [1, Q])
Evaluate fitness for each particle using Equation (11)
Set pbesti = Xi, gbest = min{pbest}
while Termination criterion

for i = 1: Q
Update the velocity and position of Xi by Equation (15)
Evaluate the fitness of Xi
if fit(Xi) < fit(pbesti)

pbesti = Xi
if fit(pbesti) < fit(gbest)

gbest = pbesti
end for
t = t + 1

end while
return the best solution

End

3.6. Ant Colony Optimization Algorithm

ACO was proposed by M. Dorigo firstly, and inspired by real ant colony behavior. The
study found that individual ants communicate with each other through a pheromone that
allows them to collaborate on complex tasks. Ants tend to move towards the directions
with high pheromone concentrations during movement. They not only leave pheromones
on the path they pass but also sense the presence and concentration of pheromones during
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movement to guide their movement direction and search for food. The ant colony algorithm
simulates such optimization mechanisms to find the optimal solution through information
exchange and cooperation among individuals. The whole simulation process is shown in
Algorithm 5. According to the pheromone quantity and heuristic information on each path,
the transition probability of the ant at point i at time t to select the next movable point j
is (16).

Pk
ij =


[τij]

α ·[ηij]
β

∑s∈allowedk [τij]
α ·[ηij]

β
]
, j ∈ allowedk

0, otherwise
(16)

where allowedk = {n− tanuk} represents the set of points that ant k at point i is allowed
to choose to go next. α represents the influence of pheromone remaining on the path on
the subsequent ants’ choice of the path, β represents the expected heuristic factor, τij is the
pheromone concentration and ηij is the heuristic function.

3.7. Artificial Bee Colony Algorithm

ABC simulates the honey-collecting behavior of honeybees. The location of a nectar
source represents the solution, and the pollen quantity of the nectar source represents the
value of fitness function. All bees are separated into three groups: the employed bees, the
onlooker bees and the explored bees. The number of employed bees is the same as the
number of nectar sources, and the number of onlooker bees is half of the number of nectar
sources. Firstly, the employed bees take charge of the initial search for nectar sources and
collects and shares information. Then the onlooker bees is in charge of staying in the hive
and collecting nectar according to the information provided by the employed bees; last,
the explored bees are responsible for randomly searching for new nectar sources to replace
original ones after original ones are abandoned. According to Algorithm 6, each stage is
described as follows.

Algorithm 5: Ant Colony Optimization Algorithm.

Begin:
keep: elitism parameter; ρ: local pheromone decay rate
Q: Population; D: Dimension
Initialize the population and calculate the fitness of each population
while Termination criterion

for i = 1: Q
for j = 1: Q

Use each solution to update the pheromone for each parameter value:
τij = (1− ρ)τij + ∑i=1 Q∆τk

ij
end for

end for
for k = keep + 1: Q
Use the probability Equation (16) to generate new solutions
end for
t=t+1;

end
return the best solution

End

(a) Employed bees’ stage: employed bees use Formula (17) to find new nectar sources.

vij = xij + ϕij

(
xij − xkj

)
(17)

where xkj represents the domain nectar source, and k is not equal to i. ρij is a random
constant between −1 and 1. After obtaining the new nectar source through the above



Symmetry 2022, 14, 11 10 of 35

formula, the fitness function values of new and old nectar sources are compared by
using the greedy algorithm, and the superior one is selected.

(b) Onlooker bees’ stage: at this stage, employed bees share nectar information in the
dance area. Then onlooker bees analyze information and adopt a roulette strategy to
select nectar source tracking mining to ensure that the probability of nectar source
mining with higher fitness value is greater.

(c) Explored bees’ stage: if a nectar source has not been renewed after several mining
sessions, the nectar source should be abandoned and the explored bees stage starts.
The explored bees use Formula (18) to randomly search for new nectar sources to
replace abandoned ones.

xij = xminj + rand[0, 1]
(
xmaxj − xminj

)
(18)

where xminj and xmaxj represent the minimum and maximum values of the jth dimension.

Algorithm 6: Artificial Bee Colony Algorithm.

Begin:
Q: The number of nectar sources or the employed bees;
D: Dimension; O: The number of the onlooker bees
Initialize the nectar sources and calculate the fitness of each nectar source
while Termination criterion

for i = 1: Q
for j = 1: D

Update the location of employed bees by Equation (17)
Store the best nectar sources in a greedy way, and record if not updated

end for
end for
for l = 1: O

Check whether there is nectar source stagnant update. If so, update through
Equation (18)

end for
Complete generation update
t = t + 1;

end
return the best solution

End

3.8. Whale Optimizaton Algorithm

Mirjalili proposed a WOA-inspired predation mode of humpback whales. Humpback
whale individuals can identify and surround prey. According to Algorithm 7, the whole
process can be abstracted into three stages: searching prey, surrounding prey and bubble
net attack.

(a) Surrounding prey: humpback whales can recognize prey and continuously reduce
their surrounding range. The optimal solution represents target prey or location close
to target prey, and other whales will keep approaching it. The entire mathematical
model can be interpreted as follows in (19) and (20).

D =|C·X∗(t)− X(t) (19)

X(t + 1) = X∗(t)− A·D (20)

where X∗(t) is the current optimal whale position vector, t is iterations, X(t) is the
current humpback whale position vector, A·D is bounding step length A and C
represent different coefficient vectors.
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(b) Bubble net attack: when a humpback whale surrounds prey, it spits out bubbles in a
spiral way to surround the prey. When |A| ≤ 1, the Formula (21) simulates the spiral
hunting behavior of the humpback whale.

Xt+1 = D′·ebl · cos(2πl) + X∗(t) (21)

where D′ = |X∗(t)− X(t)|, D′ is the distance between current humpback whale
position and prey, and b is the constant that determines shape of spiral. l is a random
constant in [−1,1].

(c) Searching prey: when |A| > 1, whale individuals are forced to stay away from
the optimal whale location of the current generation so that whale individuals ran-
domly search for prey, which is no longer affected by the current optimal whale. Its
mathematical model can be described as follows in (22) and (23).

D =|C·Xrand(t)− X(t) (22)

X(t + 1) = Xrand(t)− A·D (23)

where Xrand(t) represents the random whale location in the current whale population.

Algorithm 7: Whale Optimization Algorithm.

Begin:
Initialize related parameters, Q: Population
Initialize the population and calculate the fitness of each population
while Termination criterion

for i = 1: Q
if (p < 0.5)

if (|A| < 1)
Update the individual by Equation (19)

else if (|A| ≥ 1)
Select a random individual to update by Equation (23)

else if (p ≥ 0.5)
Update the individual by Equation (21)

end for
Calculate individual fitness and update the optimal solution
t = t + 1;
end while
return the best solution

End

3.9. Harris Hawks Optimization Algorithm

Inspired by the process of Harris eagle predation, Heidari proposes HHO. The Harris
eagle is a group predator, and all are members of the division of labor and coordinated
action. The exploration phase is a global search process in which eagles track and detect
prey from the air. When the target prey is determined, all members of the group gradually
approach the location of the prey, find a suitable position around the prey and complete
the encircling for the final attack preparation. The whole simulation process is shown in
Algorithm 8. According to the escape behavior of prey and the chase strategy of Harris
eagle, Harris Hawks Optimization uses four different strategies to simulate the attack.

(a) When |E| ≥ 0.5 & r ≥ 0.5, in this solution, prey has enough physical strength to try to
escape by jumping but is eventually captured; the formula is as follows (24) and (25).

X(t + 1) = DX(t)− E·
∣∣J·XPrey(t)− X(t)

∣∣ (24)

DX(t) = XPrey(t)− X(t) (25)
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where DX(t) represents position deviation between eagle group and prey after the
tth iteration, and j is the jumping distance during the escape of the prey. XPrey is the
position of the prey.

(b) When |E| < 0.5 & r ≥ 0.5, in this solution, prey does not have sufficient energy and is
directly captured by the eagle, the formula can be described as follows (26).

X(t + 1) = XPrey(t)− E·|DX(t)| (26)

(c) When |E| ≥ 0.5 & r < 0.5, in this solution, the prey has plenty of energy to escape
and has the opportunity to escape. Therefore, the eagles form a more intelligent
encirclement. The implementation strategies are as follows (27) and (28).

Y = XPrey(t)− E·
∣∣J·XPrey(t)− X(t) (27)

X(t + 1) =
{

Y, F(Y) < F(X(t))
Z, F(Z) < F(X(t))

(28)

When |E| < 0.5 & r < 0.5, in this solution, there is a prey energy shortage but still a
chance to escape. Therefore, when the eagles form a hard encirclement to narrow average
distance from their prey, the formula can be interpreted as follows in (29) and (30).

Y = XPrey(t)− E·
∣∣J·XPrey(t)− X(t) (29)

X(t + 1) =
{

Y, F(Y) < F(X(t))
Z, F(Z) < F(X(t))

(30)

3.10. Chimp Optimization Algorithm

During chimpanzee hunting, any chimpanzee can randomly change its position in the
space around its prey. The mathematical description is as follows in (31) and (32).

d =
∣∣∣cXprey(t) −mXchimp(t) (31)

Xchimp(t + 1) = Xprey(t)− ad (32)

where d is the distance between chimpanzees and prey; t is the current number of iterations;
Xprey(t) is the prey position vector; Xchimp(t) is the chimpanzee position vector and a, m,
and c are coefficient vectors.

In the chimpanzee community, according to the diversity of intelligence and ability
shown by individuals in the process of hunting, chimpanzee groups are classified as
“driver”, “barrier”, “chaser” and “attacker”. Each type of chimpanzee has its own ability to
think independently and use its own search strategy to explore and predict the location of
prey. While they have their own tasks, they also exhibit chaotic individual hunting behavior
at the end of the hunt due to social incentives to obtain sexual behavior and benefits. The
Chimp Optimization Algorithm solves the problem by simulating the co-hunting behavior
of the four chimpanzee species. According to Algorithm 9, the formula for updating the
positions of the four chimpanzee groups is described as follows (33)–(35).

DAttacker = |C1 ∗ XAttacker −m ∗ X|
DBarrier = |C2 ∗ XBarrier −m ∗ X|
DChaser = |C3 ∗ XChaser −m ∗ X|
DDriver = |C4 ∗ XDriver −m ∗ X|

(33)


X1 = XAttacker − A1 ∗ DAttacker
X2 = XBarrier − A2 ∗ DBarrier
X3 = XChaser − A3 ∗ DChaser
X4 = XDriver − A4 ∗ DDriver

(34)
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X(t + 1) =
X1 + X2 + X3 + X4

4
(35)

Algorithm 8: Harris Hawks Optimization Algorithm.

Begin:
Initialize related parameters, Q: Population
Initialize the population
while Termination criterion

Calculate the fitness of each population
Set Xprey as the best individual
for i = 1: Q

Update the energy E and jump strength J
if(|E| ≥ 1)

Update by X(t + 1) =
{

Xrand(t)− r1|Xrand(t)− 2r2X(t)| q ≥ 0.5
XPrey(t)− Xm(t)− r3(LB + r4(UB− LB)) q < 0.5

if (|E| < 1)
if (|E| ≥ 0.5 & r ≥ 0.5)

Update by formulae (24) and (25)
else if (|E| < 0.5 & r ≥ 0.5)

Update by Formula (26)
else if (|E| ≥ 0.5 & r < 0.5)

Update by formulae (27) and (28)
else if (|E| < 0.5 & r < 0.5)

Update by formulae (29) and (30)
end for

t = t + 1
end while
return the best solution

End

3.11. Biogeography-Based Optimization Algorithm

BBO is an intelligence algorithm that uses biogeographic theory to solve optimization
problems. In a biogeographic optimization algorithm, habitat is used to represent indi-
viduals in intelligent optimization algorithm, the suitable index variable (SIV) represents
variables in individuals and the habitat suitability index (HSI) represents individual fitness.
In nature, the habitat suitability index of each habitat for biological population is different.
Habitats with high HSI can accommodate more species and have high species migration
rates and low species migration rates. Individual migration can share excellent SIV between
habitats. The migration models in biogeography-based optimization mainly include the
linear migration model, trapezoidal migration model, secondary migration model and
cosine migration model. The linear migration model is used in this paper. Formula (36) is
the calculation of immigration rate λ(S); Formula (37) is emigration rate µ(S). The entire
migration operation is shown in Algorithm 10.

µ(S) = E× S
Smax

(36)

λ(S) = I ×
(

1− S
Smax

)
(37)

where E represents the probability of maximum emigration, I represents the maximum
immigration probability.
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Algorithm 9: Chimp Optimization Algorithm.

Begin:
Initialize f, m, a, and c; Q: Population
Initialize the population and calculate the fitness of each chimp
XAttacker represents the best search agent
XBarrier represents the second best search agent
XChaser represents the third best search agent
XDriver represents the fourth best search agent

while Termination criterion
for i = 1: Q

Update f, m, a and c according to different group strategies
if (µ < 0.5)

if (|a| < 1)
Update the position by (32)

else if (|a| ≥ 1)
Select a search agent randomly

else if (µ ≥ 0.5)

Update the position by Xchimp(t + 1) =
{

Xprey(t)− a.d i f µ < 0.5
Chaotic_value i f µ ≥ 0.5

end for
Update XAttacker,XBarrier,XChaser,XDriver
t = t + 1
end while

return the best solution
End

Mutation operation simulates the phenomenon that diseases, natural disasters and
other factors change the living environment of habitat and lead to the deviation of habitat
population from the equilibrium point. According to Algorithm 11, the mutation probability
Ms of the species is calculated as follows (38).

Ms = Mmax ×
(

1− Ps

PSmax

)
(38)

where Ps is probability of S species in the habitat; PSmax is the maximum value of Ps, and
Mmax represent the maximum mutation rate.

The above introduces how the intelligent optimization algorithm optimizes the weight
and threshold of the dendritic neural network. At the same time, the principle, character-
istics, important formulas and pseudocode of each algorithm are introduced in detail. Each
algorithm has its own characteristics, which also determines the adaptability of the algorithm.

Algorithm 10: Migration Operation(BBO).

For d = 1: D
if rand() < λi

select another habitat h from the population with the migration probability µj
Hi(d)← Hj(d)

end if
End for

Algorithm 11: Mutation Operation(BBO).

For d = 1: D
if rand() < πi

Hi(d)← ld + rand()·(µd − ld) end if
end if

End for
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4. Experiment

For the classification problem of DNM, the experiment compared the results of ten
intelligent optimization algorithms and traditional backpropagation algorithms on six clas-
sical classification datasets. The software environment of the experiment is MATLAB2018a,
and the hardware environment is Intel(R) Core(TM) I5-9500 CPU @ 3.00 GHz, 8.00GB.

All datasets are from the UCI database [54]. Table 1 shows the attributes, number and
classes of data in detail. All six data sets are binary classification problems. All datasets
are randomly divided into two groups: 70% training and 30% testing. These six datasets
contain common classification problems in the real world. For example, the Australian
Credit Approval dataset and Banknote Authentication dataset are related to finance, and
the Bank Credit Approval dataset concerns credit card applications and is used to evaluate
the credit of the new applicant, which can effectively identify the good or bad of the
customer, provide the basis for issuing the card and help the bank to establish the first line
of defense against credit card risk. The Banknote Authentication dataset is to classify the
data extracted from the images of real and counterfeit similar banknote samples. The Breast
Cancer dataset and Diabetic Retinopathy dataset are classified datasets about common
breast cancer and diabetes. By classifying and predicting different influence attributes of
diseases, it has a positive effect on medical treatment activities. The last two dataare on
actual production life; the Car Evaluation dataset is a classified data set to assess car safety,
and the Glass Identification dataset is a classified data set to classify the type of glass.

Table 1. Details of the dataset.

Classification Datasets Attributes Samples Classes

Australian Credit Approval 15 690 2
Banknote authentication 5 1372 2

Breast cancer 10 699 2
Car Evaluation 7 1728 2

Diabetic Retinopathy 17 520 2
Glass Identification 10 214 2

To eliminate interference, all experimental results are the average results of 30 inde-
pendent experiments. The experiment compares the performance of eleven algorithms,
including ten intelligent algorithms (GA, DE, PBIL, PSO, ACO, ABC, WOA, HHO, ChOA
and BBO) and a traditional back propagation algorithm. The population size of ten intelli-
gent optimization algorithms is 50, and the number of iterations is 250. Other parameters
intelligent optimization algorithms of are set according to the experience and characteristics
of the algorithm. The initialization parameters of intelligent optimization algorithm are
shown in Table 2. The learning rate of the backpropagation algorithm is 0.01, and the
number of iterations is 250.

There are four user-defined parameters in DNM, which are the number of synaptic
layers M, k of synaptic layer, ksoma and θsoma in the activation function of the output layer.
The experiment uses Taguchi’s method [55] to obtain a reasonable combination of four
parameters of DNM. Taguchi’s method adopts the orthogonal experimental design method,
which is a scientific experimental design method to select appropriate and representative
points from a large number of experimental points. The four factors of the number of
levels are set as follows:M ∈ {1, 5, 10, 15, 20}, k ∈ {1, 5, 10, 15, 25}, ksoma ∈ {1, 5, 10, 15, 25},
θsoma ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. Full-factor analysis contains 54 = 625 experiments, orthogo-
nal array L25

(
54) only contains 25 experiments, it greatly reduces the number of test runs,

cost time, manpower, and materials. Table 3 shows the optimal parameters of six datasets
obtained through the test of orthogonal array L25

(
54). The orthogonal matrix experimental

results of eleven algorithms in six datasets are recorded in detail in the Appendix A.
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Table 2. Initialize parameter Settings of intelligent algorithms.

Algorithm Parameter Value

GA
Selection mechanism Roulette wheel
Crossover probability 0.9
Mutation probability 0.1

DE
Crossover probability 0.9
Differential weight 0.5

PBIL

Learning rate 0.05
Good population member 1
Bad population member 0
Elitism parameter 1
Mutational probability 0.1

PSO
Acceleration constants [2,2]
Inertia weights [0.9,0.5]

ACO

Initial pheromone 1e-6
Pheromone update constant 20
Exploration constant 1
Global pheromone decay rate 0.9
Local pheromone decay rate 0.5

ABC
Number of employed bee 50
Number of onlooker bee 25

WOA
Convergence factor a a = 2− 2·t

tmax

Coefficient vectors A A = 2a·rand(0, 1)− a

HHO Initial escape energy inf

ChOA

Initial attacker_score inf
Initial barrier_score inf
Initial chaser_score inf
Initial driver_score inf

BBO
Habitat modification probability 1
Mutation probability 0.005
bound for immigration probability per gene [0,1]

In the process of model training optimization, MSE is the loss function of the model,
which is the evaluated fitness value of each solution. The accuracy of the classification is to
evaluate the performance of the model during the test. Formula (11) is the calculation of
MSE, and the calculation method of accuracy is as follows (39).

Accuracy =
TP + TN

TP + FP + TN + FN
× 100% (39)

where TP, TN, FP, and FN repent true positives, true negatives, false positives, and false
negatives respectively.

Table 3. Optimal parameters of the six datasets in the dendrite neural model.

Classification Datasets M k ksoma θsoma

Australian Credit Approval 10 1 10 0.5
Banknote Authentication 10 1 10 0.5

Breast Cancer 10 1 10 0.5
Car Evaluation 20 1 25 0.9

Diabetic Retinopathy 10 1 10 0.5
Glass Identification 10 1 10 0.5
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5. Result

Figure 3 shows the convergence diagram of the algorithm in the iterative process of
optimizing the weights and thresholds of the model, and Figure 4 shows the boxplot of
the algorithm after iterative optimization, which can intuitively see the distribution of the
optimal solution obtained by the algorithm. At this time, the user-defined parameters of the
model adopt the optimal parameters in Table 3. Table 4 summarizes the classification accu-
racy and minimum mean squared error of each algorithm under the optimized parameters.

Figure 3. Iterative convergence graphs of eleven algorithms for six datasets.
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As we can see, the BP algorithm converges very slowly in the iterative process. In
Australian Credit Approval dataset, Diabetic Retinopathy dataset, and Glass Identification
dataset, the algorithm falls into local optimization and loses its function. Its robustness is
very poor. ACO and ChOA also have slow convergence speed. In the Australian Credit
Approval dataset and Diabetic Retinopathy dataset, it is the same as the BP algorithm,
which falls into local traps and has poor overall performance. In the six datasets, BBO
has the best convergence effect, followed by PSO. In the first 50 iterations of Australian
Credit Approval dataset and Diabetic Retinopathy dataset, the convergence speed of PSO
is better than that of BBO, but after 50 iterations, BBO’s convergence value is lower than
that of PSO, indicating that BBO has better global search ability than PSO. Unlike the DE
algorithm, which has a good effect on some datasets (Breast Cancer, Car Evaluation) and
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poor effect on some datasets (Australian Credit Approval, Diabetic Retinopathy), BBO has
good robustness.

From the distribution of optimal solutions, DNM + BBO still has obvious advantages,
with smaller error and stable performance, followed by is DNM + PSO. DNM + ACO and
DNM + ChOA have many outliers, which means that the algorithm has poor performance
and cannot find a good feasible solution.

As can be seen from Table 4, the classification accuracy of BP in the six datasets is
very low, where in the Diabetic Retinopathy dataset it is as low as 39% and the highest at
86.5%. BBO has the highest classification accuracy in all six datasets, reaching 99.5% in
the Banknote Authentication dataset. PSO is inferior to BBO. The performance of ACO
and ChOA is unstable. For example, in the Diabetic Retinopathy dataset, ACO is as low
as 38.7%, and ChOA is as low as 69.6%. Other data sets such as WOA, GA, PBIL and so
on have good performance, but the overall performance is worse than BBO. In addition,
MSE is the loss function value of the model, and BBO is the smallest in six data sets, which
shows that BBO has good performance.

Among the ten intelligent optimization algorithms, DNM + BBO has the fastest conver-
gence speed and the highest accuracy, followed by DNM + PSO. Otherwise DNM + WOA,
DNM + GA and so on have good convergence speeds and higher classification, but they
are still lower than BBO as a whole. Meanwhile, just like the ideal of “no free lunch”, not
all intelligent optimization algorithms are suitable for the classification of dendritic neural
models. For example, DNM + ACO and DNM + ChOA have poor performance.

In contrast, intelligent optimization algorithms have obvious advantages, the perfor-
mance of the intelligent dendrite neural model is far better than that of the traditional
dendrite neural model.

Table 4. Optimal parameters of the six datasets in the dendrite neural model.

Learning
Algorithm Datasets M k ksoma θsoma

Average Accuracy (%) ±
Standard Deviation MSE

BP

Australian Credit Approval 10 1 10 0.5 56.34 ± 2.97 2.21 × 10−1

Banknote Authentication 10 1 10 0.5 86.50 ± 2.78 6.51 × 10−2

Breast Cancer 10 1 10 0.5 58.13 ± 25.88 1.77 × 10−1

Car Evaluation 20 1 25 0.9 75.08 ± 8.89 1.07 × 10−1

Diabetic Retinopathy 10 1 10 0.5 39.08 ± 2.91 3.05 × 10−1

Glass Identification 10 1 10 0.5 75.88 ± 4.92 1.17 × 10−1

GA

Australian Credit Approval 10 1 10 0.5 84.21 ± 3.30 2.30 × 10−1

Banknote Authentication 10 1 10 0.5 91.62 ± 2.45 1.31 × 10−1

Breast Cancer 10 1 10 0.5 94.98 ± 1.62 7.34 × 10−2

Car Evaluation 20 1 25 0.9 89.34 ± 1.64 1.50 × 10−1

Diabetic Retinopathy 10 1 10 0.5 80.66 ± 4.59 2.82 × 10−1

Glass Identification 10 1 10 0.5 91.98 ± 2.92 1.00 × 10−1

DE

Australian Credit Approval 10 1 10 0.5 82.64 ± 4.09 2.84 × 10−1

Banknote Authentication 10 1 10 0.5 91.50 ± 2.25 1.26 × 10−1

Breast Cancer 10 1 10 0.5 94.00 ± 1.33 8.15 × 10−2

Car Evaluation 20 1 25 0.9 86.63 ± 2.10 1.74 × 10−1

Diabetic Retinopathy 10 1 10 0.5 69.06 ± 9.17 4.24 × 10−1

Glass Identification 10 1 10 0.5 92.34 ± 3.61 1.11 × 10−1

PBIL

Australian Credit Approval 10 1 10 0.5 83.11 ± 2.00 2.20 × 10−1

Banknote Authentication 10 1 10 0.5 92.67 ± 2.00 1.17 × 10−1

Breast Cancer 10 1 10 0.5 94.35 ± 1.50 8.15 × 10−2

Car Evaluation 20 1 25 0.9 87.71 ± 1.72 1.63 × 10−1

Diabetic Retinopathy 10 1 10 0.5 81.54 ± 3.27 2.69 × 10−1

Glass Identification 10 1 10 0.5 90.26 ± 2.98 1.05 × 10−1
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Table 4. Cont.

Learning
Algorithm Datasets M k ksoma θsoma

Average Accuracy (%) ±
Standard Deviation MSE

PSO

Australian Credit Approval 10 1 10 0.5 84.34 ± 3.51 2.12 × 10−1

Banknote Authentication 10 1 10 0.5 98.45 ± 0.89 1.28 × 10−2

Breast Cancer 10 1 10 0.5 95.06 ± 1.25 5.16 × 10−2

Car Evaluation 20 1 25 0.9 92.94 ± 2.44 9.89 × 10−2

Diabetic Retinopathy 10 1 10 0.5 87.16 ± 2.67 1.90 × 10−1

Glass Identification 10 1 10 0.5 93.00 ± 2.94 5.62 × 10−2

ACO

Australian Credit Approval 10 1 10 0.5 56.10 ± 3.80 8.51 × 10−1

Banknote Authentication 10 1 10 0.5 88.10 ± 1.31 2.17 × 10−1

Breast cancer 10 1 10 0.5 90.05 ± 2.75 1.66 × 10−1

Car evaluation 20 1 25 0.9 82.28 ± 4.68 2.95 × 10−1

Diabetic retinopathy 10 1 10 0.5 38.70 ± 2.93 1.20 × 100

Glass Identification 10 1 10 0.5 88.07 ± 3.88 2.01 × 10−1

ABC

Australian Credit Approval 10 1 10 0.5 80.34 ± 6.40 2.76 × 10−1

Banknote Authentication 10 1 10 0.5 93.23 ± 6.25 6.44 × 10−2

Breast Cancer 10 1 10 0.5 89.97 ± 15.17 6.50 × 10−2

Car Evaluation 20 1 25 0.9 87.57 ± 6.31 1.27 × 10−1

Diabetic Retinopathy 10 1 10 0.5 74.29 ± 10.42 3.97 × 10−1

Glass Identification 10 1 10 0.5 91.72 ± 3.48 9.34 × 10−2

WOA

Australian Credit Approval 10 1 10 0.5 83.96 ± 3.34 2.15 × 10−1

Banknote Authentication 10 1 10 0.5 98.67 ± 0.80 2.35 × 10−2

Breast Cancer 10 1 10 0.5 95.08 ± 1.35 6.33 × 10−2

Car Evaluation 20 1 25 0.9 91.22 ± 2.57 1.20 × 10−1

Diabetic Retinopathy 10 1 10 0.5 82.82 ± 6.25 2.43 × 10−1

Glass Identification 10 1 10 0.5 92.50 ± 2.61 9.79 × 10−2

HHO

Australian Credit Approval 10 1 10 0.5 83.17 ± 5.35 2.34 × 10−1

Banknote Authentication 10 1 10 0.5 97.53 ± 1.13 4.23 × 10−2

Breast Cancer 10 1 10 0.5 94.43 ± 2.78 7.27 × 10−2

Car Evaluation 20 1 25 0.9 91.47 ± 2.14 1.18 × 10−1

Diabetic Retinopathy 10 1 10 0.5 85.15 ± 5.34 2.18 × 10−1

Glass Identification 10 1 10 0.5 91.67 ± 3.39 8.10 × 10−2

ChOA

Australian Credit Approval 10 1 10 0.5 71.40 ± 10.97 4.00 × 10−1

Banknote Authentication 10 1 10 0.5 98.73 ± 0.71 2.73 × 10−2

Breast Cancer 10 1 10 0.5 95.71 ± 1.39 5.62 × 10−2

Car Evaluation 20 1 25 0.9 84.43 ± 7.46 2.16 × 10−1

Diabetic Retinopathy 10 1 10 0.5 69.64 ± 9.35 3.57 × 10−1

Glass Identification 10 1 10 0.5 93.05 ± 3.53 8.77 × 10−2

BBO

Australian Credit Approval 10 1 10 0.5 84.38 ± 1.91 1.79 × 10−1

Banknote Authentication 10 1 10 0.5 99.50 ± 0.37 2.28 × 10−3

Breast Cancer 10 1 10 0.5 95.94 ± 1.15 3.42 × 10−2

Car Evaluation 20 1 25 0.9 93.32 ± 1.98 9.23 × 10−2

Diabetic Retinopathy 10 1 10 0.5 89.91 ± 3.19 1.41 × 10−1

Glass Identification 10 1 10 0.5 93.07 ± 3.30 5.57 × 10−2

6. Conclusions

In this paper, an intelligent dendritic neural model is proposed for the first time,
which uses intelligent optimization algorithm instead of the traditional BP algorithm to
train the model. In the experiment, ten intelligent optimization algorithms including GA,
DE, PBIL, PSO, ACO, ABC, WOA, HHO, ChOA, BBO, and traditional BP algorithm were
selected to train and test the model on six datasets (Australian Credit Approval, Banknote
Authentication, Breast Cancer, Car Evaluation, Diabetic Retinopathy, Glass Identification).
These ten algorithms are representative intelligent algorithms, such as GA, DE and BBO
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based on evolutionary ideas, PBIL based on mathematical statistics, ABC, ACO, PSO, and
WOA based on swarm intelligence, and new algorithms HHO, ChOA. The experiment
uses Taguchi’s method to obtain a reasonable combination of four parameters of DNM.
The experiments compare and analyze effectiveness, convergence speed, and classification
accuracy of the algorithm. The experimental results show that the intelligent dendritic
neural model (DNM-BBO) is obviously superior to the traditional dendritic neural model.
At the same time, through the comparison of intelligent optimization algorithms, the result
shows that BBO algorithm has excellent performance, and its robustness, accuracy and
convergence speed are the best. The intelligent dendritic neural model established in this
study is a powerful tool for solving classification problems and provides more choices in
practical engineering applications.
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Appendix A

The appendix shows results of eleven learning algorithms (BP, GA, DE, PBIL, PSO, ACO,
ABC, WOA, HHO, ChOA and BBO) in Taguchi’s method on six datasets. Tables A1–A6
describe the parameter sensitivity results of each learning algorithm based on the orthogonal
array for each dataset. Tables A7–A12 shows the complete parameter combination in each
dataset and the average classification accuracy of 30 independent experiments of each
learning algorithm.
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Table A1. Parameter sensitivity results of Australian Credit Approval dataset based on orthogonal arrangement.

No. M k ksoma θsoma
MSE

BP GA DE PBIL PSO ACO ABC WOA HHO ChOA BBO

1 1 1 1 0.1 1.24 × 10−1 4.01 × 10−1 4.05 × 10−1 3.95 × 10−1 4.07 × 10−1 4.95 × 10−1 4.16 × 10−1 4.09 × 10−1 3.93 × 10−1 4.88 × 10−1 3.93 × 10−1

2 1 5 10 0.9 2.14 × 10−1 2.90 × 10−1 3.09 × 10−1 2.66 × 10−1 6.79 × 10−1 8.87 × 10−1 3.88 × 10−1 2.75 × 10−1 2.38 × 10−1 7.59 × 10−1 2.63 × 10−1

3 1 10 15 0.3 2.15 × 10−1 3.00 × 10−1 3.83 × 10−1 2.87 × 10−1 7.94 × 10−1 8.71 × 10−1 3.45 × 10−1 2.36 × 10−1 2.43 × 10−1 7.99 × 10−1 3.37 × 10−1

4 1 15 25 0.5 2.23 × 10−1 3.41 × 10−1 4.27 × 10−1 3.62 × 10−1 8.11 × 10−1 8.91 × 10−1 4.14 × 10−1 2.53 × 10−1 2.60 × 10−1 8.39 × 10−1 4.36 × 10−1

5 1 25 5 0.7 2.07 × 10−1 2.70 × 10−1 4.35 × 10−1 3.52 × 10−1 7.59 × 10−1 8.31 × 10−1 4.33 × 10−1 2.44 × 10−1 2.68 × 10−1 7.65 × 10−1 3.98 × 10−1

6 5 1 5 0.3 1.24 × 10−1 2.35 × 10−1 2.52 × 10−1 2.24 × 10−1 2.27 × 10−1 6.27 × 10−1 2.64 × 10−1 2.31 × 10−1 2.17 × 10−1 4.73 × 10−1 2.07 × 10−1

7 5 5 25 0.7 2.12 × 10−1 2.62 × 10−1 3.24 × 10−1 2.85 × 10−1 3.99 × 10−1 8.72 × 10−1 3.87 × 10−1 2.84 × 10−1 2.63 × 10−1 7.48 × 10−1 2.78 × 10−1

8 5 10 1 0.5 1.26 × 10−1 3.53 × 10−1 3.66 × 10−1 3.56 × 10−1 4.00 × 10−1 5.01 × 10−1 3.80 × 10−1 3.45 × 10−1 3.42 × 10−1 4.95 × 10−1 3.47 × 10−1

9 5 15 15 0.9 2.23 × 10−1 2.46 × 10−1 3.17 × 10−1 2.46 × 10−1 4.58 × 10−1 8.87 × 10−1 3.42 × 10−1 2.41 × 10−1 2.36 × 10−1 7.56 × 10−1 2.38 × 10−1

10 5 25 10 0.1 1.39 × 10−1 2.81 × 10−1 3.16 × 10−1 2.56 × 10−1 4.34 × 10−1 5.56 × 10−1 3.20 × 10−1 2.52 × 10−1 2.84 × 10−1 5.50 × 10−1 2.89 × 10−1

11 10 1 10 0.5 2.21 × 10−1 2.30 × 10−1 2.84 × 10−1 2.20 × 10−1 2.12 × 10−1 8.51 × 10−1 2.76 × 10−1 2.15 × 10−1 2.34 × 10−1 4.00 × 10−1 1.79 × 10−1

12 10 5 15 0.1 1.25 × 10−1 2.48 × 10−1 2.86 × 10−1 2.50 × 10−1 2.30 × 10−1 6.27 × 10−1 2.78 × 10−1 2.13 × 10−1 2.32 × 10−1 5.54 × 10−1 2.29 × 10−1

13 10 10 5 0.9 2.19 × 10−1 2.69 × 10−1 2.98 × 10−1 2.67 × 10−1 3.26 × 10−1 8.66 × 10−1 3.66 × 10−1 2.91 × 10−1 2.61 × 10−1 6.49 × 10−1 2.27 × 10−1

14 10 15 1 0.7 1.30 × 10−1 3.42 × 10−1 3.65 × 10−1 3.40 × 10−1 3.74 × 10−1 5.20 × 10−1 3.76 × 10−1 3.26 × 10−1 3.20 × 10−1 4.97 × 10−1 3.12 × 10−1

15 10 25 25 0.3 2.24 × 10−1 2.85 × 10−1 3.26 × 10−1 2.61 × 10−1 3.96 × 10−1 8.74 × 10−1 2.97 × 10−1 2.42 × 10−1 2.96 × 10−1 7.93 × 10−1 3.04 × 10−1

16 15 1 15 0.7 2.22 × 10−1 2.34 × 10−1 3.43 × 10−1 2.29 × 10−1 2.67 × 10−1 8.82 × 10−1 3.51 × 10−1 2.39 × 10−1 2.22 × 10−1 6.12 × 10−1 1.89 × 10−1

17 15 5 5 0.5 1.45 × 10−1 2.34 × 10−1 2.68 × 10−1 2.18 × 10−1 2.52 × 10−1 7.67 × 10−1 2.88 × 10−1 2.22 × 10−1 2.44 × 10−1 5.38 × 10−1 2.01 × 10−1

18 15 10 25 0.1 1.83 × 10−1 2.59 × 10−1 2.97 × 10−1 2.44 × 10−1 2.44 × 10−1 7.64 × 10−1 2.81 × 10−1 2.03 × 10−1 2.48 × 10−1 6.35 × 10−1 2.38 × 10−1

19 15 15 10 0.3 2.04 × 10−1 2.72 × 10−1 3.04 × 10−1 2.27 × 10−1 3.09 × 10−1 8.02 × 10−1 2.72 × 10−1 2.34 × 10−1 2.57 × 10−1 6.67 × 10−1 2.31 × 10−1

20 15 25 1 0.9 1.36 × 10−1 3.41 × 10−1 3.72 × 10−1 3.51 × 10−1 3.76 × 10−1 5.40 × 10−1 3.76 × 10−1 3.37 × 10−1 3.15 × 10−1 5.05 × 10−1 3.10 × 10−1

21 20 1 25 0.9 2.22 × 10−1 2.33 × 10−1 3.92 × 10−1 2.25 × 10−1 2.36 × 10−1 8.83 × 10−1 3.85 × 10−1 3.97 × 10−1 2.13 × 10−1 6.51 × 10−1 1.88 × 10−1

22 20 5 1 0.3 1.18 × 10−1 3.57 × 10−1 3.79 × 10−1 3.67 × 10−1 3.58 × 10−1 4.92 × 10−1 3.86 × 10−1 3.59 × 10−1 3.46 × 10−1 4.69 × 10−1 3.24 × 10−1

23 20 10 10 0.7 2.21 × 10−1 2.48 × 10−1 2.88 × 10−1 2.66 × 10−1 2.63 × 10−1 8.82 × 10−1 3.53 × 10−1 2.56 × 10−1 2.46 × 10−1 6.40 × 10−1 2.43 × 10−1

24 20 15 5 0.1 1.24 × 10−1 3.17 × 10−1 3.27 × 10−1 3.02 × 10−1 3.33 × 10−1 5.03 × 10−1 3.20 × 10−1 3.00 × 10−1 3.07 × 10−1 4.69 × 10−1 3.03 × 10−1

25 20 25 15 0.5 2.21 × 10−1 2.74 × 10−1 3.26 × 10−1 2.34 × 10−1 3.17 × 10−1 8.85 × 10−1 3.22 × 10−1 2.45 × 10−1 2.81 × 10−1 7.27 × 10−1 2.59 × 10−1
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Table A2. Parameter sensitivity results of Banknote Authentication dataset based on orthogonal arrangement.

No. M k ksoma θsoma
MSE

BP GA DE PBIL PSO ACO ABC WOA HHO ChOA BBO

1 1 1 1 0.1 1.23 × 10−1 3.73 × 10−1 3.72 × 10−1 3.73 × 10−1 3.68 × 10−1 3.94 × 10−1 3.71 × 10−1 3.76 × 10−1 3.72 × 10−1 3.72 × 10−1 3.72 × 10−1

2 1 5 10 0.9 1.13 × 10−1 2.10 × 10−1 1.96 × 10−1 2.16 × 10−1 2.00 × 10−1 3.16 × 10−1 1.96 × 10−1 1.86 × 10−1 1.89 × 10−1 1.87 × 10−1 2.03 × 10−1

3 1 10 15 0.3 2.04 × 10−1 2.07 × 10−1 1.90 × 10−1 2.06 × 10−1 1.93 × 10−1 3.17 × 10−1 1.78 × 10−1 1.21 × 10−1 1.28 × 10−1 1.75 × 10−1 1.91 × 10−1

4 1 15 25 0.5 2.21 × 10−1 2.15 × 10−1 1.96 × 10−1 2.12 × 10−1 1.94 × 10−1 3.16 × 10−1 1.90 × 10−1 1.56 × 10−1 1.58 × 10−1 1.91 × 10−1 2.04 × 10−1

5 1 25 5 0.7 2.08 × 10−1 1.97 × 10−1 1.85 × 10−1 1.98 × 10−1 1.84 × 10−1 2.91 × 10−1 1.85 × 10−1 1.74 × 10−1 1.74 × 10−1 1.81 × 10−1 1.90 × 10−1

6 5 1 5 0.3 1.23 × 10−1 1.35 × 10−1 1.28 × 10−1 1.26 × 10−1 5.39 × 10−2 2.32 × 10−1 1.10 × 10−1 8.27 × 10−2 7.37 × 10−2 8.64 × 10−2 5.14 × 10−2

7 5 5 25 0.7 2.18 × 10−1 1.53 × 10−1 1.52 × 10−1 1.32 × 10−1 3.87 × 10−2 3.03 × 10−1 1.25 × 10−1 4.93 × 10−2 6.85 × 10−2 5.00 × 10−2 1.49 × 10−2

8 5 10 1 0.5 1.10 × 10−1 2.60 × 10−1 2.78 × 10−1 2.62 × 10−1 2.17 × 10−1 3.44 × 10−1 2.65 × 10−1 2.24 × 10−1 2.30 × 10−1 2.18 × 10−1 2.02 × 10−1

9 5 15 15 0.9 2.09 × 10−1 1.53 × 10−1 1.52 × 10−1 1.28 × 10−1 4.33 × 10−2 2.71 × 10−1 1.17 × 10−1 5.98 × 10−2 7.74 × 10−2 4.49 × 10−2 2.60 × 10−2

10 5 25 10 0.1 2.09 × 10−1 1.87 × 10−1 1.86 × 10−1 1.67 × 10−1 1.11 × 10−1 2.76 × 10−1 1.63 × 10−1 1.34 × 10−1 1.42 × 10−1 1.29 × 10−1 9.03 × 10−2

11 10 1 10 0.5 6.51 × 10−2 1.31 × 10−1 1.26 × 10−1 1.17 × 10−1 1.28 × 10−2 2.17 × 10−1 6.44 × 10−2 2.35 × 10−2 4.23 × 10−2 2.73 × 10−2 2.28 × 10−3

12 10 5 15 0.1 7.29 × 10−2 1.56 × 10−1 1.64 × 10−1 1.51 × 10−1 4.99 × 10−2 2.17 × 10−1 1.12 × 10−1 8.24 × 10−2 8.93 × 10−2 8.55 × 10−2 4.06 × 10−2

13 10 10 5 0.9 1.90 × 10−1 1.54 × 10−1 1.55 × 10−1 1.30 × 10−1 3.58 × 10−2 2.63 × 10−1 1.12 × 10−1 4.94 × 10−2 6.15 × 10−2 3.96 × 10−2 1.18 × 10−2

14 10 15 1 0.7 1.27 × 10−1 2.37 × 10−1 2.49 × 10−1 2.34 × 10−1 1.63 × 10−1 3.18 × 10−1 2.21 × 10−1 1.83 × 10−1 1.87 × 10−1 1.73 × 10−1 1.45 × 10−1

15 10 25 25 0.3 2.44 × 10−1 1.63 × 10−1 1.59 × 10−1 1.39 × 10−1 1.60 × 10−2 2.43 × 10−1 1.13 × 10−1 5.58 × 10−2 5.92 × 10−2 5.15 × 10−2 1.12 × 10−2

16 15 1 15 0.7 5.07 × 10−2 1.42 × 10−1 1.49 × 10−1 1.22 × 10−1 1.03 × 10−2 2.19 × 10−1 7.49 × 10−2 1.67 × 10−2 3.81 × 10−2 2.10 × 10−2 2.58 × 10−3

17 15 5 5 0.5 8.13 × 10−2 1.51 × 10−1 1.61 × 10−1 1.35 × 10−1 1.81 × 10−2 2.16 × 10−1 1.16 × 10−1 4.07 × 10−2 8.16 × 10−2 4.94 × 10−2 1.08 × 10−2

18 15 10 25 0.1 2.65 × 10−1 1.68 × 10−1 1.81 × 10−1 1.48 × 10−1 2.05 × 10−2 2.19 × 10−1 1.09 × 10−1 7.18 × 10−2 7.80 × 10−2 5.31 × 10−2 1.66 × 10−2

19 15 15 10 0.3 2.28 × 10−1 1.54 × 10−1 1.74 × 10−1 1.40 × 10−1 1.54 × 10−2 2.27 × 10−1 1.10 × 10−1 5.17 × 10−2 7.46 × 10−2 5.08 × 10−2 6.52 × 10−3

20 15 25 1 0.9 1.50 × 10−1 2.16 × 10−1 2.28 × 10−1 2.08 × 10−1 1.28 × 10−1 3.21 × 10−1 2.03 × 10−1 1.53 × 10−1 1.66 × 10−1 1.44 × 10−1 1.08 × 10−1

21 20 1 25 0.9 3.62 × 10−2 1.36 × 10−1 1.48 × 10−1 1.41 × 10−1 6.87 × 10−3 2.35 × 10−1 7.21 × 10−2 1.90 × 10−2 3.65 × 10−2 2.38 × 10−2 2.97 × 10−3

22 20 5 1 0.3 7.96 × 10−2 2.92 × 10−1 3.03 × 10−1 2.92 × 10−1 2.20 × 10−1 3.46 × 10−1 2.87 × 10−1 2.41 × 10−1 2.51 × 10−1 2.42 × 10−1 2.08 × 10−1

23 20 10 10 0.7 2.09 × 10−1 1.71 × 10−1 2.05 × 10−1 1.66 × 10−1 8.99 × 10−3 2.42 × 10−1 1.26 × 10−1 4.13 × 10−2 5.65 × 10−2 3.63 × 10−2 1.59 × 10−1

24 20 15 5 0.1 2.71 × 10−1 2.63 × 10−1 2.79 × 10−1 2.58 × 10−1 1.65 × 10−1 2.84 × 10−1 2.44 × 10−1 2.01 × 10−1 2.14 × 10−1 1.95 × 10−1 1.59 × 10−1

25 20 25 15 0.5 2.41 × 10−1 1.86 × 10−1 2.20 × 10−1 1.68 × 10−1 1.27 × 10−2 2.45 × 10−1 1.42 × 10−1 4.85 × 10−2 7.32 × 10−2 4.86 × 10−2 7.02 × 10−3
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Table A3. Parameter sensitivity results of Breast Cancer dataset based on orthogonal arrangement.

No. M k ksoma θsoma
MSE

BP GA DE PBIL PSO ACO ABC WOA HHO ChOA BBO

1 1 1 1 0.1 1.29 × 10−1 2.94 × 10−1 2.92 × 10−1 2.91 × 10−1 2.82 × 10−1 3.29 × 10−1 2.90 × 10−1 3.05 × 10−1 2.94 × 10−1 2.87 × 10−1 2.84 × 10−1

2 1 5 10 0.9 2.73 × 10−1 1.73 × 10−1 1.60 × 10−1 1.66 × 10−1 1.50 × 10−1 2.31 × 10−1 1.56 × 10−1 1.58 × 10−1 1.59 × 10−1 1.46 × 10−1 1.41 × 10−1

3 1 10 15 0.3 2.81 × 10−1 1.01 × 10−1 9.33 × 10−2 8.45 × 10−2 1.52 × 10−1 1.76 × 10−1 7.48 × 10−2 7.02 × 10−2 9.91 × 10−2 5.60 × 10−2 6.61 × 10−2

4 1 15 25 0.5 3.28 × 10−1 1.04 × 10−1 9.54 × 10−2 8.78 × 10−2 3.20 × 10−1 1.63 × 10−1 7.78 × 10−2 7.10 × 10−2 1.02 × 10−1 5.75 × 10−2 6.56 × 10−2

5 1 25 5 0.7 3.09 × 10−1 1.27 × 10−1 1.19 × 10−1 1.18 × 10−1 4.46 × 10−1 1.86 × 10−1 1.08 × 10−1 1.08 × 10−1 1.17 × 10−1 9.62 × 10−2 1.01 × 10−1

6 5 1 5 0.3 1.28 × 10−1 8.00 × 10−2 9.25 × 10−2 8.31 × 10−2 7.21 × 10−2 1.48 × 10−1 8.06 × 10−2 8.43 × 10−2 8.19 × 10−2 7.33 × 10−2 5.26 × 10−2

7 5 5 25 0.7 9.98 × 10−2 9.03 × 10−2 9.93 × 10−2 9.93 × 10−2 6.56 × 10−2 1.93 × 10−1 7.44 × 10−2 7.48 × 10−2 8.38 × 10−2 5.73 × 10−2 5.18 × 10−2

8 5 10 1 0.5 1.41 × 10−1 1.94 × 10−1 2.27 × 10−1 2.06 × 10−1 2.48 × 10−1 3.07 × 10−1 2.27 × 10−1 2.64 × 10−1 2.71 × 10−1 3.02 × 10−1 1.43 × 10−1

9 5 15 15 0.9 3.28 × 10−1 1.07 × 10−1 1.22 × 10−1 1.16 × 10−1 1.15 × 10−1 2.16 × 10−1 1.01 × 10−1 1.01 × 10−1 1.11 × 10−1 8.98 × 10−2 4.91 × 10−2

10 5 25 10 0.1 1.78 × 10−1 1.06 × 10−1 1.14 × 10−1 1.08 × 10−1 9.13 × 10−2 1.63 × 10−1 1.01 × 10−1 9.84 × 10−2 9.67 × 10−2 8.91 × 10−2 8.46 × 10−2

11 10 1 10 0.5 1.77 × 10−1 7.34 × 10−2 8.15 × 10−2 8.15 × 10−2 5.16 × 10−2 1.66 × 10−1 6.50 × 10−2 6.33 × 10−2 7.27 × 10−2 5.62 × 10−2 3.42 × 10−2

12 10 5 15 0.1 1.83 × 10−2 8.33 × 10−2 8.97 × 10−2 9.20 × 10−2 7.14 × 10−2 1.49 × 10−1 7.41 × 10−2 6.96 × 10−2 7.45 × 10−2 6.48 × 10−2 5.30 × 10−2

13 10 10 5 0.9 2.45 × 10−1 9.22 × 10−2 1.23 × 10−1 9.54 × 10−2 6.48 × 10−2 1.75 × 10−1 1.01 × 10−1 1.20 × 10−1 1.08 × 10−1 8.60 × 10−2 4.45 × 10−2

14 10 15 1 0.7 1.66 × 10−1 1.70 × 10−1 2.16 × 10−1 1.88 × 10−1 1.74 × 10−1 2.35 × 10−1 1.81 × 10−1 2.19 × 10−1 2.41 × 10−1 1.90 × 10−1 1.10 × 10−1

15 10 25 25 0.3 2.88 × 10−1 8.28 × 10−2 9.90 × 10−2 8.38 × 10−2 6.18 × 10−2 1.76 × 10−1 7.29 × 10−2 7.23 × 10−2 7.98 × 10−2 5.94 × 10−2 5.67 × 10−2

16 15 1 15 0.7 1.66 × 10−1 7.08 × 10−2 8.98 × 10−2 8.68 × 10−2 5.84 × 10−2 1.67 × 10−1 6.76 × 10−2 6.91 × 10−2 6.38 × 10−2 5.81 × 10−2 3.46 × 10−2

17 15 5 5 0.5 2.63 × 10−2 7.00 × 10−2 9.02 × 10−2 8.88 × 10−2 5.53 × 10−2 1.57 × 10−1 6.89 × 10−2 7.07 × 10−2 7.43 × 10−2 6.17 × 10−2 3.79 × 10−2

18 15 10 25 0.1 7.14 × 10−2 7.24 × 10−2 9.11 × 10−2 8.34 × 10−2 5.56 × 10−2 1.54 × 10−1 6.35 × 10−2 6.50 × 10−2 6.76 × 10−2 5.61 × 10−2 4.23 × 10−2

19 15 15 10 0.3 1.41 × 10−1 7.62 × 10−2 9.23 × 10−2 8.64 × 10−2 5.78 × 10−2 1.51 × 10−1 6.70 × 10−2 5.95 × 10−2 6.41 × 10−2 5.65 × 10−2 4.70 × 10−2

20 15 25 1 0.9 1.80 × 10−1 1.60 × 10−1 2.04 × 10−1 1.80 × 10−1 1.41 × 10−1 2.41 × 10−1 1.84 × 10−1 1.91 × 10−1 1.99 × 10−1 1.54 × 10−1 9.11 × 10−2

21 20 1 25 0.9 2.02 × 10−1 7.64 × 10−2 9.92 × 10−2 8.30 × 10−2 5.00 × 10−2 1.88 × 10−1 6.95 × 10−2 1.16 × 10−1 6.73 × 10−2 5.81 × 10−2 3.63 × 10−2

22 20 5 1 0.3 6.27 × 10−2 1.83 × 10−1 2.12 × 10−1 1.97 × 10−1 1.58 × 10−1 2.28 × 10−1 1.97 × 10−1 1.97 × 10−1 1.95 × 10−1 1.89 × 10−1 1.44 × 10−1

23 20 10 10 0.7 1.93 × 10−1 1.36 × 10−1 9.19 × 10−2 9.09 × 10−2 1.25 × 10−1 1.74 × 10−1 6.88 × 10−2 6.69 × 10−2 7.90 × 10−2 5.69 × 10−2 4.44 × 10−2

24 20 15 5 0.1 6.66 × 10−2 1.37 × 10−1 1.46 × 10−1 1.44 × 10−1 1.24 × 10−1 1.80 × 10−1 1.32 × 10−1 1.33 × 10−1 1.39 × 10−1 1.27 × 10−1 1.19 × 10−1

25 20 25 15 0.5 2.87 × 10−1 7.69 × 10−2 8.89 × 10−2 8.28 × 10−2 5.39 × 10−2 2.43 × 10−1 1.32 × 10−1 6.83 × 10−2 8.01 × 10−2 5.72 × 10−2 4.73 × 10−2



Symmetry 2022, 14, 11 25 of 35

Table A4. Parameter sensitivity results of Car Evaluation dataset based on orthogonal arrangement.

No. M k ksoma θsoma
MSE

BP GA DE PBIL PSO ACO ABC WOA HHO ChOA BBO

1 1 1 1 0.1 1.20 × 10−1 4.32 × 10−1 4.29 × 10−1 4.32 × 10−1 4.24 × 10−1 4.65 × 10−1 4.34 × 10−1 4.50 × 10−1 4.33 × 10−1 4.66 × 10−1 4.28 × 10−1

2 1 5 10 0.9 9.21 × 10−2 1.81 × 10−1 1.72 × 10−1 1.99 × 10−1 2.22 × 10−1 3.23 × 10−1 1.81 × 10−1 1.76 × 10−1 1.76 × 10−1 3.18 × 10−1 1.78 × 10−1

3 1 10 15 0.3 1.47 × 10−1 2.25 × 10−1 2.05 × 10−1 2.20 × 10−1 2.72 × 10−1 3.72 × 10−1 1.74 × 10−1 1.70 × 10−1 1.81 × 10−1 4.79 × 10−1 1.54 × 10−1

4 1 15 25 0.5 1.50 × 10−1 2.30 × 10−1 2.24 × 10−1 2.04 × 10−1 2.90 × 10−1 3.47 × 10−1 1.89 × 10−1 1.86 × 10−1 1.89 × 10−1 4.80 × 10−1 1.58 × 10−1

5 1 25 5 0.7 1.40 × 10−1 1.93 × 10−1 1.83 × 10−1 1.96 × 10−1 2.73 × 10−1 3.10 × 10−1 1.76 × 10−1 1.71 × 10−1 1.76 × 10−1 4.24 × 10−1 1.71 × 10−1

6 5 1 5 0.3 1.21 × 10−1 2.05 × 10−1 2.14 × 10−1 2.10 × 10−1 1.64 × 10−1 3.09 × 10−1 1.86 × 10−1 2.20 × 10−1 1.94 × 10−1 2.70 × 10−1 1.48 × 10−1

7 5 5 25 0.7 1.35 × 10−1 2.16 × 10−1 2.10 × 10−1 2.28 × 10−1 1.65 × 10−1 3.67 × 10−1 1.67 × 10−1 1.71 × 10−1 1.70 × 10−1 3.61 × 10−1 1.82 × 10−1

8 5 10 1 0.5 1.03 × 10−1 3.30 × 10−1 3.43 × 10−1 3.43 × 10−1 3.41 × 10−1 3.65 × 10−1 3.39 × 10−1 3.37 × 10−1 3.32 × 10−1 4.01 × 10−1 3.16 × 10−1

9 5 15 15 0.9 1.49 × 10−1 1.92 × 10−1 1.85 × 10−1 1.99 × 10−1 1.69 × 10−1 3.15 × 10−1 1.65 × 10−1 1.63 × 10−1 1.71 × 10−1 3.07 × 10−1 1.76 × 10−1

10 5 25 10 0.1 1.19 × 10−1 2.65 × 10−1 2.60 × 10−1 2.60 × 10−1 2.42 × 10−1 3.38 × 10−1 2.43 × 10−1 2.56 × 10−1 2.47 × 10−1 3.77 × 10−1 2.53 × 10−1

11 10 1 10 0.5 5.44 × 10−2 1.61 × 10−1 1.79 × 10−1 1.84 × 10−1 1.21 × 10−1 3.82 × 10−1 1.39 × 10−1 1.54 × 10−1 1.22 × 10−1 2.67 × 10−1 9.65 × 10−2

12 10 5 15 0.1 4.67 × 10−2 2.18 × 10−1 2.24 × 10−1 2.37 × 10−1 1.86 × 10−1 3.85 × 10−1 1.84 × 10−1 1.99 × 10−1 2.00 × 10−1 3.11 × 10−1 1.62 × 10−1

13 10 10 5 0.9 1.26 × 10−1 1.85 × 10−1 1.91 × 10−1 1.86 × 10−1 1.69 × 10−1 3.37 × 10−1 1.78 × 10−1 1.64 × 10−1 1.61 × 10−1 2.65 × 10−1 1.36 × 10−1

14 10 15 1 0.7 1.05 × 10−1 2.95 × 10−1 3.16 × 10−1 3.12 × 10−1 2.96 × 10−1 3.68 × 10−1 3.13 × 10−1 2.96 × 10−1 2.95 × 10−1 3.64 × 10−1 2.73 × 10−1

15 10 25 25 0.3 1.94 × 10−1 2.25 × 10−1 2.25 × 10−1 2.21 × 10−1 1.99 × 10−1 4.38 × 10−1 1.81 × 10−1 1.92 × 10−1 1.88 × 10−1 3.93 × 10−1 1.98 × 10−1

16 15 1 15 0.7 4.40 × 10−2 1.57 × 10−1 1.73 × 10−1 1.73 × 10−1 1.24 × 10−1 3.71 × 10−1 1.28 × 10−1 1.22 × 10−1 1.19 × 10−1 2.31 × 10−1 8.71 × 10−2

17 15 5 5 0.5 4.04 × 10−2 1.86 × 10−1 1.86 × 10−1 1.90 × 10−1 1.47 × 10−1 3.48 × 10−1 1.56 × 10−1 1.60 × 10−1 1.57 × 10−1 3.07 × 10−1 1.08 × 10−1

18 15 10 25 0.1 1.17 × 10−1 2.05 × 10−1 2.13 × 10−1 2.27 × 10−1 1.72 × 10−1 4.12 × 10−1 1.69 × 10−1 1.81 × 10−1 1.76 × 10−1 3.29 × 10−1 1.69 × 10−1

19 15 15 10 0.3 1.34 × 10−1 2.14 × 10−1 2.15 × 10−1 2.03 × 10−1 1.74 × 10−1 4.11 × 10−1 1.70 × 10−1 1.59 × 10−1 1.75 × 10−1 3.21 × 10−1 1.55 × 10−1

20 15 25 1 0.9 1.04 × 10−1 2.68 × 10−1 2.93 × 10−1 2.96 × 10−1 2.54 × 10−1 3.60 × 10−1 2.82 × 10−1 2.71 × 10−1 2.69 × 10−1 3.34 × 10−1 2.36 × 10−1

21 20 1 25 0.9 1.07 × 10−1 1.50 × 10−1 1.74 × 10−1 1.63 × 10−1 9.89 × 10−2 2.95 × 10−1 1.28 × 10−1 1.20 × 10−1 1.18 × 10−1 2.16 × 10−1 9.23 × 10−2

22 20 5 1 0.3 9.22 × 10−2 3.68 × 10−1 3.78 × 10−1 3.77 × 10−1 3.62 × 10−1 4.13 × 10−1 3.71 × 10−1 3.77 × 10−1 3.72 × 10−1 4.10 × 10−1 3.38 × 10−1

23 20 10 10 0.7 1.37 × 10−1 2.11 × 10−1 2.06 × 10−1 2.04 × 10−1 1.62 × 10−1 3.85 × 10−1 1.60 × 10−1 1.51 × 10−1 1.59 × 10−1 3.11 × 10−1 1.72 × 10−1

24 20 15 5 0.1 1.07 × 10−1 3.23 × 10−1 3.22 × 10−1 3.19 × 10−1 3.04 × 10−1 3.84 × 10−1 3.02 × 10−1 3.13 × 10−1 3.18 × 10−1 4.03 × 10−1 3.01 × 10−1

25 20 25 15 0.5 1.54 × 10−1 2.39 × 10−1 2.21 × 10−1 2.00 × 10−1 1.88 × 10−1 3.57 × 10−1 1.75 × 10−1 1.58 × 10−1 1.70 × 10−1 4.20 × 10−1 1.80 × 10−1
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Table A5. Parameter sensitivity results of Diabetic Retinopathy dataset based on orthogonal arrangement.

No. M k ksoma θsoma
MSE

BP GA DE PBIL PSO ACO ABC WOA HHO ChOA BBO

1 1 1 1 0.1 1.28 × 10−1 3.80 × 10−1 3.90 × 10−1 3.57 × 10−1 3.76 × 10−1 5.12 × 10−1 3.91 × 10−1 3.88 × 10−1 3.75 × 10−1 4.05 × 10−1 3.51 × 10−1

2 1 5 10 0.9 3.09 × 10−1 4.19 × 10−1 4.51 × 10−1 4.23 × 10−1 8.41 × 10−1 1.23 × 10 4.76 × 10−1 4.49 × 10−1 3.59 × 10−1 3.74 × 10−1 4.22 × 10−1

3 1 10 15 0.3 3.02 × 10−1 4.17 × 10−1 5.77 × 10−1 3.63 × 10−1 8.21 × 10−1 1.21 × 10 4.06 × 10−1 4.28 × 10−1 3.93 × 10−1 3.51 × 10−1 4.61 × 10−1

4 1 15 25 0.5 3.09 × 10−1 4.73 × 10−1 8.02 × 10−1 6.86 × 10−1 1.05 × 10 1.22 × 10 5.51 × 10−1 6.48 × 10−1 4.40 × 10−1 3.68 × 10−1 7.62 × 10−1

5 1 25 5 0.7 2.91 × 10−1 4.26 × 10−1 7.40 × 10−1 4.64 × 10−1 1.10 × 10 1.16 × 10 5.93 × 10−1 6.20 × 10−1 3.88 × 10−1 3.67 × 10−1 4.55 × 10−1

6 5 1 5 0.3 1.28 × 10−1 2.66 × 10−1 3.18 × 10−1 2.53 × 10−1 2.38 × 10−1 8.16 × 10−1 3.19 × 10−1 2.61 × 10−1 2.56 × 10−1 3.58 × 10−1 1.75 × 10−1

7 5 5 25 0.7 2.94 × 10−1 3.79 × 10−1 4.77 × 10−1 3.68 × 10−1 5.52 × 10−1 1.21 5.08 × 10−1 5.25 × 10−1 3.21 × 10−1 3.50 × 10−1 2.87 × 10−1

8 5 10 1 0.5 1.47 × 10−1 3.75 × 10−1 4.01 × 10−1 3.71 × 10−1 4.53 × 10−1 5.84 × 10−1 4.08 × 10−1 4.06 × 10−1 3.93 × 10−1 4.24 × 10−1 3.56 × 10−1

9 5 15 15 0.9 3.08 × 10−1 3.80 × 10−1 5.74 × 10−1 3.74 × 10−1 6.83 × 10−1 1.21 × 10 4.52 × 10−1 4.01 × 10−1 3.70 × 10−1 3.74 × 10−1 3.52 × 10−1

10 5 25 10 0.1 1.79 × 10−1 2.85 × 10−1 3.94 × 10−1 2.59 × 10−1 5.39 × 10−1 6.93 × 10−1 3.68 × 10−1 3.22 × 10−1 3.42 × 10−1 3.55 × 10−1 2.85 × 10−1

11 10 1 10 0.5 3.05 × 10−1 2.82 × 10−1 4.24 × 10−1 2.69 × 10−1 1.90 × 10−1 1.20 3.14 × 10−1 2.43 × 10−1 2.18 × 10−1 3.57 × 10−1 1.41 × 10−1

12 10 5 15 0.1 1.93 × 10−1 2.73 × 10−1 3.32 × 10−1 2.67 × 10−1 2.34 × 10−1 7.86 × 10−1 3.14 × 10−1 2.79 × 10−1 2.66 × 10−1 3.57 × 10−1 1.92 × 10−1

13 10 10 5 0.9 3.02 × 10−1 4.06 × 10−1 4.88 × 10−1 4.01 × 10−1 4.62 × 10−1 1.19 × 10 3.68 × 10−1 4.61 × 10−1 3.98 × 10−1 3.29 × 10−1 2.49 × 10−1

14 10 15 1 0.7 1.59 × 10−1 3.88 × 10−1 4.34 × 10−1 4.01 × 10−1 4.24 × 10−1 6.31 × 10−1 4.29 × 10−1 4.06 × 10−1 3.91 × 10−1 4.30 × 10−1 3.38 × 10−1

15 10 25 25 0.3 3.09 × 10−1 3.96 × 10−1 5.56 × 10−1 2.84 × 10−1 7.47 × 10−1 1.23 4.23 × 10−1 4.34 × 10−1 4.66 × 10−1 4.08 × 10−1 3.19 × 10−1

16 15 1 15 0.7 3.06 × 10−1 2.79 × 10−1 5.86 × 10−1 2.78 × 10−1 1.91 × 10−1 1.21 5.74 × 10−1 6.41 × 10−1 2.28 × 10−1 3.60 × 10−1 1.26 × 10−1

17 15 5 5 0.5 2.17 × 10−1 3.10 × 10−1 3.92 × 10−1 2.95 × 10−1 2.93 × 10−1 1.00 3.67 × 10−1 2.82 × 10−1 2.98 × 10−1 3.40 × 10−1 1.75 × 10−1

18 15 10 25 0.1 2.63 × 10−1 3.16 × 10−1 3.84 × 10−1 2.99 × 10−1 2.44 × 10−1 8.96 × 10−1 3.15 × 10−1 3.38 × 10−1 3.00 × 10−1 3.57 × 10−1 2.30 × 10−1

19 15 15 10 0.3 2.69 × 10−1 3.58 × 10−1 4.66 × 10−1 2.74 × 10−1 3.10 × 10−1 1.08 × 10 3.46 × 10−1 3.22 × 10−1 3.46 × 10−1 3.83 × 10−1 2.37 × 10−1

20 15 25 1 0.9 1.71 × 10−1 4.16 × 10−1 4.73 × 10−1 4.34 × 10−1 5.20 × 10−1 6.79 × 10−1 4.68 × 10−1 4.47 × 10−1 4.41 × 10−1 4.10 × 10−1 3.63 × 10−1

21 20 1 25 0.9 3.07 × 10−1 3.06 × 10−1 9.60 × 10−1 3.01 × 10−1 2.71 × 10−1 1.21 × 10 4.78 × 10−1 1.13 2.98 × 10−1 4.19 × 10−1 1.27 × 10−1

22 20 5 1 0.3 1.30 × 10−1 3.46 × 10−1 3.91 × 10−1 3.55 × 10−1 3.20 × 10−1 5.37 × 10−1 3.76 × 10−1 3.76 × 10−1 3.54 × 10−1 4.03 × 10−1 2.62 × 10−1

23 20 10 10 0.7 3.03 × 10−1 3.81 × 10−1 4.79 × 10−1 2.99 × 10−1 2.70 × 10−1 1.22 3.98 × 10−1 3.89 × 10−1 3.06 × 10−1 3.41 × 10−1 2.08 × 10−1

24 20 15 5 0.1 1.40 × 10−1 2.75 × 10−1 3.21 × 10−1 2.61 × 10−1 2.87 × 10−1 5.87 × 10−1 2.95 × 10−1 2.94 × 10−1 3.08 × 10−1 3.30 × 10−1 2.30 × 10−1

25 20 25 15 0.5 3.07 × 10−1 3.99 × 10−1 4.76 × 10−1 3.02 × 10−1 4.50 × 10−1 1.22 ×
10+00 3.70 × 10−1 4.57 × 10−1 3.75 × 10−1 3.79 × 10−1 2.66 × 10−1
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Table A6. Parameter sensitivity results of Glass Identification dataset based on orthogonal arrangement.

No. M k ksoma θsoma
MSE

BP GA DE PBIL PSO ACO ABC WOA HHO ChOA BBO

1 1 1 1 0.1 1.19 × 10−1 4.18 × 10−1 4.18 × 10−1 4.20 × 10−1 4.11 × 10−1 4.36 × 10−1 4.19 × 10−1 4.27 × 10−1 4.21 × 10−1 4.19 × 10−1 4.20 × 10−1

2 1 5 10 0.9 1.15 × 10−1 1.25 × 10−1 1.09 × 10−1 1.18 × 10−1 2.06 × 10−1 2.15 × 10−1 1.15 × 10−1 1.22 × 10−1 1.35 × 10−1 1.26 × 10−1 1.12 × 10−1

3 1 10 15 0.3 1.16 × 10−1 1.17 × 10−1 1.11 × 10−1 1.15 × 10−1 1.86 × 10−1 2.02 × 10−1 8.84 × 10−2 9.72 × 10−2 1.06 × 10−1 9.60 × 10−2 1.44 × 10−1

4 1 15 25 0.5 1.20 × 10−1 1.22 × 10−1 1.20 × 10−1 1.23 × 10−1 2.32 × 10−1 2.09 × 10−1 1.17 × 10−1 1.48 × 10−1 1.29 × 10−1 1.47 × 10−1 1.63 × 10−1

5 1 25 5 0.7 1.14 × 10−1 1.06 × 10−1 1.15 × 10−1 1.08 × 10−1 2.88 × 10−1 2.01 × 10−1 1.09 × 10−1 1.71 × 10−1 1.22 × 10−1 1.18 × 10−1 1.18 × 10−1

6 5 1 5 0.3 1.19 × 10−1 1.37 × 10−1 1.50 × 10−1 1.40 × 10−1 1.11 × 10−1 2.04 × 10−1 1.32 × 10−1 1.49 × 10−1 1.35 × 10−1 1.32 × 10−1 1.12 × 10−1

7 5 5 25 0.7 9.39 × 10−2 1.04 × 10−1 1.21 × 10−1 1.18 × 10−1 8.48 × 10−2 2.34 × 10−1 9.09 × 10−2 1.02 × 10−1 9.89 × 10−2 9.22 × 10−2 7.45 × 10−2

8 5 10 1 0.5 9.89 × 10−2 2.93 × 10−1 3.14 × 10−1 3.02 × 10−1 2.97 × 10−1 3.40 × 10−1 3.05 × 10−1 3.12 × 10−1 3.17 × 10−1 3.12 × 10−1 2.77 × 10−1

9 5 15 15 0.9 1.18 × 10−1 9.22 × 10−2 1.10 × 10−1 1.05 × 10−1 1.18 × 10−1 2.23 × 10−1 9.13 × 10−2 1.03 × 10−1 1.13 × 10−1 1.08 × 10−1 9.61 × 10−2

10 5 25 10 0.1 8.84 × 10−2 1.76 × 10−1 1.92 × 10−1 1.88 × 10−1 1.91 × 10−1 2.58 × 10−1 1.87 × 10−1 1.81 × 10−1 2.00 × 10−1 2.01 × 10−1 1.74 × 10−1

11 10 1 10 0.5 1.17 × 10−1 1.00 × 10−1 1.11 × 10−1 1.05 × 10−1 5.62 × 10−2 2.01 × 10−1 9.34 × 10−2 9.79 × 10−2 8.10 × 10−2 8.77 × 10−2 5.57 × 10−2

12 10 5 15 0.1 5.73 × 10−2 1.23 × 10−1 1.42 × 10−1 1.37 × 10−1 1.04 × 10−1 2.09 × 10−1 1.21 × 10−1 1.21 × 10−1 1.14 × 10−1 1.31 × 10−1 1.01 × 10−1

13 10 10 5 0.9 1.08 × 10−1 9.84 × 10−2 1.31 × 10−1 1.23 × 10−1 8.44 × 10−2 2.29 × 10−1 1.09 × 10−1 1.05 × 10−1 1.22 × 10−1 1.21 × 10−1 5.99 × 10−2

14 10 15 1 0.7 9.59 × 10−2 2.49 × 10−1 2.75 × 10−1 2.63 × 10−1 2.53 × 10−1 2.98 × 10−1 2.62 × 10−1 2.67 × 10−1 2.70 × 10−1 2.80 × 10−1 2.40 × 10−1

15 10 25 25 0.3 1.18 × 10−1 9.77 × 10−2 1.22 × 10−1 1.17 × 10−1 9.47 × 10−2 2.24 × 10−1 9.57 × 10−2 9.80 × 10−2 1.09 × 10−1 9.67 × 10−2 8.62 × 10−2

16 15 1 15 0.7 1.17 × 10−1 9.19 × 10−2 1.15 × 10−1 1.01 × 10−1 6.00 × 10−2 2.24 × 10−1 9.42 × 10−2 1.04 × 10−1 8.88 × 10−2 9.29 × 10−2 5.49 × 10−2

17 15 5 5 0.5 4.48 × 10−2 9.35 × 10−2 1.00 × 10−1 1.12 × 10−1 7.56 × 10−2 2.07 × 10−1 8.71 × 10−2 8.79 × 10−2 9.05 × 10−2 8.94 × 10−2 5.42 × 10−2

18 15 10 25 0.1 5.94 × 10−2 9.94 × 10−2 1.11 × 10−1 1.08 × 10−1 7.37 × 10−2 2.15 × 10−1 8.73 × 10−2 9.53 × 10−2 1.03 × 10−1 8.61 × 10−2 6.23 × 10−2

19 15 15 10 0.3 9.17 × 10−2 9.90 × 10−2 1.15 × 10−1 9.92 × 10−2 6.83 × 10−2 2.34 × 10−1 8.84 × 10−2 8.88 × 10−2 9.14 × 10−2 9.11 × 10−2 6.27 × 10−2

20 15 25 1 0.9 9.17 × 10−2 2.20 × 10−1 2.38 × 10−1 2.30 × 10−1 2.03 × 10−1 2.87 × 10−1 2.35 × 10−1 2.34 × 10−1 2.41 × 10−1 2.53 × 10−1 1.84 × 10−1

21 20 1 25 0.9 1.20 × 10−1 9.36 × 10−2 1.19 × 10−1 1.11 × 10−1 5.80 × 10−2 2.29 × 10−1 9.66 × 10−2 1.01 × 10−1 8.64 × 10−2 9.72 × 10−2 5.20 × 10−2

22 20 5 1 0.3 1.02 × 10−1 3.36 × 10−1 3.55 × 10−1 3.49 × 10−1 3.20 × 10−1 3.76 × 10−1 3.43 × 10−1 9.04 × 10−1 3.45 × 10−1 3.53 × 10−1 3.11 × 10−1

23 20 10 10 0.7 1.15 × 10−1 9.16 × 10−2 1.14 × 10−1 1.07 × 10−1 6.69 × 10−2 2.38 × 10−1 8.79 × 10−2 8.13 × 10−2 8.83 × 10−2 8.06 × 10−2 6.12 × 10−2

24 20 15 5 0.1 8.52 × 10−2 2.65 × 10−1 2.79 × 10−1 2.78 × 10−1 2.51 × 10−1 3.45 × 10−1 2.68 × 10−1 2.75 × 10−1 1.07 × 10−1 2.71 × 10−1 2.55 × 10−1

25 20 25 15 0.5 1.19 × 10−1 9.18 × 10−2 1.15 × 10−1 1.10 × 10−1 7.40 × 10−2 2.50 × 10−1 9.03 × 10−2 7.62 × 10−2 1.05 × 10−1 9.30 × 10−2 6.92 × 10−2
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Table A7. Average accuracy of testing of each learning algorithm in Australian Credit Approval dataset.

No. M k ksoma θsoma
Accuracy

BP GA DE PBIL PSO ACO ABC WOA HHO ChOA BBO

1 1 1 1 0.1 54.33 82.56 84.09 85.28 80.19 55.88 77.04 84.11 85.19 56.55 85.39
2 1 5 10 0.9 55.31 83.17 82.33 84.64 66.33 55.01 70.82 82.13 84.06 58.12 84.67
3 1 10 15 0.3 54.33 83.93 79.44 80.85 59.40 56.01 76.51 83.80 84.22 58.79 78.62
4 1 15 25 0.5 55.81 81.79 78.36 76.47 59.15 56.12 71.51 84.30 83.08 56.73 73.72
5 1 25 5 0.7 54.33 83.27 75.96 77.95 59.71 55.60 69.60 83.85 83.46 56.84 77.33
6 5 1 5 0.3 55.76 84.41 83.69 84.59 84.35 55.01 82.06 83.98 85.39 63.67 85.04
7 5 5 25 0.7 57.65 83.80 83.66 85.23 76.59 55.85 75.04 81.82 81.85 60.85 83.64
8 5 10 1 0.5 55.76 84.04 83.35 84.57 73.99 54.98 78.99 84.40 83.90 57.12 83.59
9 5 15 15 0.9 55.76 85.52 82.14 85.99 74.51 56.02 79.15 84.11 84.30 59.15 84.48

10 5 25 10 0.1 55.76 82.35 80.45 84.72 66.36 55.62 77.71 84.06 81.30 56.76 80.66
11 10 1 10 0.5 56.34 84.21 82.64 83.11 84.34 56.10 80.34 83.96 83.17 71.40 84.38
12 10 5 15 0.1 65.64 84.61 82.46 84.25 85.06 55.28 79.94 84.81 84.52 59.77 83.62
13 10 10 5 0.9 56.34 85.67 83.64 85.31 81.00 55.41 78.90 83.11 83.64 62.19 84.51
14 10 15 1 0.7 55.07 83.88 83.17 83.41 78.33 56.10 79.68 83.78 84.25 58.18 84.86
15 10 25 25 0.3 56.34 83.53 82.38 83.59 76.54 57.00 79.82 84.48 81.34 59.29 82.27
16 15 1 15 0.7 55.48 84.40 78.78 84.62 82.33 55.78 78.65 83.24 84.27 64.17 85.97
17 15 5 5 0.5 64.38 84.30 83.37 81.32 81.88 55.43 76.28 85.43 83.12 66.12 84.86
18 15 10 25 0.1 56.97 84.04 83.54 84.48 83.41 55.41 77.62 85.89 82.46 61.71 85.10
19 15 15 10 0.3 56.36 83.88 83.24 82.93 79.13 55.17 81.00 83.99 82.24 62.11 83.74
20 15 25 1 0.9 55.48 84.73 82.85 84.94 79.18 54.78 78.47 82.09 83.86 61.45 83.45
21 20 1 25 0.9 55.14 84.51 76.97 83.96 83.09 56.33 75.43 77.00 85.65 62.01 85.01
22 20 5 1 0.3 61.14 84.52 82.91 84.96 83.14 55.73 77.12 83.82 84.56 59.32 84.65
23 20 10 10 0.7 55.14 84.20 84.90 85.15 82.29 55.09 78.62 83.19 83.49 64.30 84.73
24 20 15 5 0.1 58.12 82.25 80.45 84.06 78.57 55.70 79.98 83.78 84.25 60.34 83.24
25 20 25 15 0.5 55.14 84.80 82.72 81.95 81.01 55.93 79.05 83.85 81.72 59.89 82.75



Symmetry 2022, 14, 11 29 of 35

Table A8. Average accuracy of testing of each learning algorithm in Banknote Authentication dataset.

No. M k ksoma θsoma
Accuracy

BP GA DE PBIL PSO ACO ABC WOA HHO ChOA BBO

1 1 1 1 0.1 57.45 88.88 89.04 89.28 89.00 84.94 82.43 88.67 89.10 89.09 88.55
2 1 5 10 0.9 75.02 88.11 88.57 87.62 87.28 82.85 78.79 89.26 88.88 89.25 87.73
3 1 10 15 0.3 57.89 88.79 88.91 88.62 88.92 83.60 80.65 91.82 91.29 89.90 88.67
4 1 15 25 0.5 54.93 88.68 88.96 88.88 88.95 83.86 83.67 90.56 90.00 88.86 89.35
5 1 25 5 0.7 54.93 88.11 88.41 88.62 88.33 83.57 78.91 88.79 89.24 88.75 88.30
6 5 1 5 0.3 67.58 92.40 93.12 92.94 98.10 85.50 87.79 96.80 97.22 96.63 98.94
7 5 5 25 0.7 57.91 91.31 91.48 92.45 96.89 84.17 83.60 96.42 95.43 96.46 98.03
8 5 10 1 0.5 69.01 90.44 89.40 90.96 95.35 84.23 85.95 94.74 94.13 95.24 96.34
9 5 15 15 0.9 57.56 90.57 90.76 93.20 97.09 84.82 86.69 96.08 95.13 97.16 98.00

10 5 25 10 0.1 52.59 91.38 90.96 92.47 96.59 83.16 86.80 94.59 94.75 95.11 98.04
11 10 1 10 0.5 86.50 91.62 91.50 92.67 98.45 88.10 93.23 98.67 97.53 98.73 99.50
12 10 5 15 0.1 81.17 91.20 91.37 91.22 97.94 88.17 92.68 96.43 95.37 96.44 99.26
13 10 10 5 0.9 61.35 89.69 89.79 90.66 96.25 86.33 91.58 96.46 96.31 97.54 98.66
14 10 15 1 0.7 63.06 89.89 89.23 90.73 95.74 85.02 90.59 94.45 94.01 96.11 97.57
15 10 25 25 0.3 50.11 91.11 91.83 92.42 97.86 87.66 92.69 96.29 95.60 96.50 98.55
16 15 1 15 0.7 88.16 91.33 90.89 92.52 98.69 88.24 94.33 98.96 97.68 99.01 99.57
17 15 5 5 0.5 80.88 90.68 89.89 91.67 98.11 87.97 91.01 97.27 95.39 96.96 98.88
18 15 10 25 0.1 47.85 90.69 89.22 91.82 97.97 88.18 91.86 95.31 95.50 96.09 98.75
19 15 15 10 0.3 51.42 91.25 90.40 91.65 97.99 87.65 91.33 96.67 94.85 96.51 98.82
20 15 25 1 0.9 55.69 87.67 87.86 89.94 95.53 83.22 88.25 94.16 93.01 96.13 97.93
21 20 1 25 0.9 92.48 91.51 91.33 91.75 98.93 87.31 94.91 98.94 97.52 98.35 99.42
22 20 5 1 0.3 96.19 90.03 88.26 90.19 97.83 88.04 90.01 95.19 94.78 95.53 98.50
23 20 10 10 0.7 55.22 90.15 88.54 90.66 98.16 87.66 91.15 97.18 96.44 97.12 99.07
24 20 15 5 0.1 46.21 89.18 87.34 90.17 98.28 87.54 91.24 95.55 94.60 95.93 98.97
25 20 25 15 0.5 51.43 89.35 88.58 90.67 98.21 88.20 88.44 96.86 95.19 96.59 98.81
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Table A9. Average accuracy of testing of each learning algorithm in Breast Cancer dataset.

No. M k ksoma θsoma
Accuracy

BP GA DE PBIL PSO ACO ABC WOA HHO ChOA BBO

1 1 1 1 0.1 34.71 93.59 94.25 94.97 95.17 89.48 82.37 92.65 93.63 94.48 94.78
2 1 5 10 0.9 46.03 92.89 94.19 94.1 94.84 90.06 85.33 94.32 94.48 95.05 95.43
3 1 10 15 0.3 42.46 93.87 94.19 93.92 90.52 90.67 90.78 94.16 92.84 95.68 95.33
4 1 15 25 0.5 34.71 93.97 94.37 94.05 82.79 90.08 83.84 94.41 93.16 95.32 94.56
5 1 25 5 0.7 34.71 93.57 94.19 93.43 76.76 90.19 80.68 94.54 93.86 94.81 94.56
6 5 1 5 0.3 34.54 95.06 94.92 94.49 94.84 91.11 94.76 95.38 94.54 95.30 96.22
7 5 5 25 0.7 78.95 93.75 94.41 94.02 95.10 90.67 94.56 94.95 94.19 94.84 95.14
8 5 10 1 0.5 42.71 93.41 90.84 92.76 94.97 89.68 94.19 94.33 94.75 95.38 95.35
9 5 15 15 0.9 34.54 94.05 93.79 93.73 92.49 89.24 92.46 94.29 94.29 95.57 95.83

10 5 25 10 0.1 38.29 94.19 93.92 94.32 94.59 89.84 92.29 94.67 95.05 95.14 94.76
11 10 1 10 0.5 58.13 94.98 94.00 94.35 95.06 90.05 89.97 95.08 94.43 95.71 95.94
12 10 5 15 0.1 95.95 94.86 94.11 94.13 95.11 90.46 92.87 95.13 94.9 95.57 95.90
13 10 10 5 0.9 50.84 93.19 92.35 93.78 95.43 90.52 91.75 95.00 94.67 95.48 95.60
14 10 15 1 0.7 35.35 92.84 91.94 92.1 94.89 89.98 89.59 94.44 93.98 94.95 95.38
15 10 25 25 0.3 42.19 94.21 93.65 94.25 95.06 90.76 94.32 94.94 94.16 95.32 95.08
16 15 1 15 0.7 58.78 95.43 93.92 94.32 95.37 90.05 94.46 95.00 95.03 95.32 96.16
17 15 5 5 0.5 93.30 94.56 93.97 94.24 95.6 90.67 92.49 95.02 95.14 95.75 96.13
18 15 10 25 0.1 83.17 94.83 94.10 94.25 95.51 90.76 92.65 95.56 95.22 95.68 95.51
19 15 15 10 0.3 67.75 94.21 93.73 94.46 94.98 91.14 88.63 95.08 94.65 95.51 95.71
20 15 25 1 0.9 33.84 92.44 92.38 91.81 94.81 88.46 89.14 94.33 94.76 95.02 95.46
21 20 1 25 0.9 54.52 94.67 93.63 94.41 95.37 89.17 91.27 92.94 95.56 95.44 96.00
22 20 5 1 0.3 95.41 93.43 93.52 93.78 94.86 89.41 94.10 94.27 94.70 95.11 95.30
23 20 10 10 0.7 60.48 94.57 93.43 94.11 95.19 91.08 94.25 94.92 93.92 95.08 96.21
24 20 15 5 0.1 78.52 94.49 94.35 94.25 95.38 90.92 94.10 94.87 94.46 95.10 95.46
25 20 25 15 0.5 42.37 94.16 94.24 93.84 94.71 80.38 94.10 95.00 94.06 95.25 95.83
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Table A10. Average accuracy of testing of each learning algorithm in Car Evaluation dataset.

No. M k ksoma θsoma
Accuracy

BP GA DE PBIL PSO ACO ABC WOA HHO ChOA BBO

1 1 1 1 0.1 70.1 86.78 87.52 85.22 86.24 75.53 81.6 81.5 86.65 75.88 87.78
2 1 5 10 0.9 79.63 86.49 87.89 85.82 83.73 76.44 81.94 87.77 87.81 74.79 86.74
3 1 10 15 0.3 70.1 86.37 86.97 86.5 82.99 80.06 84.83 88.4 87.94 71.06 88.93
4 1 15 25 0.5 70.1 87.73 87.20 83.73 82.89 77.86 83.42 87.95 87.32 72.37 85.21
5 1 25 5 0.7 70.43 86.43 86.4 86.00 81.10 78.5 81.71 88.11 86.89 71.62 88.42
6 5 1 5 0.3 69.43 88.74 86.85 87.42 90.93 77.86 88.62 88.65 88.58 81.63 93.8
7 5 5 25 0.7 71.2 87.53 86.28 87.79 88.96 81.16 83.93 88.44 88.38 77.62 89.36
8 5 10 1 0.5 72.95 87.41 87.68 86.85 86.17 82.07 85.97 87.03 87.86 75.51 89.66
9 5 15 15 0.9 69.43 86.45 86.02 88.27 87.67 80.89 84.83 87.83 87.76 78.71 87.57

10 5 25 10 0.1 70.42 85.93 86.82 87.12 87.61 81.10 86.34 87.11 88.31 73.91 86.64
11 10 1 10 0.5 85.45 88.91 87.64 86.53 91.53 75.97 88.82 89.36 91.45 79.58 92.94
12 10 5 15 0.1 88.55 86.72 86.39 87.32 89.56 76.61 87.99 88.98 88.85 77.77 91.6
13 10 10 5 0.9 74.4 86.1 86.38 86.04 86.89 69.8 85.44 88.38 88.52 78.71 89.36
14 10 15 1 0.7 71.08 87.93 87.32 87.05 88.98 76.55 85.36 87.88 87.69 77.95 89.49
15 10 25 25 0.3 61.13 87.3 87.07 87.79 87.37 77.10 87.34 87.73 86.56 77.29 89.03
16 15 1 15 0.7 88.44 88.63 87.48 87.99 90.72 77.77 89.85 91.46 91.51 82.46 93.8
17 15 5 5 0.5 88.59 87.21 87.04 84.09 88.97 78.68 86.24 89.89 88.69 77.59 92.87
18 15 10 25 0.1 73.54 87.07 87.10 87.77 88.75 76.94 87.64 87.7 88.53 76.71 89.95
19 15 15 10 0.3 71.83 87.42 86.3 87.7 88.24 76.81 86.96 89.18 87.73 77.90 89.96
20 15 25 1 0.9 70.35 86.55 85.51 86.43 88.7 75.33 86.35 87.92 86.54 81.06 90.15
21 20 1 25 0.9 88.77 89.34 86.63 87.71 92.94 82.28 87.57 91.22 91.47 84.43 93.32
22 20 5 1 0.3 89.27 88.42 88.07 87.66 88.97 80.37 87.05 87.39 87.96 79.46 90.74
23 20 10 10 0.7 72.05 86.18 86.81 87.86 88.2 78.31 85.53 89.56 88.13 78.88 89.21
24 20 15 5 0.1 80.05 86.03 86.17 86.74 89.4 79.51 87.09 88.07 87.57 73.93 88.44
25 20 25 15 0.5 69.49 87.07 86.96 84.17 87.92 79.39 86.8 88.81 88.15 74.76 88.65



Symmetry 2022, 14, 11 32 of 35

Table A11. Average accuracy of testing of each learning algorithm in Diabetic Retinopathy dataset.

No. M k ksoma θsoma
Accuracy

BP GA DE PBIL PSO ACO ABC WOA HHO ChOA BBO

1 1 1 1 0.1 39.04 75.62 77.05 81.45 81.56 37.07 65.88 75.43 74.32 67.20 81.11
2 1 5 10 0.9 39.04 70.32 70.53 80.6 56.94 38.65 59.57 72.35 74.40 72.88 76.73
3 1 10 15 0.3 39.04 77.8 70.00 78.68 56.82 39.29 74.42 73.61 74.00 72.24 72.31
4 1 15 25 0.5 39.04 75.24 58.95 61.05 47.35 37.48 67.65 63.70 72.01 72.22 59.04
5 1 25 5 0.7 39.04 75.28 57.5 72.26 40.00 38.93 58.63 61.92 69.98 69.87 71.67
6 5 1 5 0.3 38.68 81.92 78.7 81.45 83.35 38.65 77.20 82.09 81.37 71.71 88.27
7 5 5 25 0.7 41.11 78.29 74.29 81.52 69.38 38.16 67.67 67.37 76.28 75.13 83.08
8 5 10 1 0.5 38.68 80.00 77.46 80.96 64.51 38.95 72.44 73.1 75.45 68.29 81.05
9 5 15 15 0.9 38.68 81.62 67.33 82.29 63.14 39.06 69.89 71.79 74.17 72.48 82.33

10 5 25 10 0.1 38.68 80.17 68.59 81.62 55.56 38.76 67.03 75.26 73.70 70.17 77.95
11 10 1 10 0.5 39.08 80.66 69.06 81.54 87.16 38.7 74.29 82.82 85.15 70.38 89.91
12 10 5 15 0.1 45.21 81.54 77.39 82.65 83.70 46.13 77.63 79.32 80.21 69.64 86.22
13 10 10 5 0.9 39.08 78.25 66.94 81.54 75.32 40.24 67.03 70.49 72.54 74.59 84.51
14 10 15 1 0.7 38.89 80.53 75.00 82.01 72.29 37.95 74.55 76.18 75.66 71.71 82.69
15 10 25 25 0.3 39.08 80.00 71.20 81.90 59.83 39.53 74.94 74.59 69.53 72.52 80.85
16 15 1 15 0.7 37.91 80.15 62.48 81.43 86.13 38.59 68.12 62.52 83.63 70.06 90.79
17 15 5 5 0.5 48.48 78.68 77.35 78.91 81.03 35.60 71.79 79.12 77.88 72.97 86.28
18 15 10 25 0.1 37.88 80.34 76.79 81.71 82.71 45.53 77.35 76.11 77.74 72.86 84.27
19 15 15 10 0.3 41.30 79.59 74.42 83.03 79.83 38.61 74.44 77.50 74.64 70.21 84.70
20 15 25 1 0.9 37.91 79.36 69.62 81.37 64.08 36.82 68.23 72.39 72.01 74.81 81.62
21 20 1 25 0.9 38.18 78.03 48.38 80.38 81.05 38.12 67.78 43.48 80.09 65.64 89.66
22 20 5 1 0.3 45.26 81.82 74.87 81.45 82.71 37.71 76.71 75.88 75.79 68.97 85.94
23 20 10 10 0.7 38.8 77.99 72.76 80.13 81.77 39.29 69.49 72.93 76.84 74.36 85.92
24 20 15 5 0.1 42.39 79.51 73.93 81.39 77.03 40.06 74.81 78.57 75.96 75.24 83.59
25 20 25 15 0.5 38.18 78.97 75.45 76.37 73.59 37.63 73.97 71.97 74.83 69.76 81.50
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Table A12. Average accuracy of testing of each learning algorithm in Diabetic Retinopathy dataset.

No. M k ksoma θsoma
Accuracy

BP GA DE PBIL PSO ACO ABC WOA HHO ChOA BBO

1 1 1 1 0.1 76.72 90.73 91.88 90.89 90.10 88.44 87.66 89.95 91.04 92.29 91.67
2 1 5 10 0.9 77.24 92.19 91.51 91.61 86.30 87.24 88.39 92.24 91.61 92.86 91.25
3 1 10 15 0.3 76.98 92.19 91.61 90.52 88.23 89.06 87.55 92.92 91.56 93.07 90.26
4 1 15 25 0.5 76.72 91.46 91.30 91.88 86.98 85.52 87.66 89.38 90.21 90.68 89.53
5 1 25 5 0.7 76.72 91.41 92.19 92.55 82.97 87.40 87.86 88.80 90.63 92.60 92.14
6 5 1 5 0.3 75.63 92.34 91.93 91.15 92.45 88.07 89.53 90.94 92.19 93.13 91.88
7 5 5 25 0.7 78.70 92.40 90.99 92.71 92.76 86.82 91.30 90.78 90.31 92.76 92.08
8 5 10 1 0.5 76.61 92.60 90.42 92.45 91.15 86.77 91.41 90.26 91.46 92.92 91.82
9 5 15 15 0.9 75.63 90.68 92.14 91.04 92.19 86.41 91.25 90.26 91.35 93.23 90.73

10 5 25 10 0.1 76.35 92.08 91.35 90.73 89.90 86.25 89.69 90.31 90.94 89.95 90.99
11 10 1 10 0.5 75.89 91.98 92.34 90.26 93.01 88.07 91.72 92.50 91.67 93.05 93.07
12 10 5 15 0.1 84.58 91.77 90.36 91.88 92.40 85.83 90.10 90.47 91.51 92.50 91.30
13 10 10 5 0.9 77.40 90.57 90.26 91.56 91.72 86.61 90.94 92.45 91.15 92.86 92.08
14 10 15 1 0.7 78.39 91.56 90.57 91.72 93.39 88.02 90.99 90.63 91.04 94.43 92.60
15 10 25 25 0.3 75.89 91.61 91.20 91.98 92.40 87.86 90.99 92.08 90.94 92.60 91.25
16 15 1 15 0.7 75.36 90.16 91.09 90.36 93.18 87.86 92.14 90.57 91.98 93.59 93.49
17 15 5 5 0.5 86.04 91.51 90.78 92.76 92.97 85.47 91.25 91.20 92.08 93.39 90.89
18 15 10 25 0.1 83.75 91.46 90.89 92.19 92.76 86.77 89.79 91.82 91.67 92.29 91.15
19 15 15 10 0.3 78.29 91.61 91.41 91.35 93.49 86.41 92.08 91.25 92.76 94.06 92.81
20 15 25 1 0.9 75.36 92.08 89.84 91.35 91.82 85.21 90.73 92.45 92.29 92.71 92.66
21 20 1 25 0.9 76.35 92.50 91.35 92.14 93.07 87.86 91.51 90.94 92.08 93.65 92.40
22 20 5 1 0.3 82.86 90.73 89.11 89.95 92.71 85.26 90.10 90.36 91.46 93.54 92.40
23 20 10 10 0.7 76.88 92.03 91.61 91.56 93.07 86.35 90.83 92.71 93.39 92.97 92.66
24 20 15 5 0.1 83.91 90.31 89.53 91.46 89.90 84.74 88.65 89.90 92.50 91.46 90.89
25 20 25 15 0.5 76.30 92.08 91.25 89.38 92.71 85.00 90.89 93.07 90.78 93.39 91.46
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