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Abstract: We perform Lie analysis for a system of higher order difference equations with variable
coefficients and derive non-trivial symmetries. We use these symmetries to find exact formulas for
the solutions in terms of k. Furthermore, a detailed study for a specific value of k is presented. Our
findings generalize some results in the literature.
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1. Introduction

A Norwegian mathematician, Marius Sophus Lie (1842–1899) is responsible for the
discovery of the transformations of variables and its properties. He began by investigating
the continuous groups of transformations that would leave the differential equations
invariant and his work created what is now known as symmetry analysis of differential
equations. Lie’s original aim was to set a general theory for the integration of ordinary
differential equations which was similar to the work that was done by Galois Abel [1] on
algebraic equations in 1888. During the nineteenth century, Lie developed and applied the
symmetry analysis of differential equations [2]. The theory that he developed enabled one
to derive the solutions of differential equations in an algorithmic way that did not require
any special guesses. There has been a lot of interest in the way Lie approached differential
equations and notable mentions include the work done by Sedov Leonid Ivanovich [3]
and Garrett Birkhoff [4] on the dimensional analysis. Their individual work proved to be
important in the understanding of Lie’s approach to differential equations because they
showed that Lie’s theory gave pertinent results in applied problems. Before this, there
was a German mathematician Hermann Weyl (1885–1955) who in 1928 took interest in the
abstract theory of Lie groups, and the term Lie group was coined by him in the same year.
There has been a restoration of interest in Lie’s theory in recent decades and during these
decades there has been a lot of crucial progress that was made from an applied point of view
or a theoretical one. Lie’s theory involves a lot of tedious and cumbersome calculations. Lie
group analysis has been and is still an essential tool in various fields like physics, number
theory, differential equations, differential geometry, analysis and more.

Many researchers have investigated the application of Lie symmetry analysis to
difference equations. Systematic algorithms and methods dealing with the derivation of
symmetries for difference equations are now recorded and well documented. Some of the
first works can be traced back to Maeeda [5,6] who developed an algorithm for obtaining
continuous point symmetries of ordinary difference equations. Levi and Winternitz [7],
Hydon [8], Quispel and Sahadeva [9], among others, have greatly contributed to the use of
the Lie’s theory to difference equations.

Just like differential equations, difference equations have applications in real life
(simple and compound interests, loan repayments, biological population dynamics, etc.).
In general, difference equations are the perfect tools for describing phenomena that hap-
pen in discrete time steps. For example, in biological populations without overlapping
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generations, the growth of population takes place in discrete time steps and is modeled
by difference equations (see [10]). An example of a typical model is that of semelparous
populations which are insect populations with a single reproductive period before death.
If we denote by Nn the number of adults in the nth breeding time and a0 the average
number of eggs laid by an adult, the model turns out to be

Nn+1 =
a0Nn

1 + tNn
(1)

for some constant t. See [10] for more details. Let κ denote the carrying capacity of the
environment. Then, t = a0−1

κ , and the model is known as the Beverton–Holt model [10].
Note that (1) implies that

Nn+2 =
Nn

a + bNn
, (2)

where a = 1/a2
0 and b = t(a0 + 1)/a2

0.
In [11], the authors solved and dealt with the recursive equations:

xn+1 =
xn−1yn−3

yn−1(1 + xn−1yn−3)
, yn+1 =

yn−1xn−3

xn−1(±1± yn−1xn−3)
, (3)

where the real numbers x−3, x−2, x−1, x0, y−3, y−2, y−1 and y0 are the initial conditions.
In [12], the author determined and formulated the analytical solutions of the rational

recursive equations:

xn+1 =
xn−1yn−3

yn−1(±1∓ xn−1yn−3)
, yn+1 =

yn−1xn−3

xn−1(∓1± yn−1xn−3)
, (4)

where x−3, x−2, x−1, x0, y−3, y−2, y−1 and y0 are the initial conditions, which are arbi-
trary non-zero real numbers.

Note that appropriate change of variables transform equations in (3) and (4) into
equations similar to (2).

The aim of this study is to generalize the results in [11,12] by studying the system of
ordinary difference equations

un+1 =
un−1vn−k−1

vn−k+1(An + Bnun−1vn−k−1)
, vn+1 =

un−k−1vn−1

un−k+1(Cn + Dnun−k−1vn−1)
, (5)

where An, Bn, Cn and Dn are real sequences, using a symmetry method. Note that
u−k−1, . . . , u0, v−k−1, . . . , v0 are the initial conditions. For a similar work, see [13].

Understanding Lie groups and being able to use them is important because there is a
lot that can be done with Lie groups, for example, we can get the Lie algebra action for a
linear object by getting the derivative of the Lie group action. This is useful because when it
comes to linear objects, it is much simpler to work with a Lie algebra than directly working
with a Lie group. This is just one example of the many useful ways Lie groups can be used.

2. Preliminaries

In this section, we introduce some basic definitions and theorems needed in the work.
Most of our definitions can be found in [8,14].

Definition 1. A forward O∆E has the form

un+k = ω(n, un, un+1, . . . , un+k−1), n ∈ D, (6)

The domain D of the forward O∆E is said to be a regular domain if ω,un 6= 0, n ∈ D.
Here, the notation ω,un stands for ∂ω

∂un
.
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Definition 2. A parametrized set of point transformations,

Γε : x 7→ x̂(x; ε), ε ∈ (ε0, ε1), (7)

where ε0 < 0 < ε1, is a one-parameter local Lie group if the following conditions are satisfied:

1. Γ0 is the identity map, so that x̂ = x when ε = 0.
2. ΓδΓε = Γδ+ε for every δ, ε sufficiently close to zero.
3. Each x̂α can be represented as Taylor series in ε (in a neighborhood of ε = 0 that is determined

by x), and therefore

x̂α(x; ε) = xα + εξα(x) + O(ε2), α = 1, . . . , N. (8)

Definition 3. Consider ũ = U(u, ε), with ε = 0, expand in Taylor series,

ũ = u + ε

(
∂U
∂ε

∣∣∣∣
ε=0

)
+

ε2

2!

(
∂2U
∂ε2

∣∣∣∣
ε=0

)
+ . . . (9)

up to first order, we have

ũ = u + ε

(
∂U
∂ε

∣∣∣∣
ε=0

)
+ O(ε2). (10)

Definition 4. A symmetry generator of (6) is denoted by U and is given by

U = Q
∂

∂un
+ SQ

∂

∂un+1
+ · · ·+ Sk−1Q

∂

∂un+k−1
, (11)

where Q is the characteristic of the group of transformations.

In the above definition, SjQ(n, un) = Q(n + j, un+j). The operator S is known as the
shift operator.

Consider the system of ordinary difference equations of the form

un+k+2 = ω1(un+k, vn, vn+2), vn+k+2 = ω2(un, un+2, vn+k), (12)

where the independent variable is n and the dependent variables are un, vn and their shifts.
Consider the group of transformations

(n, un, vn) 7→ (n, ũn = un + εQ1(n, un)

+O(ε2), ṽn = vn + εQ2(n, vn)+O(ε2)).
(13)

In (13), the characteristic of the group of transformations is Q = (Q1, Q2). The
infinitesimal generator corresponds to

U = Q1∂un + Q2∂vn , (14)

where ∂x = ∂
∂x . In this work, we will need the kth extension

U[k] = Q1∂un + Q2∂vn + S2Q1∂un+2 + S2Q2∂vn+2 + SkQ1∂un+k + SkQ2∂vn+k (15)

of (14).
For the set of solutions of (12) to be mapped to itself, the following linearized symme-

try conditions

S(k+2)Q1 −U[k]ω1 = 0 and S(k+2)Q2 −U[k]ω2 = 0, (16)
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whenever (12) is true, must be satisfied. If the conditions given in (16), that is,
Qj(n + k + 2, Ωj) − U[k](Ωj) = 0, j = 1, 2, are satisfied, then the group of transforma-
tions (13) is a symmetry group.

3. Symmetries and Solutions of the System of Difference Equations

Equivalently, Equation (5) can be written as

un+k+2 =ω1 =
un+kvn

vn+2(an + bnun+kvn)
,

vn+k+2 =ω2 =
unvn+k

un+2(cn + dnunvn+k)
,

(17)

where an, bn, cn and dn are real sequences. Applying (16) to (17) yields

−Sk+2Q1 +
anun+kQ2

vn+2(an + bnun+kvn)2−

un+kvnS2Q2

v2
n+2(an + bnun+kvn)

+
anvnSkQ1

vn+2(an + bnun+kvn)2 = 0, (18)

−Sk+2Q2 +
cnvn+kQ1

un+2(cn + dnunvn+k)2−

unvn+kS2Q1

u2
n+2(cn + dnunvn+k)

+
cnunSkQ2

un+2(cn + dnunvn+k)2 = 0. (19)

After a set of long calculations, we get a system of determining equations for the
characteristics Q1 and Q2. Solving this system, we get

Q2(n, vn) = λnvn and Q1(n, un) = αnun, (20)

provided that

αn + λn+k = 0 and λn + αn+k = 0. (21)

Using (21), we have that

αn+2k − αn = 0. (22)

The characteristic equation corresponding to (22) is giving by

r2k − 1 = 0. (23)

Basically, r are the 2k-th roots of 1, which are obtained as follows:

r2k =ei(0+2pπ), (24)

that is,

r =ei( 2pπ
2k ) (25)

for any 2k successive values of p ∈ Z, say 0 ≤ p ≤ 2k− 1. This is the same as saying that

r =ei( pπ
k ), 0 ≤ p ≤ 2k− 1. (26)
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It follows that the solutions αn of (22) are given by

αn =rn = ei( npπ
k ), 0 ≤ p ≤ 2k− 1. (27)

Using (21), we have that

λn =− αn+k

=− e
i(n+k)pπ

k , 0 ≤ p ≤ 2k− 1. (28)

Therefore (thanks to (14), (20), (27) and (28)), the system (17) has the following 2k
symmetry generators:

U =eipπn/kun
∂

∂un
− eipπ(n+k)/kvn

∂

∂vn
, (29)

where 0 ≤ p ≤ 2k− 1. Thanks to (20), the canonical coordinates [15] are given by

s1
n =

∫ dun

Q1(n, un)
=

1
αn

ln |un| and s2
n =

∫ dvn

Q2(n, vn)
=

1
λn

ln |vn|. (30)

Motivated by (21), we let Ỹn = αns1
n + λn+ks2

n+k = ln |unvn+k| and X̃n = λns2
n +

αn+ks1
n+k = ln |vnun+k|. For a better understanding, we use Xn = exp{−X̃n} and

Yn = exp{−Ỹn}. We then get the invariants

Xn =
1

vnun+k
and Yn =

1
unvn+k

. (31)

Here, (31) is invariant under the group transformations of (20). In other words, the
action of the symmetry generators, given in (29), on (31) gives zero. It is worthwhile
mentioning that the symmetries together with the constraints on αn and λn have helped us
to come up with the appropriate change of variables that will lead to the reduced system of
equations. This is just one of the many roles of symmetries.

Using (31), (5) is reduced to a second-order difference equations:

Xn+2 = anXn + bn and Yn+2 = cnYn + dn. (32)

The closed form solutions of (32) are, respectively, as follows:

X2n+i = Xi

(
n−1

∏
k1=0

a2k1+i

)
+

n−1

∑
l=0

(
b2l+i

n−1

∏
k2=l+1

a2k2+i

)
, (33)

Y2n+i = Yi

(
n−1

∏
k1=0

c2k1+i

)
+

n−1

∑
l=0

(
d2l+i

n−1

∏
k2=l+1

c2k2+i

)
, (34)

for i = 0, 1.
From (31), we get that

un+2k =
Yn

Xn+k
un and vn+2k =

Xn

Yn+k
vn. (35)

Performing iterations on (35), respectively, leads to the following:

u2kn+j = uj

n−1

∏
m=0

Y2km+j

X2km+k+j
and v2kn+j = vj

n−1

∏
m=0

X2km+j

Y2km+k+j
, (36)
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where j = 0, 1, 2, . . . , 2k− 1.
The subscript of X and Y in (33) and (34) is 2n + 1, where i = 0, 1 but the ones of

X and Y in (36) are 2km + j and 2km + k + j, where j = 0, 1, 2, . . . , 2k − 1. Therefore, we
want to write 2km + j and 2km + k + j in the form similar to 2n + i. We know that any
positive integer r can be written as r = kbr/kc+ τ(r), 0 ≤ τ(r) ≤ k− 1, where τ(r) denotes
the remainder when r is divided by k. Hence,

2km + j = 2
(

km +

⌊
j
2

⌋)
+ τ(j) (37)

and

2km + k + j = 2
(

km +

⌊
k + j

2

⌋)
+ τ(k + j). (38)

Now, (37) and (38) are of the form similar to 2n + i, as τ(j) and τ(k + j) will either be
0 or 1. Substituting (37) and (38) into (36) leads to the following:

u2kn+j = uj

n−1

∏
m=0

Y
2(km+b j

2 c)+τ(j)

X
2(km+b k+j

2 c)+τ(k+j)
(39)

and

v2kn+j = vj

n−1

∏
m=0

X
2(km+b j

2 c)+τ(j)

Y
2(km+b k+j

2 c)+τ(k+j)
. (40)

Using (33), (34) (39) and (40), we get the following:

u2kn+j = uj

n−1

∏
m=0

Yτ(j)




km+
b j

2 c−1
∏

k1=0
c2k1+τ(j)

+ 1
Yτ(j)

km+
b j

2 c−1
∑

l=0

d2l+τ(j)

km+
b j

2 c−1
∏

k2=l+1
c2k2+τ(j)




Xτ(k+j)




km+

b k+j
2 c−1
∏

k1=0
a2k1+τ(k+j)

+ 1
Xτ(k+j)

km+

b k+j
2 c−1
∑

l=0

b2l+τ(k+j)

km+

b k+j
2 c−1
∏

k2=l+1
a2k2+τ(k+j)




,

that is,

u2kn+j = uj

n−1

∏
m=0

uτ(k+j)+kvτ(k+j)

uτ(j)vτ(j)+k
km+
b j

2 c−1
∏

k1=0
c2k1+τ(j)

+ uτ(j)vτ(j)+k

km+
b j

2 c−1
∑

l=0

d2l+τ(j)

km+
b j

2 c−1
∏

k2=l+1
c2k2+τ(j)




km+

b k+j
2 c−1
∏

k1=0
a2k1+τ(k+j)

+ uτ(k+j)+kvτ(k+j)

km+

b k+j
2 c−1
∑

l=0

b2l+τ(k+j)

km+

b k+j
2 c−1
∏

k2=l+1
a2k2+τ(k+j)


(41)
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and, similarly,

v2kn+j = vj

n−1

∏
m=0

uτ(k+j)vτ(k+j)+k

uτ(j)+kvτ(j)
km+
b j

2 c−1
∏

k1=0
a2k1+τ(j)

+ uτ(j)+kvτ(j)

km+
b j

2 c−1
∑

l=0

b2l+τ(j)

km+
b j

2 c−1
∏

k2=l+1
a2k2+τ(j)




km+

b k+j
2 c−1
∏

k1=0
c2k1+τ(k+j)

+ uτ(k+j)vτ(k+j)+k

km+

b k+j
2 c−1
∑

l=0

d2l+τ(k+j)

km+

b k+j
2 c−1
∏

k2=l+1
c2k2+τ(k+j)


.

(42)

Back-shifting the equations above by k yields

u2kn+j−k = uj−k

n−1

∏
m=0

uτ(k+j)vτ(k+j)−k

uτ(j)−kvτ(j)
km+
b j

2 c−1
∏

k1=0
C2k1+τ(j)

+ uτ(j)+(−k)vτ(j)

km+
b j

2 c−1
∑

l=0

D2l+τ(j)

km+
b j

2 c−1
∏

k2=l+1
C2k2+τ(j)




km+

b k+j
2 c−1
∏

k1=0
A2k1+τ(k+j)

+ uτ(k+j)vτ(k+j)+(−k)

km+

b k+j
2 c−1
∑

l=0

B2l+τ(k+j)

km+

b k+j
2 c−1
∏

k2=l+1
A2k2+τ(k+j)


(43)

and

v2kn+j−k = vj−k

n−1

∏
m=0

uτ(k+j)−kvτ(k+j)

uτ(j)vτ(j)−k
km+
b j

2 c−1
∏

k1=0
A2k1+τ(j)

+ uτ(j)vτ(j)+(−k)

km+
b j

2 c−1
∑

l=0

B2l+τ(j)

km+
b j

2 c−1
∏

k2=l+1
A2k2+τ(j)




km+

b k+j
2 c−1
∏

k1=0
C2k1+τ(k+j)

+ uτ(k+j)+(−k)vτ(k+j)

km+

b k+j
2 c−1
∑

l=0

D2l+τ(k+j)

km+

b k+j
2 c−1
∏

k2=l+1
C2k2+τ(k+j)


,

(44)

for j = 0, 1, 2, . . . , 2k− 1. Equations (43) and (44) are the solutions of (5).

3.1. The Case When An, Bn, Cn and Dn Are Constant Sequences

Letting An = A, Bn = B, Cn = C and Dn = D for all n simplifies (43) and (44)
as follows:

u2kn+j−k =

uj−k

n−1

∏
m=0

uτ(k+j)vτ(k+j)−k

uτ(j)−kvτ(j)

Ckm+b j
2 c + Duτ(j)+(−k)vτ(j)

km+
b j

2 c−1
∑

l=0
Cl

Akm+b k+j
2 c + Buτ(k+j)vτ(k+j)+(−k)

km+

b k+j
2 c−1
∑

l=0
Al

(45)
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and
v2kn+j−k =

vj−k

n−1

∏
m=0

uτ(k+j)−kvτ(k+j)

uτ(j)vτ(j)−k

Akm+b j
2 c + Buτ(j)vτ(j)+(−k)

km+b j
2 c−1

∑
l=0

Al

Ckm+b k+j
2 c + Duτ(k+j)+(−k)vτ(k+j)

km+

b k+j
2 c−1
∑

l=0
Cl

, (46)

where j = 0, 1, 2, . . . , 2k− 1.

3.2. A Detailed Study of the Case k = 2

One of the aims of this section is to verify the results in [11,12]. To achieve this, we
substitute k = 2 into (45) and (46). It yields the following:

u4n+j−2 = uj−2

n−1

∏
m=0

uτ(2+j)vτ(2+j)−2

uτ(j)−2vτ(j)

C2m+b j
2 c + Duτ(j)+(−2)vτ(j)

2m+
b j

2 c−1
∑

l=0
Cl

A2m+b 2+j
2 c + Buτ(2+j)vτ(2+j)−2

2m+
b 2+j

2 c−1
∑

l=0
Al

, (47)

and

v4n+j−2 = vj−2

n−1

∏
m=0

uτ(2+j)−2vτ(2+j)

uτ(j)vτ(j)−2

A2m+b j
2 c + Buτ(j)vτ(j)+(−2)

2m+b j
2 c−1

∑
l=0

Al

C2m+b 2+j
2 c + Duτ(2+j)+(−2)vτ(2+j)

2m+
b 2+j

2 c−1
∑

l=0
Cl

, (48)

where j = 0, 1, 2, 3. For the sake of clarity, we can rewrite (47) and (48) in expanded forms
as follows:

u4n−2 = u−2

n−1

∏
m=0

u0v−2

u−2v0

C2m + Du−2v0
2m−1

∑
l=0

Cl

A2m+1 + Bu0v−2
2m
∑

l=0
Al

, (49)

u4n−1 = u−1

n−1

∏
m=0

u1v−1

u−1v1

C2m + Du−1v1
2m−1

∑
l=0

Cl

A2m+1 + Bu1v−1
2m
∑

l=0
Al

, (50)

u4n = u0

n−1

∏
m=0

u0v−2

u−2v0

C2m+1 + Du−2v0
2m
∑

l=0
Cl

A2m+2 + Bu0v−2
2m+1

∑
l=0

Al
, (51)

u4n+1 = u1

n−1

∏
m=0

u1v−1

u−1v1

C2m+1 + Du−1v1
2m
∑

l=0
Cl

A2m+2 + Bu1v−1
2m+1

∑
l=0

Al
, (52)



Symmetry 2022, 14, 108 9 of 14

v4n−2 = v−2

n−1

∏
m=0

u−2v0

u0v−2

A2m + Bu0v−2
2m−1

∑
l=0

Al

C2m+1 + Du−2v0
2m
∑

l=0
Cl

, (53)

v4n−1 = v−1

n−1

∏
m=0

u−1v1

u1v−1

A2m + Bu1v−1
2m−1

∑
l=0

Al

C2m+1 + Du−1v1
2m
∑

l=0
Cl

, (54)

v4n = v0

n−1

∏
m=0

u−2v0

u0v−2

A2m+1 + Bu0v−2
2m
∑

l=0
Al

C2m+2 + Du−2v0
2m+1

∑
l=0

Cl
, (55)

v4n+1 = v1

n−1

∏
m=0

u−1v1

u1v−1

A2m+1 + Bu1v−1
2m
∑

l=0
Al

C2m+2 + Du−1v1
2m+1

∑
l=0

Cl
. (56)

Theorem 1. The following system of equations

un+1 =
un−1vn−3

vn−1(A + Bun−1vn−3)
and vn+1 =

un−3vn−1

un−1(C + Dun−3vn−1)
, (57)

has a 2-periodic solution if u−3 = u−1, v−3 = v−1, u−3v−3 = u−2v−2 = (1−A)
B and A = C,

B = D 6= 0.

Proof. Let u−3 = u−1, v−3 = v−1 and u−3v−3 = u−2v−2 = (1−A)
B , where A = C, B = D

in the exact Equation (49). Then,

u4n−2 =u−2

n−1

∏
m=0

C2m + (1− C)
2m−1

∑
l=0

Cl

A2m+1 + (1− A)
2m
∑

l=0
Al

=u−2.

(58)

Following the same procedure as above on Equations (50)–(56) gives u4n−1 = u−1;
u4n = u0; u4n+1 = u1 and v4n−1 = v−1; v4n = v0; v4n+1 = v1.

Below is a graph that illustrates the theorem above. Figure 1 is when we let
A = C = 2, B = D = −0.125, u1 = 4, u0 = 1, v1 = 2 and v0 = 8 into the system
of Equation (57).
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Figure 1. Plof of un+1 = un−1vn−3
vn−1(2−0.125un−1vn−3)

, vn+1 = un−3vn−1
un−1(2−0.125un−3vn−1)

.

If we let A = B = C = 1 and D = −1, then Equations (49)–(56) reduce to Theorem 4
in [11] as shown below:

u4n−2 =u−2

n−1

∏
m=0

u0v−2

u−2v0

(1)2m − u−2v0
2m
∑

i=1
(1)i

(1)2m+1 + u0v−2
2m+1

∑
i=1

(1)i

=u−2

n−1

∏
m=0

u0v−2

u−2v0

(−((2m)u−2v0 − 1))
1 + (2m + 1)u0v−2

=

(−1)n(u0)
n(v−2)

n
n−1
∏

m=0
[(2m)u−2v0 − 1]

(u−2)n−1(v0)n
n−1
∏

m=0
[(2m + 1)u0v−2 + 1]

.

(59)

Just as above, we similarly obtain the following:

u4n−1 =

(−1)n(u−1)
n+1(v−3)

n
n−1
∏

m=0
[(2m + 1)u−3v−1 − 1]

(u−3)n(v−1)n
n−1
∏

m=0
[(2m + 2)u−1v−3 + 1]

, (60)

u4n =

(−1)n(u0)
n+1(v−2)

n
n−1
∏

m=0
[(2m + 1)u−2v0 − 1]

(u−2)n(v0)n
n−1
∏

m=0
[(2m + 2)u0v−2 + 1]

, (61)
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u4n+1 =

(−1)n(u1)
n+1(v−1)

n
n−1
∏

m=0
[(2m + 1)u−1v1 − 1]

(u−1)n(v1)n
n−1
∏

m=0
[(2m + 2)u1v−1 + 1]

, (62)

v4n−2 =

(−1)n(u−2)
n(v0)

n
n−1
∏

m=0
[(2m)u0v−2 + 1]

(u0)n(v−2)n
n−1
∏

m=0
[(2m + 1)u−2v0 − 1]

, (63)

v4n−1 =

(−1)n(u−3)
n(v−1)

n+1
n−1
∏

m=0
[(2m + 1)u−1v−3 + 1]

(u−1)n(v−3)n
n−1
∏

m=0
[(2m + 2)u−3v−1 − 1]

, (64)

v4n =

(−1)n(u−2)
n(v0)

n+1
n−1
∏

m=0
[(2m + 1)u0v−2 + 1]

(u0)n(v−2)n
n−1
∏

m=0
[(2m + 2)u−2v0 − 1]

, (65)

v4n+1 =

(−1)n(u−1)
n(v1)

n+1
n−1
∏

m=0
[(2m + 1)u1v−1 + 1]

(u1)n(v−1)n
n−1
∏

m=0
[(2m + 2)u−1v1 − 1]

. (66)

Similarly, if we let A = B = C = D = 1, then Equations (49)–(56) reduce to Theorem 1
in [11], as shown below:

u4n−2 = u−2

n−1

∏
m=0

u0v−2

u−2v0

(1)2m + (1)u−2v0
2m
∑

i=1
(1)i+1

(1)2m+1 + (1)u0v−2
2m+1

∑
i=1

(1)i+1
. (67)

In the above equation, we performed index shifting. Now,

u4n−2 = u−2

n−1

∏
m=0

u0v−2

u−2v0

1 + (2m)u−2v0

1 + (2m + 1)u0v−2

= u−2

n−1

∏
m=0

u0v−2

u−2v0

1 + (2m)u−2v0

1 + (2m + 1)u0v−2
.

Thus, (49) simplifies to

u4n−2 =

(u0)
n(v−2)

n
n−1
∏

m=0
[(2m)u−2v0 + 1]

(u−2)n−1(v0)n
n−1
∏

m=0
[(2m + 1)u0v−2 + 1]

. (68)

Following the same procedure as above, Equations (50)–(56), respectively, result in the
following equations:

u4n−1 =

(u−1)
n+1(v−3)

n
n−1
∏

m=0
[(2m + 1)u−3v−1 + 1]

(u−3)n(v−1)n
n−1
∏

m=0
[(2m + 2)u−1v−3 + 1]

, (69)
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u4n =

(u0)
n+1(v−2)

n
n−1
∏

m=0
[(2m + 1)u−2v0 + 1]

(u−2)n(v0)n
n−1
∏

m=0
[(2m + 2)u0v−2 + 1]

, (70)

u4n+1 =

(u−1)
n+1(v−3)

n
n−1
∏

m=0
[(2m + 1)u−3v−1 + 1]

(u−3)n(v−1)n
n−1
∏

m=0
[(2m + 2)u−1v−3 + 1]

, (71)

v4n−2 =

(u−2)
n(v0)

n
n−1
∏

m=0
[(2m)u0v−2 + 1]

(u0)(v−2)n−1
n−1
∏

m=0
[(2m + 1)u−2v0 + 1]

, (72)

v4n−1 =

(u−3)
n(v−1)

n+1
n−1
∏

m=0
[(2m + 1)u−1v−3 + 1]

(u−1)n(v−3)n
n−1
∏

m=0
[(2m + 2)u−3v−1 + 1]

, (73)

v4n =

(u−2)
n(v0)

n+1
n−1
∏

m=0
[(2m + 1)u0v−2 + 1]

(u0)n(v−2)n
n−1
∏

m=0
[(2m + 2)u−2v0 + 1]

, (74)

v4n+1 =

(u−3)
n(v−1)

n+1
n−1
∏

m=0
[(2m + 1)u−1v−3 + 1]

(u−1)n(v−3)n
n−1
∏

m=0
[(2m + 2)u−3v−1 + 1]

. (75)

When k = 3 in (5), the resulting O∆Es are

un+1 =
un−1vn−4

vn−2(a + bun−1vn−4)
and vn+1 =

un−4vn−1

un−2(c + dun−4vn−1)
. (76)

Example 1. We get the illustration below (see Figure 2) when we let a = c = −1,
b = d = 1, u−4 = 7, u−3 = 5, u−2 = −0.0971, u−1 = 7, u0 = 1, v−4 = 3,
v−3 = 9, v−2 = 0.01, v−1 = −3 and v0 = 2 in (76).

Example 2. Letting a = c = 1, b = d = −1, u−4 = 0.88, u−3 = 0.35, u−2 = 0.79,
u−1 = 0.95, u0 = 0.31, v−4 = 0.77, v−3 = 0.33, v−2 = 0.16, v−1 = 0.35 and v0 = 0.75 in
(76) yields Figure 3.
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Figure 2. Plot of un+1 = un−1vn−4
vn−2(−1+un−1vn−4)

, vn+1 = un−4vn−1
un−2(−1+un−4vn−1)

.

Figure 3. Plot of un+1 = un−1vn−4
vn−2(1−un−1vn−4)

, vn+1 = un−4vn−1
un−2(1−un−4vn−1)

.

4. Conclusions

In this study, we looked at a system of (k + 2)th order ordinary difference equations.
We investigated these equations by finding the symmetry generators (29). We then used the
canonical coordinates to find the invariants in (31) of which led us to get the closed form
solutions (33) and (34). Performing iterations resulted in (36), where we used the floor func-
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tion definition and back-shifted the resulting equations to obtain the solutions (43) and (44)
of (5). We performed a detailed study of the case where k = 2. The reason for studying this
case is that we wanted to show that the work done in the articles [11,12] are special cases of
our results. In fact, for different combinations of values of A, B, C and D, which we get
from the articles [11,12], we obtain the following important results:

Equations (49)–(56) are reduced to equations in Theorem 2 in [11] when we set
A = B = 1 and C = D = −1.

Equations (49)–(56) are reduced to equations in Theorem 3 in [11] when we set
A = B = D = 1 and C = −1.

Equations (49)–(56) are reduced to equations in Theorem 4 in [11] when we set
A = B = C = 1 and D = −1.

Equations (49)–(56) are reduced to equations in Theorem 1 in [12] when we set
A = C = 1 and B = D = −1.

Equations (49)–(56) are reduced to equations in Theorem 2 in [12] when we set
A = C = −1 and B = D = 1.

Equations (49)–(56) are reduced to equations in Theorem 3 in [12] when we set
A = D = 1 and B = C = −1.

Equations (49)–(56) are reduced to Theorem 4 in [12] when we set A = D = −1 and
B = C = 1. We also stated and provided the proof for the existence of 2-periodic solutions.
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