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Abstract: An asymmetric, cross-coupling effect, as well as digital control delays, in a permanent-
magnet synchronous motor (PMSM) will deteriorate its current-control performance in the high-speed
range, especially for electric motors used in electric vehicles (EVs) with features such as high-power
density and a low carrier/modulation frequency ratio. In this paper, an angle-compensating, complex-
coefficient, proportional-integrator (ACCC-PI) controller is proposed, which aims to provide an
excellent decoupling performance even with considerable digital control delay. Firstly, the current
open and closed loop complex-coefficient transfer functions were established in the synchronous
rotation coordinate system. The proposed method, along with existing ones, were then evaluated
and theoretically compared. On this basis, the parameter-tuning method of the ACCC-PI controller
was presented. Finally, simulation and experimental results proved the correctness of the theoretical
analysis and the proposed method.

Keywords: asymmetric cross coupling; current-loop control; digital control delay

1. Introduction

A permanent-magnet synchronous motor (PMSM) has the advantages of a compact
structure, good performance, high efficiency and power density and a wide speed range. It
has received a lot of attention in the field of electric vehicles (EVs) [1–5].

In a typical double-loop, control-structure based, field-oriented control (FOC) strategy
of a PMSM used as drive motor, the outer loop (speed loop) determines the speed response
and the inner loop (current loop) decides the steady and dynamic performance of the whole
drive system. Expressed in the synchronous reference frame (dq-frame), the current control
loop model is essentially a double-input, double-output (DIDO) system, and asymmetric
cross coupling exists between the system of the two orthogonal dq-axes, which causes inter-
action of the currents of the dq-axes and induces a slow-current dynamic response [6–9]. In
a typical double-loop control structure, the current loop is usually modeled as a symmetric,
decoupled dq-axis, first-order system [10–12]. Thus, the DIDO system can be seen as two
independent single-input, single-output (SISO) systems. However, the decoupled model
is not accurate in the case of low carrier ratio. The asymmetric cross coupling is even
worse due to the limited current control bandwidth and digital control delay. Normally,
in the low-speed operation, the asymmetric coupling is not so significant, and its effect
can be regulated without special consideration. However, in the high-speed operation, the
asymmetric coupling effect between the d-axis and q-axis current dynamics becomes so
significant that, without proper compensation, the current-control performance leads to
instability as the fundamental frequency of the PMSM increases.
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The current control plays a very important role in the PMSM control system. In order
to obtain a fast, dynamic response and precise, steady-state control, many methods have
been studied, e.g., predictive current control, PI control and hysteresis control [13,14].
State feedback is the most commonly used decoupling method. However, there exists a
great dependence on the accuracy of the motor parameters. In [15], an improved current-
decoupling controller was designed, and parameters were detected online based on the
model reference-adaptive method. Feed-forward and closed-loop feedback were added to
the detection system to ensure the accuracy and robustness of parameter detection, but the
influence of digital control delay on the current loop was not considered. In [16], a dynamic
decoupling control algorithm, using fuzzy controllers (FCs) and a neural network identifier
(NNI), was proposed. Zhou compared the expressions and settings of real-coefficient and
complex-coefficient PI controllers. Based on the experimental results, the advantages and
disadvantages of the two PI regulators were compared in terms of decoupling of the control
structure, the dynamic response speed of the current loop and parameter robustness [17].
The work of [18–20] analyzed the influence of digital control delay on system stability, and
adopted the methods of double update and double sampling, along with deadbeat control
to compensate it.

In this paper, current-loop control was analyzed along with complex-coefficient trans-
fer functions, which could fully characterize the asymmetric cross coupling of the current
loop and convert a DIDO system into a SISO form. Moreover, some useful methods used
to analyze SISO systems, such as root locus, can be used to analyze the influence of the
impedance coupling term of a PMSM and the delay angle on the stability of the current-
control loop. Then, an alternative decoupling method based on a complex-coefficient,
proportional-integrator (CC-PI) controller was proposed, which could prevent the current
loop from being unstable in the case of low carrier ratio. On this basis, the parameter tuning
method of an ACCC-PI controller was presented.

The rest of the paper is organized as follows. Section 2 presents the current open-
and closed-loop, complex-coefficient transfer functions. Section 3 analyses two traditional
decoupling methods and presents the proposed method. Section 4 provides the simulation
and experimental results. Section 5 discusses the results of Section 4. Finally, Section 6
concludes the work and presents future work.

2. Current-Loop Modeling
2.1. Modeling of a PMSM

The typical model of a PMSM in a synchronous rotating frame is illustrated in Figure 1a.
The voltage equations of a PMSM based on the extended EMF Eex can be expressed in
matrix form, as designated in Equation (1) [21,22].[

ud
uq

]
=

[
Rs + Lds −ωeLq

ωeLq Rs + Lds

]
×
[

id
iq

]
+

[
0

Eex

]
(1)

where,
Eex =

(
Ld − Lq

)(
ωeid − siq

)
+ ωe · ψ f (2)

Rs represents the stator resistance; ψf represents the permanent-magnet flux linkage;
ωe represents the synchronous angular velocity; ud and uq represent the d- and q-axis
voltage; id and iq represent the d- and q-axis current; Ld and Lq represent the d- and q-axis
inductance of the PMSM, respectively.

Equation (3) can be calculated from Equation (1).[
id
iq

]
=

[
Z−1

dd Z−1
dq

Z−1
qd Z−1

qq

]
·
[

ud
u′q

]
(3)
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where, 

Z−1
dd =

(
Lqs + Rs

)
/R

Z−1
dq = Lqωe/R

Z−1
qd = −Ldωe/R

Z−1
qq = (Lds + Rs)/R

R = LdLqs2 +
(

Ld + Lq
)

Rss + LdLqω2
e + R2

s
u′q = uq −ωeψ f

(4)

According to Equation (3), the impedance-coupling model of a PMSM is illustrated in
Figure 1b.
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PMSM based on the extended EMF. 
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Figure 1. Model of a PMSM. (a) traditional PMSM model; (b) impedance-coupling model of a PMSM
based on the extended EMF.

2.2. Modeling of Digital Delays

In Figure 2,
→
Us represents the voltage vector;

→
E0 represents the EMF vector;

→
Id and

→
Iq

represent the d- and q-axis current vector, respectively. Non-negligible digital control delay
existed due to the digital computation and pulse width modulation. The angle between the
ideal direct axis d and the actual direct axis d’ is denoted by Equation (5).

θd = kωeTs = 2πk( fe/ fs) = 2πk(1/ fratio) (5)

where k represents the delay coefficient; Ts represents the control period; fe represents
the electric frequency; fs represents the switching frequency; fratio represents the control
carrier ratio.

In the ideal situation, the components of the dq-axes
→
Ud and

→
Uq of the voltage vector

→
Us are obtained, as designated in Equation (6).∣∣∣∣→Ud

∣∣∣∣ = ∣∣∣∣→Us

∣∣∣∣ sin θ

∣∣∣∣→Uq

∣∣∣∣ = ∣∣∣∣→Us

∣∣∣∣ cos θ (6)

where θ represents the angle between the voltage vector
→
Us and the q axis, as shown in

Figure 2. Considering the digital control angle delay, the actual d′q′ axes’ components
→

U′d

and
→

U′q of the voltage vector
→
Us are illustrated in Equation (7).

∣∣∣∣ →U′d∣∣∣∣ = ∣∣∣∣→Us

∣∣∣∣ sin(θd − θ) =

∣∣∣∣→Us

∣∣∣∣(sin θd cos θ − cos θd sin θ)∣∣∣∣ →U′q∣∣∣∣ = ∣∣∣∣→Us

∣∣∣∣ cos(θd − θ) =

∣∣∣∣→Us

∣∣∣∣(cos θd cos θ + sin θd sin θ)
(7)
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Figure 2. Modeling of angle delay in the synchronous reference frame.

According to Equation (7) and Figure 1b, the current-loop control block diagram with
the digital control delays of the PMSM is shown in Figure 3, i∗d and i∗q represent the d- and
q-axis command current, respectively. The angle delay had a similar coupling structure to
the asymmetric PMSM coupling model.
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Due to the limited current-control bandwidth and control delay, the asymmetric
cross-coupling effect became worse.

2.3. Complex-Coefficient Transfer Functions of the Current Loop

In the case of the same PI parameters, the current-loop-control model expressed by

the complex-coefficient transfer functions is shown in Figure 4, where
→
Z = Rs + Ls + jωeL;

→
udq = ud + juq;

→
ud′q′ = ud′ + juq′ ;

→
idq = id + jiq;

→
i∗dq = i∗d + ji∗q ; GPI(s) = kp(1 + ki/s) and j

represents the complex sign.
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3. Proposed Angle-Compensating, Complex-Coefficient PI Controller
3.1. Traditional Decoupling Method

The current feedback (CFB) [17] and complex-coefficient PI (CC-PI) [19] are the most
commonly applied decoupling methods. Figure 5 shows the block diagram of the two
decoupling methods.
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In general, ωn << 1/Td and the current open- and closed-loop, complex-coefficient
transfer functions can be simplified as designated in Equations (8) and (9).

Go(s) = ωb
(s + ωn)e−jθd

s(s + ωn + jωe)(Tds + 1)
≈ ωb

(s + ωn)e−jθd

s(s + ωn + jωe)
(8)

Gc(s) =
Go(s)

1 + Go(s)
≈ ωb(s + ωn)e−jθd

s2 + (ωbe−jθd + ωn + jωe)s + ωbωne−jθd
(9)

According to Figure 5, the current closed-loop, complex-coefficient transfer functions,
with a decoupling method, can be deduced as designated in Equations (10) and (11).

Gc_CFB(s) =
ωb(s + ωn)e−jθd

s(s + ωn + jωe − jωee−jθd) + ωb(s + ωn)e−jθd
(10)

Gc_CCPI(s) =
ωbe−jθd

s + ωbe−jθd
(11)

By comparing Equations (10) and (11), both decoupling methods could decouple the
current loop as a first-order inertial link with θd = 0 rad. However, the CC-PI decoupling
method had a simpler closed-loop transfer expression when a digital delay was added. The
closed-loop poles can be expressed using Equation (12).

s = −ωb · cos(θd) + jωb · sin(θd) (12)

The pole in the right half plane appeared only when the delay angle θd > π/2 rad,
which meant the current loop became unstable.

On the contrary, the closed-loop pole expression of the CFB decoupling method was
very complicated and more parameter-sensitive. The performance of the two decoupling
methods with angle delay was compared through simulation in Section 4.1.
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3.2. Proposed ACCC-PI Controller

The structure of the proposed ACCC-PI decoupling current controller is shown in the
shadow box outlined with a dotted line in Figure 6, which had the mixed structure of direct
PI controllers, the cross-coupling integral controllers and the angle-compensating part.

The complex-coefficient transfer function of the ACCC-PI controller was obtained as
designated in Equation (13).

GACCC-PI(s) = Gr(s) + jGi(s) (13)
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Figure 7 shows the current-loop control block diagram with the proposed ACCC-PI
controller. Symbol “ˆ” represents the estimated value. Where,

Grd(s) = kpd cos θ̂d +
kpdkid cos θ̂d−kpdωe sin θ̂d

s

Gid(s) = kpq sin θ̂d +
kpqkiq sin θ̂d+kpqωe cos θ̂d

s

Grq(s) = kpq cos θ̂d +
kpqkiq cos θ̂d−kpqωe sin θ̂d

s

Giq(s) = kpd sin θ̂d +
kpdkid sin θ̂d+kpdωe cos θ̂d

s
kpd = L̂dωb; kid = R̂s/L̂d
kpq = L̂qωb; kiq = R̂s/L̂q
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If θ̂d = θd, ψ̂f = ψf, the control block diagram of the current loop of the permanent-
magnet synchronous motor is illustrated in Figures 8 and 9.
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Figure 9. Block diagram of the current loop with correct delay angle and constant motor parameters.

If L̂d = Ld; L̂q = Lq; R̂s = Rs, after the adoption of the proposed ACCC-PI controller,
the current closed-loop complex-coefficient transfer function is illustrated in Equation (15).

Gc_ACCCPI(S) = ωb/(s + ωb) (15)

According to Equation (15), the current loop had a negative, real-part closed pole
(−ωb, 0), and the performance of the current loop was only related to the control bandwidth.

4. Simulations and Experiments

The simulations and experiments were built according to the parameters of the PMSM
in Table 1. Figure 10 shows the control block diagram used in the experiment. The con-
trol algorithm was realized through a 32-bit processor TMS320F28335, and the inverter
stack was made of a drive module designed for hybrid- and electric vehicle applications
(FS820R08A6P2B). We used the PMSM with parameters listed in Table 1 and set the experi-
mental conditions to be the same as those of the simulation. Figures 11 and 12 shows the
experiment platform.
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Table 1. Parameters of the PMSM.

Parameters Value

Pole pairs 6
Phase resistance 8 [mΩ]

d-axis inductance 0.16 [mH]
q-axis inductance 0.16 [mH]

Permanent-magnet flux linkage 0.0488 [Wb]
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4.1. Simulations of Different Decoupling Algorithms

The simulated dq-axes’ current response without a decoupling algorithm is illustrated
in Figure 13, the cross coupling of the current-control loop was aggravated and the dynamic
response became negatively affected by the motor impedance coupling (MIC) and digital
control angle delay (AD).
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Figure 13. Simulation waveform of dq-axes’ current response affected by the motor impedance
coupling (MIC) term and digital control angle delay term, the PI parameters of the current-control
loop were (kp = 0.3, ki = 50) and the rotor electrical angular velocity ωe was 1256 rad/s. (a) d-axis
current response; (b) q-axis current response.

The performance of the three decoupling methods was compared through simulation
in the same conditions, as shown in Figure 14.

At the beginning of the simulation, the current command of the d- and q-axis were all
zero, and the −200A current step command of the q axis occurred at 0.8 s. The decoupling
and dynamic performance of the algorithm were evaluated by observing the current
response of d- and q-axis. As shown in Figure 14a, according to Equations (13) and (14),
the CFB and CC-PI methods had the same decoupling effect without considering the
digital control delay angle, that is, there was no fluctuation in the d-axis current and there
was the same dynamic performance of the q-axis current. However, when the digital
control delay angle was takeninto account in Figure 14b, the CC-PI decoupling method had
better dynamic response characteristics than the CFB decoupling method under the same
simulation conditions, but still had a coupling current in the d-axis. The coupling d-axis
current disappeared when the proposed ACCC-PI controller was used.
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Figure 14. dq-axes’ current-response simulation waveform using different decoupling algorithms,
the PI parameters of the current-control loop were (kp = 0.3, ki = 50), rotor electrical angular ve-
locity ωe was 1256 rad/s. (a) dq-current response using the CFB and CCPI decoupling methods,
regardless of the angle delay; (b) d-axis current response with angle delay; (c) q-axis current response
with angle delay.

4.2. Experiments of Different Decoupling Algorithms

The proposed method of ACCC-PI was experimentally verified by the back-to-back
test platform as shown in Figure 12. The performance of the three decoupling methods
were compared through the phase current in Figure 15a and dq-axes’ current responses
in Figure 15b,c. The PI parameters of the current-control loop were (kp = 0.3, ki = 50),
corresponding control bandwidth was 1571 rad/s and the motor speed was 2000 rpm.
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 Figure 15. Comparison of current response using different algorithms under the q-axis current-
command step. (a) Phase current waveform; (b) d-axis current response; (c) q-axis current response.

The experimental results were basically consistent with the theoretical and simulation
results, the proposed ACCC-PI controller had the best dynamic performance and decou-
pling effects. As shown in Figure 15b,c, when the −200A step occurred in the q-axis current
command, the CC-PI decoupling method had better q-axis current dynamic response than
the CFB decoupling method (same as the simulation results in Figure 14c), but still had
a coupling current in the d-axis (about −100A). However, the proposed ACCC-PI decou-
pling method had the smallest coupling d-axis current (−25A) and the best q-axis current
dynamic performance (with non-overshoot and fast response).

5. Discussion

In order to reduce the weight and volume of the PMSM drive system, the speed of the
PMSM was high and the polar number was large. Limited by the efficiency requirements of
the controller and the heat dissipation of power devices, the control switch frequency was
small. It can be seen from the simulation that, in the case of low carrier ratio, the motor’s
own impedance coupling led to a deterioration in current-loop performance. After the
addition of angle delay, the coupling effect became more serious, the overshot of the q-axis
current was larger and the response was slower, and the amplitude of the d-axis coupling
current was larger.
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Compared with the traditional two decoupling methods, when the angle delay was
not considered, it could be seen from the complex-coefficient transfer functions that both
methods could decouple the current loop to the first-order system. Therefore, there was no
fluctuation of d-axis current and the same dynamic performance of q-axis current could be
seen. However, after the angle delay was added, the complex-coefficient transfer function
of the CC-PI decoupling method was simpler. The pole in the right half plane appeared
only when the delay angle θd > π/2 rad, which meant that the current loop became unstable.
On the contrary, the closed-loop pole expression of the CFB decoupling method was very
complicated and more parameter-sensitive. Simulation and experimental results showed
that the CC-PI decoupling method had better dynamic response characteristics than the
CFB decoupling method.

After adopting the proposed ACCC-PI controller, the current loop had a negative
real-part closed pole (ωb, 0), and the performance of the current loop was only related
to the control bandwidth. Compared with the CC-PI and CFB decoupling method, the
proposed ACCC-PI decoupling method had the smallest coupling d-axis current and the
best q-axis current dynamic performance. However, due to the change of motor inductance
and other parameters, the perfect decoupling effect achieved in simulation could not be
realized in the experiment.

6. Conclusions

The model of the PMSM and the angle delay model of the digital system, which had
similar coupling structures, were established in this paper. The traditional decoupling
method only compensated for the impedance coupling term of the PMSM, and did not
consider the coupling effect caused by the delay angle. Based on the derivation and analysis
of the complex-coefficient transfer functions of the current loop, an angle-compensating,
complex-coefficient PI (ACCC-PI) controller was proposed. Using the ACCC-PI controller
proposed in this paper, the q-axis current response was fast and there was no overshoot.
The performance was basically the same as that of the CC-PI decoupling method, and the
coupling d-axis current amplitude was the minimum. However, due to the changes of
motor resistance, inductance and other parameters in the actual system, the d-axis coupling
current in the experiment was not completely eliminated, and further optimization research
on the influence of motor parameters on decoupling performance is still needed.
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