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Abstract: With the development of the Industrial Internet in recent years, security issues have been a
hot topic of the industrial control system (ICS) network management. Identifying the protocol traffic
in the communication process of the ICS is an important prerequisite to avoid security problems,
especially in ICSs that use many private protocols. The private protocols cannot be analyzed due to
the unknown internal structure of the protocols, which makes the ICS protocol identification work
more difficult. However, the Internet-oriented protocol identification method is not applicable to the
scenario of the private ICS protocols network environment. With this problem in mind, this paper
proposes a method of ICS protocol identification based on the raw traffic payload. The method firstly
performs data preprocessing such as data selection, interception, cleaning conversion, and labeling
on the raw traffic of the protocol based on the characteristics of the industrial control protocol. Then
it uses an AM-1DCNN + LSTM deep learning model to extract temporal and spatial features of
the ICS raw traffic, and performs protocol identification. This method can effectively extract ICS
protocol features in scenarios where protocol parsing is impossible compared with existing methods.
We constructed a dataset for ICS protocol identification based on open-source data and tested the
proposed method for experiments, and the identification accuracy rate reached 93%.

Keywords: industrial control system; raw traffic; payload; 1D-CNN; LSTM

1. Introduction

The Supervisory Control and Data Acquisition (SCADA) in ICS is inseparable from
communication protocols. With the development of the times, from RS232/485 to Industrial
Ethernet to Industrial Real-Time Ethernet, Ethernet has been introduced in a large number
of ICSs and transmitted using TCP/IP or ISO standard encapsulation, but since there is
no unified standardized specification from equipment manufacturers, there are a large
number of private communication protocols in the industry, such as Modbus, DNP3,
S7comm, etc. The Modbus protocol, for example, is a common language used in electronic
controllers. Through this protocol, controllers can communicate with each other and with
other devices via a network (e.g., Ethernet). It is commonly used for communication in the
oil and gas industry, for providing flow and pressure data to PLCs via RTUs and sensors,
for PLC operation of safety protection systems and well control systems, etc. The ICS
protocol identification can be used for network user asset discovery, Quality of Service
(QoS) management, and network traffic composition analysis [1], which plays an important
role in the ICS network.

Current methods for ICS network protocol identification are the same as application-
layer protocol identification [2]. They can mainly be divided into rule-based methods
and methods based on machine learning [3]. The former includes port-based, payload-
based, deep packet inspection (DPI), etc. These methods are manually configured based
on empirical knowledge, and then deep decoding and feature matching are performed
at L2–L4. In addition to the previous layer analysis, DPI adds application layer analysis
to identify protocols which are simple and easy to deploy. However, the methods cannot
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identify the protocols of encrypted and unknown traffic. The latter include machine
learning (ML) and deep learning (DL) methods. They use optimization engines to increase
accuracy and can automatically fit new patterns. The methods mainly include algorithms
such as support vector machine (SVM), random forest (RF), and K nearest neighbor (KNN).
However, the performance of the ML-based method depends mainly on the features of
the manual design. It limits the universality of the ML-based method. Especially in
unknown protocols, features are difficult to extract. Deep learning methods have avoided
the disadvantages of ML methods. Deep learning methods do not need to use professional
knowledge to design data features. In contrast, they have a fair ability to learn these highly
complex patterns. Now, methods based on deep learning have been the most popular
traffic identification techniques [4]. However, the common application-layer protocol
identification methods mainly focus on multimedia traffic, internet application software
protocols, etc. Unlike Internet protocols, the ICS traffic is periodic and stable and has a
relatively shorter payload. Therefore, we can take advantage of the symmetry between the
Internet-oriented and the ICS-oriented identification methods. The asymmetry between
the structure and characteristics of both is then exploited to design identification methods
suitable for ICS traffic. It does not directly transplant Internet-oriented methods to the ICS
protocol identification [5]. Aiming at this problem, we propose a preprocessing method
and a deep learning model of protocol identification based on the raw ICS traffic payload.
For ICS raw traffic preprocessing, the proposed method combines ICS traffic data sequence
characteristics and data structure distribution to build four preprocessing steps. The
DL model refers to automatic learning and effective feature representation of data. The
proposed model utilizes attention mechanism (AM), one-dimensional convolutional neural
network (1DCNN), and long short-term memory network (LSTM) to learn high-level data
representations of raw data. The network model extracts high-level features from the
sequence structure of space and time. The proposed model is implemented and then
an experimental evaluation is based on the ICS traffic data. The results demonstrate the
superiority of the proposed model in the identification of the ICS protocols.

The rest of the paper is organized as follows. Section 2 introduces the related works
of protocol traffic identification. Section 3 proposes the method model and introduces the
data processing and the proposed model in detail. Section 4 presents the experimental
results and analyzes them. Section 5 discusses the model data parameters. Finally, Section 6
concludes this paper.

2. Related Works
2.1. Methods Based on Rules

The port-based methods are based on the port-protocol comparison table provided
by the Internet Assigned Numbers Authority (IANA) [6]. The port-based methods infer
the protocol type of network traffic by analyzing the port number of the data packet.
However, with the increase of network protocols, particularly the emergence of many
private protocols and the customization of protocol ports, it is difficult for the port protocol
identification method to be effective. Moore et al. [7] and Madhukar et al. [8] respectively
verified that the identification accuracy of the port-based method had been reduced from
70% to less than 20%. Another method is based on deep packet inspection (DPI) [9,10],
which uses the regular expression to match the packet’s character string and perform
protocol identification. Sen et al. [11] realized the classification of P2P traffic by checking
the data packet payload to identify application characteristics. The accuracy of this DPI
method was three-times greater than the port-based method on the same dataset. However,
the method identification effect is gradually reduced with the emergence of encrypted and
private protocol traffic and the encoding data feature.

2.2. Methods Based on Traditional ML

The methods based on traditional ML identify the traffic protocol by classifying and
predicting the measurable parameters, such as time, packet length, and interval in the
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protocol [12]. ESTE et al. [13] proposed a traffic classification approach based on SVM,
which solves multi-class problems with SVMs in statistical traffic classification, and uses
a simple optimization algorithm that allows the classifier to perform correctly with as
little training as a few hundred samples. The result confirms that SVM-based classifiers
can be very effective at discriminating traffic generated by different applications. Zhou
et al. [14] proposed a traffic detection method that uses a feedforward neural network.
The method combined with fast correlation-based feature selection filters and elimination
of accessing the contents of the packets. Alshammari et al. [15] uses various supervised
learning methods (such as C4.5, AdaBoost, GA, SVM, RIPPER, Naïve Bayes) to identify
encrypted and non-encrypted SSH and Skype traffic with a high detection rate and low
false-positive rate. However, the ML methods still require expert knowledge to design
data features in advance, and will cause concept drift problems due to differences in
the distribution of services carried by traffic in different time periods and in different
regions [16].

2.3. Methods Based on Deep Learning

Deep learning can learn from massive amounts data and obtain high-level features
directly from the data, reduce the complexity caused by feature processing and reliance on
expert knowledge and solve deficiencies of the classical ML. Many deep learning methods
have been applied, and the performance is beyond classical ML [17]. Wang Z. et al. [18]
collected the first 1024 bytes of TCP sessions and used ANN and SAE to solve network
protocol identification. This method first converts the data into a one-dimensional vector
and then inputs the vector into the artificial neural network model for training. The method
is evaluated based on the collected known protocol data, and the average accuracy rate is
90.9%. However, this method uses TCP sessions as the data format, ignoring the correlation
between single data packets. Ma et al. [19] proposed a traffic identification method based
on CNN which cannot identify known traffic and unknown traffic. The method was tested
on data composed of 13 protocols. The test results are compared with the traditional ML
algorithms of the SVM and Naive Bayes classification model and got higher accuracy than
those methods. Still, this method only uses the payload as the test data, and discards the
packet header data, which reduces the identification accuracy and only achieves an accuracy
of 85%. CNN models have also been used to identify malware traffic identification. Wang
W. et al. [20] regards traffic data like images and unusual patterns classified by malware
traffic exhibits by representation learning. Nevertheless, its method only uses the spatial
feature of the flow and completely ignores the temporal feature. The rule-based method
has the advantages of being fast and convenient, but it is difficult to detect unknown and
encrypted traffic. The method based on classic ML can fit the data pattern and identify
and predict the traffic, but it depends on expert knowledge to design the features. Deep
learning methods are widely used in traffic protocol identification problems and have
achieved excellent performance. However, different methods and models are required due
to the specific characteristics of different scenarios and data, and a single transplantation
method cannot be used to solve various problems.

3. Protocol Identification Method

The method is mainly divided into the following steps: data collection, data prepro-
cessing, model training, and protocol identification. As shown in Figure 1, it firstly collects
the ICS raw traffic, then builds the dataset. Secondly, it performs the data preprocessing
steps and then divides the preprocessed data into a training set, a validation set, and a test
set. The data in the training set and the validation set need to be labeled. In addition, it is
using the proposed AM-1DCNN + LSTM to train the model on the training set and the
validation set.
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3.1. Data Processing

The data preprocessing converts the raw traffic into an input format that the neural
network can use. As shown in Figure 2, it includes four steps: selection of data format,
data packet interception, data randomizing and conversion, and data labeling.
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3.1.1. Selection of Data Format

For identifying the ICS protocol, it is first necessary to divide and select the captured
raw protocol traffic data. Now, the conventional division forms include flow, session, and
data packet [21]. The flow refers to all packets with the same 5-tuple (source IP, source port,
destination IP, destination port, protocol). The session refers to all packets composed of
bidirectional flow (source and destination interchange), and the data packet form refers to
the selected single data packet. We choose the single data packet form to combine the TCP
payload to extract feature protocol identification and conveniently get the payload part of
each data packet.

Most ICS protocols are based on TCP/IP communication. During the process, many
TCP establishment packets, confirmation establishment packets, and connection confir-
mation packets are generated, and a large number of repeated packets and bad packets.
Because these data packets have a little positive impact on feature extraction and protocol
identification [22], we have removed them.

3.1.2. Uniform Data Length

In general, the length of the ICS protocol data is different. We investigated some of the
ICS protocols and found that the length of the ICS protocol header is mostly concentrated
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at 10–40 bytes. The remaining is the payload data part of the industrial control protocol.
Figure 3 is a schematic diagram of the ICS packet’s structure.
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To further verify the basis of the effective length of the data interception, we analyze
each protocol packet’s length and the number of traffic data packets in our dataset. As
shown in Figure 4c, while the lengths of the Modbus packet are relatively uniform, concen-
trated at 66 and 85 bytes, the BACnet (Figure 4d) packet lengths are widely distributed.
From the overall perspective of the experimental dataset, the length distributions in the
four figures are different. Still, they concentrate on the 60–120 bytes interval, according to
the above ICS protocol length division schematic and the statistical results of the experi-
mental dataset length. This paper finally intercepts the TCP header, the ICS protocol header,
and part of the ICS protocol payload, and the first 90 bytes of raw traffic data packets to
more accurately and completely characterize the traffic protocol. Data packets longer than
90 bytes are truncated, and for the data packet of less than 90 bytes they are filled with 0.
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3.1.3. Data Randomization and Conversion

Randomization and data conversion are important steps in data preprocessing. Unlike
Internet protocol identification, training data for ICS protocol identification models are
usually collected from a limited number of specific ICS environments. Protocol-specific
traffic is usually collected from a limited number of specific devices. Thus, the MAC and IP
addresses of particular protocol traffic usually vary less. If traffic data is directly used for
training, it may lead to the over-fitting phenomenon in model training, and the protocol
MAC address and IP address are relied on for the protocol. This paper proposes a solution
to randomize the device’s MAC address and IP address to avoid this problem. This method
replaces the first 8 bytes and the 18th to 26th bytes of the packet with 16 bytes generated
randomly. Through randomization, we obtained 90 bytes of hexadecimal character data,
including randomization. This data needs to be converted to 180-bit numeric data bit by
bit. e.g., 2C→2 12.

3.1.4. Label the Training Data

When constructing the training data set, protocol labels should be added to each row
of data to represent the protocol type in the row after data cleaning and parsing.

During model training, the discrete-type protocol labels are encoded in a one-hot way
so that the feature can be mapped to Euclidean space [23], making subsequent protocol
identification more convenient and data easier to process.

3.2. ICS Protocols Identification Model

Kelvin Xu et al. [24] pointed out that the ICS networks are usually constructed for
specific production businesses, unlike the Internet. Therefore, it has periodic and sta-
ble temporal characteristics. At the same time, the form of a single data packet selected
in this paper is a one-dimensional sequence, which is similar to the common text data
form. Therefore, to extract the spatial text features of a single data and the periodic and
stable time series features between multiple data frames, we choose a one-dimensional
convolutional neural network and a long short-term memory neural network as the core
of the architecture. Furthermore, we proposed a one-dimensional convolutional neural
network model combined with attention mechanism + long and short-term memory net-
work (AM-1DCNN + LSTM). The model focuses on fine-grained spatial-temporal feature
extraction for training and identification. The model is shown in Figure 5 in detail.
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This model comprises a convolutional neural network combined with an attention
mechanism and a long and short-term memory network. The model is divided into an
Input unit, AM-1DCNN unit, LSTM unit, and an Output unit.



Symmetry 2021, 13, 1743 7 of 14

1. Input unit. It directly inputs the preprocessed data into the model network.
2. AM-1DCNN unit. CNN mainly includes the convolutional layer and pooling layer.

The convolutional layer is composed of several convolutional units. The parameters
of the convolution unit are all optimized through the back-propagation algorithm.
The purpose of the convolution operation is to extract different features of the input.
The pooling layer performs a subsampling operation on the convolution output to
retain strong features and remove weak features while reducing the parameters to
prevent overfitting. 1DCNN can be better applied to one-dimensional sequence data.
The raw traffic data selected in this paper also is a one-dimensional sequence, so we
extracted the spatial correlation feature of the data through 1DCNN. Combining the
Attention Mechanism can make the 1DCNN network have the ability to focus on
its input subset features. Select a specific input and weight all input features one
by one so that 1DCNN can extract features with emphasis, thereby improving the
effectiveness of 1DCNN for extracting spatial features.

3. LSTM unit. It uses the output of the previous unit as the input of this unit. The
multiple consecutive raw traffic packets of the ICS have very strong periodicity,
persistence, and other time-related features. Therefore, it is equally important to
extract the relationship between the multiple data packets. Introducing the LSTM
gate function (input gate, forget gate, output gate) can mine the relatively long
intervals and delays in the time series changes [25] and extract the related time series
feature relationships from multiple input data. Effectively improving the accuracy of
time feature extraction.

4. Output unit: It uses the SOFTMAX activation function to classify the hidden layer
features of the raw traffic data extracted from the AM-1DCNN + LSTM model and
output the classification and identification results.

4. Experiment
4.1. Experiment Data Collection

Although some ICS network traffic data is publicly available, there is still a lack of
available ICS traffic data sets for protocol identification due to the closed and limited nature
of the ICS proprietary protocol. Therefore, we collected some industrial protocol traffic
data from data sharing sites like Netresec, 4SIC, Shodan, and GitHub [26]. We set the
criteria for data collection, preferably real industrial control business data, followed by
simulation data of large experiments. Its data are collected in the same period, so that
the data have strong temporal and spatial correlation. Finally, the data were collected for
the last five years. The collected data are sourced from the ICS village at 4SICS, Digital
Bond S4 × 15 ICS Village CTF PCAPs, and OT and IT protocols used in Industrial Control
System (by ICS Defense/ICS Savunma), etc. Where the data are dated between 2015 and
2018. (https://www.netresec.com/?page=pcapfiles (accessed on 15 September 2021). A
portion of the data were simulated by ICS simulation software. The researchers generated
network traffic packets by creating master and slave station programs to simulate real
industrial equipment environments, then captured by Wireshark. Part of the traffic data
is collected in the real industrial control environment. In this experiment, protocol traffic
data of Modbus, DNP3, S7Comm, and BACnet protocols were collected, totaling about
400,000 pieces of raw traffic data, merging data of the same category through Wireshark
software. In this paper, the collected data of four public ICS private protocols are treated as
unknown private protocols without analyzing the ICS protocol data.

4.2. Experimental Settings and Metrics

Our experiment implemented all the programming work in Anaconda (Python 3.7)
and Keras and TensorFlow deep learning framework using PyCharm as IDE. The computer
comprises an Intel core i-5 processor@ 3.20 GHz, 8 GB RAM, and a 64-bit Windows 10 based
OS. The graphics card is GeForce GTX 1060 6 GB. The evaluation’s metrics mainly include

https://www.netresec.com/?page=pcapfiles
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the overall metrics accuracy (Accuracy) and single category identification performance
metrics (Precision, Recall, F1 value F1-Measure). The metrics are defined as follows:

Accuracy = (TP + TN)/(TP + FN + FP + TN), (1)

Precision = TP/(TP + FP), (2)

Recall = TP/(TP + FN), (3)

F1− score = 2P·R/(P + R) (4)

4.3. Model Parameter Tuning

The training parameters need to be tuned according to the experience and expert
knowledge in the training process. These parameters will not change with the iteration of
the algorithm model:

• Learning rate: The learning rate determines whether the loss function can converge
appropriately and at convergence speed. The learning rate is adjusted to 0.001 in
this paper.

• Mini-batch: In the model row training, the data is divided into multiple identical
blocks, and the weight and bias are updated for a single mini-batch each time. We set
a mini-batch to 100.

• Epoch: If the epoch setting is too small, the network will not have enough data and
time to train to obtain the optimal parameters. If the epoch is set too large, it will
make the network training over-fitting. Due to the large amount of training data in
this experiment, the epoch is set to 20.

4.4. Experimental Design and Analysis

We were aiming at the feasibility of the length interception and the data randomization
in data preprocessing. In the Figure 3 Packet’s structure diagram, we had confirmed
the data statistics basis of this processing method, but this method is not persuasive.
Therefore, this paper is to prove the realistic correctness of the method. We design related
experiments to prove the experimental basis of this method further. The experiment
designs four scenarios for comparing the existence of TCP/IP payload and the influence of
randomization of some data in the header on the experimental classification results. The
experimental design scenarios are as follows:

• Scenario 1: It uses the TCP/IP payload and randomizes part of the header.
• Scenario 2: It uses the TCP/IP payload and not randomizes part of the header.
• Scenario 3: It does not use the TCP/IP payload but randomizes part of the header.
• Scenario 4: It does not use the TCP/IP payload and randomizes part of the header.

The AM-1DCNN + LSTM model proposed in this paper is used for experiments under
four different programs for the above-designed experimental program.

From the results in Table 1, the accuracy of Scenario 1 is 12% higher than Scenario 3.
Moreover, the identification accuracy of payload data is higher than those without payload,
at least 3% higher. The result shows that part of the payload data can improve the accuracy
of classification and identification. However, it can also be seen that the accuracy of
Scenario 4 is reduced by 13% compared with Scenario 3. After randomizing the raw data
header part of the data in the experiment, the identification accuracy has decreased. The
above results confirm our preprocessing method at the data randomize and conversion
part. Because the raw data has only fixed device IP and MAC, it leads to a one-to-one
correspondence between the MAC address, the IP address, and the various protocols,
which positively affect identification. However, the MAC address, IP address, and other
raw data information we get come from completely different devices in the real industrial
control environment. Therefore, to be more real and close to a real ICS environment, this
experiment is designed to randomize features such as MAC and IP. Figure 6 is the confusion
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matrix of the identification results of the model under the four scenarios, a more intuitive
display.

Table 1. Comparison of results under different scenarios.

Scenario Accuracy Training Time (mins)

Scenario 1 92.891% 122.5
Scenario 2 94.840% 121.9
Scenario 3 80.736% 100.08
Scenario 4 86.876% 99.77
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It can be seen from the confusion matrix of the identification results that the model
proposed in this paper achieve accurate identification results for the four different types
of protocol raw traffic data. On the whole, the identification accuracy between different
protocols is high, and the false alarm rate is low. However, it can be seen from Figure 6c
that after Scenario 3 does not include payload data and randomizes part of the header
data, the MODBUS and DNP3 classification results have higher false alarms, it predicts a
large number of MODBUS as DNP3. It shows that when the payload is not included, the
dimension of the data feature is reduced, and randomization will weaken the connection
between data features, resulting in a reduction in the effect of the classification result.
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4.5. Model Result Analysis

To more convincingly prove the method’s effectiveness proposed in this paper in iden-
tifying the ICS protocol traffic, we also compare the performance of our proposed method
with other existing protocol traffic identification methods. Ren J. [27] et al. proposed an
autoencoder method to automatically extract the raw protocol data features in protocol
traffic identification. M. Kim [28] proposed a method to classify Tor traffic using the raw
data packet header and convolutional neural network model, using 1DCNN classification
training. We reproduced their method and applied it to the dataset proposed in this article.
Therefore, we selected the following three models for comparative experiments: Autoen-
coder, 1DCNN, AM-1DCNN, and AM-1DCNN + LSTM; and experiments were carried out
on different data preprocessing methods. The following results are obtained.

It can be seen from Figure 7 that there are obvious differences in the experimental
results under different models and different scenarios. In the two scenarios that include a
payload, the randomization processing under the Autoencoder model has a greater impact
on the experimental results. It leads to a 30% difference in the results of the two scenarios.
The reason is that the randomization destroys the coding structure of the data to decrease
the feature extraction ability of Autoencoder. The identification accuracy of 1DCNN
and AM-1DCNN under this scenario has been improved compared with Autoencoder.
However, when the payload is not included and randomized, the accuracy of the three
models is at a low level and can only reach an accuracy of about 50%. When the payload
is included and not randomized, the first three models can achieve 70–80% accuracy.
Compared with the model mentioned above, the model proposed in this paper increases
the extraction of time-series features. Without including the payload and randomizing,
the accuracy rate is increased by 40%. In the other three scenarios, the accuracy rate also
increased by 10%. The first three models are mainly used to extract the correlation between
data encoding and spatial structure features. When the payload is not included and
randomized, the correlation of spatial features is reduced, resulting in reduced identification
accuracy. At the same time, the ICS traffic data has strong temporal characteristics and is
less affected by randomization, which can effectively improve identification accuracy.
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This paper also compares with other methods based on Scenario 3 (data with payload
and randomization of the header field). The experiment calculated the accuracy, recall, F1-
score of the data under each model and the time spent training 20 epochs. The experimental
metrics are shown in Figure 8.
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From the evaluation metrics of Figure 8 different models, it can be seen that the method
we propose is better than the existing protocol traffic identification methods to a large
extent. Our proposed method can achieve up to 93% accuracy, 91% recall, and 92% F1-score.
In the classification results of different models, the identification effect of autoencoders
is poor, with an accuracy of only about 50%. Comparatively, 1DCNN extracts the spatial
feature in the traffic data better than the Autoencoder, with higher accuracy, recall, and F1-
score. After 1DCNN combines the attention mechanism, its classification effect is slightly
improved. The attention mechanism effectively improves the feature weight of 1DCNN
at the output and better reflects the importance of the feature. After adding LSTM, while
extracting the spatial feature of a single-frame data packet, the temporal-relevant feature
between multi-frame data packets is extracted. The fine-grained fusion of spatiotemporal
features and more comprehensively described data features are achieved. We can see that
the model method proposed in this article has greatly improved the accuracy rate, recall
rate, and F1 score through experimental comparison [29,30].

5. Discussion
5.1. Effect of Different Packet Lengths on the Results

In data packet interception steps for experimental data preprocessing, the length of
each traffic data packet is unknown and varied, and data packets cannot be intercepted
according to certain standards. However, the determination of the packet length has
a profound impact on the experimental results. For this purpose, this article sets data
packets of different lengths: 54, 60, 70, 80, 90, and 100. Experiments are conducted to
verify the influence of data packet length on model recognition. The experiment obtains
the experimental results of the accuracy rate and the corresponding training time under
different lengths. The results are shown in Table 2.

Table 2. Comparison table of results of different data lengths.

Data Length (bytes) Accuracy Training Time (mins)

54 79.736% 90.08
60 85.218% 89.19
70 88.046% 102.8
80 90.884% 110.34
90 93.091% 122.51

100 92.411% 135.74
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As shown in Table 2, with the length of the data packet increases, the classification
accuracy and training time also increase. When the data packet length reaches 90 bytes, the
accuracy and time reach the optimal balance. As described in the section on data packet
interception in the 4.2 data preprocessing section, most ICS protocols are based on the
TCP/IP protocol cluster. The first 54 bytes are the IP header, TCP/IP header feature, and
the remaining 36–46 bytes are TCP/IP payload, the ICSs protocol. This part contains the
industrial control protocol header and part of the payload. This feature is enough to classify
and identify the data. It can also be seen from the experimental results that if the packet
length is too short, part of the data payload feature will be lost, resulting in lower accuracy
of the classification and identification results. However, as the length gradually increased
to more than 90 bytes, the accuracy did not increase but reached a threshold. Since the data
packet longer than 90 bytes is the payload data of the industrial control protocol, this data
has less of an impact on the data classification. Therefore, 90-byte data packets reached the
highest accuracy. The interception of a longer data packet can only increase the training
time and does not positively impact classification accuracy.

5.2. Effect of the Number of Different Data Packets on the Result

The raw traffic of the ICS has a strong periodicity, and there is a temporally relevant
feature among multiple consecutive frames of the data packet. Therefore, when construct-
ing the model’s input dimensions, we select multiple data packets to input simultaneously
to extract the feature between multiple consecutive data packets. The number of input data
packets at the same time affects the feature extraction effect of the model. To verify the
influence of the number of consecutive data packets, we conduct the following comparative
experiments and set the number of data packets as 10, 20, 30, and 40. The experimental
results are as follows.

From the experimental results in Table 3, it can be concluded that the accuracy of
identification gradually increases when the number of simultaneous input data packets
increases from 10 to 30, and the highest accuracy is achieved when the number reaches 30.
At this time, as the number of data packets continues to increase, the accuracy rate gradually
converges, but the training time continues to increase. Analysis from the experimental
results: the LSTM model is used in the experimental model, so the time correlation between
multiple subsequent data packets can be extracted. However, too much or too little data
packet input will have a greater impact on the feature extraction of LSTM.

Table 3. Comparison table of results of different numbers of data packets.

Data Packet (Number) Accuracy Training Time (mins)

10 90.807% 85.45
20 92.248% 99.49
30 93.256% 123.88
40 92.172% 141.31

6. Conclusions

By comparing the structural similarity between ICS traffic and text, making full use of
the periodicity and stability of ICS raw traffic, we propose a preprocessing method and a
deep learning identification model based on the raw protocol traffic of the ICS. At the same
time, according to the developed data collection criterion, the ICS traffic protocol data were
collected and preprocessed in online ICS data resources site, and merge them into an ICS
data set with four types of protocol data.

On this dataset, we conducted experiments on the method proposed in this paper. We
first designed different comparative experiments to prove the correctness of the payload
selection and randomization processing, and secondly, we compared our method with
other existing methods. From the experimental results, our method can achieve 93%
identification accuracy, which is at least 20% better when compared to other methods,
establishing the superiority of our data extraction models for data with spatio-temporal
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characteristics. In the end, the effect of the length and number of experimental packets
on the experimental results is discussed, and the conclusion of correlation between length
quantity and results is given.

Overall, deep learning methods for unknown traffic identification can achieve better
results while greatly reducing the workload of manual configuration, and in the future,
the processing methods and identification patterns in this paper can be applied to more
general traffic identification. However, the method proposed in this paper can only identify
the raw traffic and cannot identify the type of instructions in the protocol data. Moreover,
it cannot identify the abnormal instructions of the traffic.

Therefore, in the follow-up, we will classify the identified protocol traffic by instruc-
tion type based on the results of this article and detect abnormal instructions. We are
studying related issues in depth with the aim of building a complete end-to-end protocol
identification and command identification and intrusion detection defense system based
on ICS raw traffic.
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