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Abstract: Substructure shake table testing (SSTT) is an advanced experimental technique that is
suitable for investigating the vibration control of secondary structure-type dampers such as tuned
mass dampers (TMDs). The primary structure and damper are considered as analytical and experi-
mental substructures, respectively. The analytical substructures of existing SSTTs have mostly been
simplified as SDOF structures or shear-type structures, which is not realistic. A common trend is
to simulate the analytical substructure via the finite element (FE) method. In this study, the control
effects of four dampers, i.e., TMD, tuned liquid damper (TLD), particle damper (PD) and particle-
tuned mass damper (PTMD), on a frame were examined by conducting virtual SSTTs. The frame
was modeled through stiffness-based beam-column elements with fiber sections and was solved by a
family of model-based integration algorithms. The influences of the auxiliary mass ratio, integration
parameters, time step, and time delay on SSTT were investigated. The results indicate that the TLD
had the best performance. In addition, SSTT using model-based integration algorithms can provide
satisfactory results, even when the time step is relatively large. The effects of integration parameters
and time delay are not significant.

Keywords: substructure shake table testing; integration algorithm; finite element method; damper

1. Introduction

Substructure shake table testing (SSTT) is one of the most advanced experimental
techniques in structural and earthquake engineering [1]. It combines the advantages
of the real-time dynamic loading of a shake table and the substructure technique from
hybrid simulation (HS) and real-time hybrid simulation (RTHS). The best use of SSTT is
for investigating the vibration control effects of dampers, such as the classical TMDs and
TLDs, and emerging dampers, such as particle dampers (PDs) [2] and particle-tuned mass
dampers (PTMDs) [3]. These dampers can be regarded as secondary structures with respect
to the primary structure. To conduct SSTT, the damper and the primary structure are taken
as the experimental and analytical substructures, which are experimentally tested on the
shake table and numerically simulated on a computer, respectively.

The shake table tests are generally used for obtaining the dynamic responses and
dynamic characteristics of structures [4,5]. The conventional experimental method of
investigating the control effects of dampers is to carry out shake table tests for complete
structure–damper systems. For instance, Kang et al. [6] conducted a series of 1:30 scaled
model shake table tests and numerical simulations for a coal-fired power plant equipped
with a large mass ratio multiple-tuned mass damper (LMTMD), and found that the LMTMD
is effective and robust in reducing structural dynamic responses. Wang et al. [7] evaluated
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the performance of a pendulum pounding-tuned mass damper (PPTMD) by carrying out
a series of shake table tests. They reported that the inherent damping of the primary
structure decreases the control efficiency of the PPTMD. Zhao et al. [8] conducted shake
table tests on a 1:8 scaled transmission tower equipped with and without TMDs, and
found that the TMD’s control performance is related to earthquake type and excitation
intensity. Vafaei et al. [9] proposed a modified-tuned liquid damper (MTLD) to attenuate
multiple mode vibration. The effectiveness of the MTLD was demonstrated by several
shake table tests on a scaled three-story structure with and without an MTLD. Lu et al. [3]
explored the damping performance of a PTMD by comparing the shake table results of a
scaled five-story steel frame with and without a PTMD. Based on the shake table tests, they
conducted comprehensive parametric analyses on the reduction effects of PTMD, including
the auxiliary mass ratio, gap clearance, and the mass ratio of particles to the total auxiliary
mass. Shen et al. [10] investigated the influence of a double-layer-tuned particle damper
(DTPD) on the seismic performance of super high-rise structures by conducting a series of
1:20 scaled model shake table tests on high-rise structures with and without DTPDs. They
concluded that the effectiveness of the DTPD is closely related to the ground motion.

Compared with the conventional shake table tests for a complete structural system,
one of the notable advantages of SSTTs is that any size effect of the specimen can be re-
duced. SSTT has also been applied to structure–damper systems. For instance, numerous
researchers [11–14] investigated the performance of TLDs in controlling the seismic re-
sponse of structures using a SSTT. Fu et al. [15,16] recently conducted the first SSTT of a
single degree-of-freedom (SDOF)-PD system and compared the vibration control effects of
TLDs and PDs based on the experimental results of a series of SSTTs. It should be noted,
however, that the analytical substructures in most existing studies were optimized to be
SDOF structures or shear-type structures with few DOFs. This is because these structures
do not require considerable computational time to solve their equations of motion (EOMs).
However, oversimplification of the analytical substructure may hinder the application of
SSTT in real engineering practice. Therefore, it is essential that more refined models of the
analytical substructure are applied and examined for SSTT.

It is well known that the finite element (FE) method is an accurate and reliable
approach for simulating structures [17–22]. However, it requires significantly longer com-
putational time compared with the simplified SDOF or shear-type model. Therefore, if
the FE method is applied to simulate the analytical substructure in SSTT, an integration
algorithm with high computational efficiency must be used. In the past two decades, a
new class of integration algorithms, called model-based integration algorithms [23], have
been developed for the application of HS and RTHS. Model-based integration algorithms
are computationally competitive because they combine the advantages of explicit dis-
placement formulation and unconditional stability, which is not possible for traditional
integration algorithms such as Newmark algorithms. Model-based integration algorithms
have been successfully applied in actuator-type RTHS with the FE model of the analytical
substructure [24–26]. However, there are few studies on SSTT with the FE method using
model-based integration algorithms. In this study, we numerically investigate the seismic
response reduction effects of four types of dampers, i.e., TMD, TLD, PD, and PTMD, on a
four-story steel frame by conducting a series of virtual SSTTs. The steel frame is simulated
by stiffness-based beam-column elements with fiber sections and bar elements. The EOM
of the frame structure is solved using a family of model-based integration algorithms.

The formulation and basic features of model-based integration algorithms are summa-
rized in Section 2. Section 3 explains the FE modeling of the four-story steel frame. The
analytical models of the four types of dampers are given in Section 4. Section 5 provides
the procedure of SSTT and numerical results of a series of SSTTs. The influences of the
auxiliary mass ratio, integration parameters, time step, and time delay on the SSTT are also
investigated in Section 5. Some important conclusions are drawn in Section 6.
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2. Model-Based Integration Algorithms

To numerically obtain the structural responses induced by earthquakes or other
dynamic actions, the following equation of motion (EOM) should be solved using a direct
integration algorithm:

M
..
Xi+1 + C

.
Xi+1 + Ri+1 = Fi+1 (1)

where M and C are the mass and damping matrices, respectively;
.
X and

..
X are the velocity

and acceleration vectors, respectively; the subscripts i + 1 and i represent the next and
current time steps, respectively; R and F are the restoring force and external force vectors,
respectively. The restoring force Ri+1 is generally displacement-dependent and can be
degraded into KXi+1 if the structure is linear elastic, where K and X are the stiffness matrix
and displacement vector, respectively.

The main task for an integration algorithm is to predict the velocity and displacement
at the next step. For instance, the difference equations of the classical Newmark family of
algorithms are expressed as:

.
Xi+1 =

.
Xi + ∆t

[
(1− γ)

..
Xi + γ

..
Xi+1

]
, Xi+1= Xi + ∆t

.
Xi + ∆t2

[
(1/2− β)

..
Xi + β

..
Xi+1

]
(2)

where ∆t is the time step; γ and β are two integration parameters. The Newmark algorithms
are explicit only if β = 0. Furthermore, the Newmark explicit algorithms are conditionally
stable and still implicit for velocity. The Newmark algorithms are unconditionally stable
when 2β ≥ γ ≥ 1/2. Therefore, it is impossible for the Newmark algorithms to achieve
unconditional stability within the framework of an explicit displacement formulation. As
γ and β are parameters independent of the structural model, the Newmark algorithms are
called model-independent algorithms.

In contrast to model-independent algorithms, model-based integration algorithms are
unconditionally stable and have an explicit displacement formulation. That is, model-based
integration algorithms predict displacement based on equilibrium at the current time step
and calculate the acceleration by satisfying equilibrium at the next time step. They can
be used to solve general dynamic problems, i.e., the structural responses of linear and
nonlinear SDOF and MDOF structures subjected to dynamic loads. Compared with implicit
algorithms, explicit algorithms are computationally more efficient at solving nonlinear
dynamic problems without iterations to obtain tangent stiffness. To solve the EOM of
an MDOF system with a large number of DOFs, a very small time step is required for a
conditionally stable algorithm to ensure stability, because the time step limit is inversely
proportional to the highest natural frequency of the structural system. Therefore, the un-
conditionally stable and explicit model-based integration algorithms have very promising
computational efficiency, particularly for the nonlinear MDOF dynamic problems.

Model-based integration algorithms are explicit for displacement, whereas they are
not always explicit for velocity. Therefore, model-based integration algorithms can be
classified as dual-explicit and semi-explicit according to their formulation of velocity.
Specifically, dual-explicit means that the algorithm is explicit for both displacement and
velocity, whereas semi-explicit indicates that the algorithm is explicit only for displacement,
and implicit for velocity. For instance, the first model-based integration algorithm, which
was developed by Chang [27], is semi-explicit, whereas the well-known CR algorithm [28]
is dual-explicit. Dual-explicit algorithms are clearly more suitable for SSTT, particularly
when the experimental substructure is velocity-dependent. In this study, a family of dual-
explicit model-based integration algorithms [29], called GCR algorithms, is adopted. The
formulation and characteristics of GCR algorithms are briefly summarized as follows.

Chen and Ricles [28] proposed the first dual-explicit model-based integration algo-
rithm using the discrete control theory. The difference equations of the CR algorithm for
the MDOF system are expressed as:

.
Xi+1 =

.
Xi + ∆tα1

..
Xi, Xi+1 = Xi + ∆t

.
Xi + ∆t2α2

..
Xi (3)
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where α1 and α2 are model-based integration parameter matrices, and are formulated as:

α1 = α2 = 4
(

4M + 2∆tC + ∆t2K
)−1

M (4)

The CR algorithm has been demonstrated to be unconditionally stable for both linear
elastic and nonlinear softening systems. In addition, the second-order accurate CR algo-
rithm has no numerical damping. To obtain a family of model-based integration algorithms
with more general and versatile numerical features, Fu et al. [29] recently developed GCR
algorithms, which stands for generalized CR algorithms. The difference equations of the
GCR algorithm are inherited from the CR algorithm, and the integration parameter matri-
ces are updated by introducing two additional coefficients, κ1 and κ2, which are shown in
Equation (5):

α1 =
(

M + κ1∆tC + κ2∆t2K
)−1

M, α2 = (1/2 + κ1)α1 (5)

It was found that GCR algorithms with κ1 and κ2 possess numerical properties
identical to the classical Newmark algorithms with γ and β. The mapping relation is
[κ1, κ2] = [γ, β]. The CR algorithm is a special type of GCR algorithm, with κ1 = 1/2,
κ2 = 1/4; its counterpart includes Newmark algorithms with γ = 1/2, β = 1/4, which is
the well-known constant average acceleration (CAA) algorithm. The members of the sub-
family of GCR algorithms with κ1 = 1/2 have no numerical damping and are second-order
accurate. GCR algorithms with 2κ2 ≥ κ1 ≥ 1/2 are unconditionally stable for linear elastic
systems. GCR algorithms with κ1 > 1/2, κ2 ≥ (κ1 + 1/2)2/4 have numerical damping.
The period elongation (PE) and equivalent damping ratios are two widely used indices
of evaluating the accuracy of the integration algorithm [30]. The two accuracy indices
of five GCR algorithms, i.e., [κ1, κ2] = [1/2, 1/4], [1/2, 1/2], [1/2, 1], [1, 1/2], [1, 1], are
depicted in Figure 1. The abscissa in Figure 1 is Ω = ω∆t, where ω is the circular frequency.
Figure 1 shows that for a certain κ1, the PE increases with the increase in κ2. GCR algo-
rithms with [κ1, κ2] = [1, 1/2] have PE close to that of [1/2, 1/4] (CR algorithm) and are
minimum. Regarding the equivalent damping ratio, GCR algorithms with κ1 = 1/2 are
zero, whereas GCR algorithms with κ1 = 1 are positive. Overall, the original CR algorithm
has excellent accuracy and can be used as a reference for other GCR algorithms.

Figure 1. Numerical properties of GCR algorithms. (a) Period elongation; (b) equivalent damping ratio.

Figure 2 provides a general flowchart for solving the EOM for MDOF systems using
GCR algorithms. The first step is to select appropriate integration coefficients κ1 and κ2
and the time step ∆t. Then, the structural model matrices M, K, and C, and the external
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force F are calculated. The model-based integration parameter matrices α1 and α2 are then
obtained using Equation (5). Then, the initial conditions are calculated as follows:

..
X0 = (M)−1

(
F0 −C

.
X0 −KX0

)
(6)

where
.
X0, X0, and

..
X0 are the initial velocity, displacement, and acceleration, respectively.

Figure 2. General flowchart of solving EOM for MDOF systems using GCR algorithms.

Then, the difference equations of the GCR algorithms, i.e., Equation (3), are adopted
to predict the velocity

.
Xi+1 and displacement Xi+1 at the next time step. The displacement

Xi+1 can be used to determine the restoring force Ri+1, which is called state determination.
If the structural system is linear elastic, the restoring force Ri+1 can be directly calculated as
KXi+1; otherwise, it can be obtained using the FE method, e.g., the FE modeling in Section 3.
The final step is to calculate the acceleration by rewriting the EOM, i.e., Equation (1):

..
Xi+1 = (M)−1

(
Fi+1 −C

.
Xi+1 −Ri+1

)
(7)

3. Finite Element Modeling of Frame Structure

In this study, stiffness-based beam-column elements with fiber sections along with
P-∆ effects are adopted to simulate the frame structure. The stiffness-based beam-column
elements are used to acquire the first-order restoring force, and the P-∆ effects are consid-
ered to obtain the second-order restoring force. The following content summarizes the
basic principles and procedures.

3.1. Stiffness-Based Beam-Column Element with Fiber Sections
3.1.1. Initialization

The model-based integration parameter matrices, i.e., α1 and α2, should be prede-
termined before using model-based integration algorithms. As shown in Equation (5),
model-based integration parameter matrices are functions of model matrices of structure,
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i.e., M, C, and K, and two controlling coefficients κ1 and κ2. Therefore, the first step is to
find an appropriate combination of κ1 and κ2 based on the numerical properties of the GCR
algorithms. Then, the model matrices of the structures should be determined. Among the
three model matrices of structure, the Rayleigh damping assumption is widely adopted for
establishing the damping matrix C:

C = amM + akK =
2ξωiωj

ωi + ωj
M +

2ξ

ωi + ωj
K (8)

where am and ak are the combination coefficients of M and K, respectively; ξ is the damping
ratio of structure; ωi and ωj are the ith and jth circular frequencies, respectively, which can
be obtained by conducting modal analysis of the structure. Therefore, determination of the
three model matrices is reduced to two matrices: M and K.

The formulation of the mass matrix can be classified into two types: lumped mass and
consistent mass. The detailed construction process can be found in [31].

As a stiffness-based beam-column element with fiber sections is used, the initial
stiffness matrix K of the structure should be sequentially established from different levels.
There are four levels from bottom to top: fiber, section, element, and structure. Regarding
the section with fibers, the stiffness matrix ks(x) is:

ks(x) =

 ∑
N f
j=1 Ej Aj −∑

N f
j=1 Ej Ajyj

−∑
N f
j=1 Ej Ajyj ∑

N f
j=1 Ej Ajyj

2

 (9)

where Ej, Aj, and yj are the elastic modulus, area, and centroid coordinate of the jth fiber,
as shown in Figure 3; N f represents the total number of fibers for a section.

Figure 3. Fiber section.

Then, the element stiffness matrix in the local coordinate system can be calculated as:

ke =
∫ Le

0
Bd(x)Tks(x)Bd(x)dx (10)

where Le is the element length; Bd(x) is the differential of the displacement interpolation
function with the expression of:

Bd(x) =

[
− 1

Le
0 0 1

Le
0 0

0 12x
Le3 − 6

Le2
6x
Le2 − 4

Le
0 6

Le2 − 12x
Le3

6x
Le2 − 2

Le

]
(11)

It is impractical to integrate Equation (10) directly, so the Gauss–Legendre integration
method is typically used to indirectly solve Equation (10). In this study, the Gauss–Legendre
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integration method with five integration points is used; then, Equation (10) can be rewritten
as:

ke =
5

∑
k=1

Bd(xk)
Tks(xk)Bd(xk)ωkLe (12)

where xk and ωk are the coordinate and weight at the kth integration point. The coordinates
and weights of five integration points are listed in Table 1.

Table 1. Coordinates and weights of five integration points of the Gauss–Legendre integration
method.

k 1 2 3 4 5

xk 0.046910 Le 0.230765 Le 0.500000 Le 0.769234 Le 0.953090 Le
ωk 0.118463 0.239314 0.284444 0.239314 0.118463

As the initial stiffness is elastic, direct use of the element stiffness matrix of the elastic
beam-column element without fiber sections is also applicable and simpler (Equation (13)).
The fiber section is adopted to formulate the element stiffness in order to make it consistent
with the state determination in Section 3.1.2. It should be noted that the element stiffness
matrix shown in Equation (13) is a symmetric matrix:

ke =



EA/Le 0 0 −EA/Le 0 0
0 12EI/Le

3 6EI/Le
2 0 −12EI/Le

3 6EI/Le
2

0 6EI/Le
2 4EI/Le 0 −6EI/Le

2 2EI/Le
−EA/Le 0 0 EA/Le 0 0

0 −12EI/Le
3 −6EI/Le

2 0 12EI/Le
3 −6EI/Le

2

0 6EI/Le
2 2EI/Le 0 −6EI/Le

2 4EI/Le

 (13)

where E is the elastic modulus of the material; A and I are the area and inertia moment of
the cross-section, respectively. It should be noted that only flexural deformation (without
shear deformation) is considered in Equation (13).

Then, the element stiffness matrix ke in the global coordinate system can be trans-
formed from the element stiffness matrix ke in the local coordinate system:

ke = TT
e keTe (14)

where Te is the coordinate transformation matrix. After calculating ke for all elements,
the initial stiffness K of the structure can finally be assembled by mapping the degrees of
freedom (DOFs).

3.1.2. State Determination

State determination for using the stiffness-based beam-column element with fiber
sections includes the following steps:

1. Structure level: Predict the displacement Xi+1 at the (i + 1) time step using the GCR
algorithms and obtain the incremental displacement ∆Xi+1 = Xi+1 − Xi.

2. Element level: Calculate the incremental element displacement ∆de,i+1 in the global
coordinate system by mapping the DOFs and transform it into the incremental element

displacement ∆
¯
de,i+1 = Te∆de,i+1 in the local coordinate system.

3. Section level: The incremental section deformation ∆νS,i(xk) at the integration points

can be obtained as ∆νS,i+1(xk) = Bd(xk)∆
¯
de,i+1 = [∆ε(xk), ∆φ(xk)]

T , where ∆ε(xk)
and ∆φ(xk) are the incremental axial strain and curvature, respectively.

4. Fiber level: The incremental strain of the jth fiber is ∆ε j,i+1 = −∆ε(xk) + ∆φ(xk)yj.
Then, the linear or nonlinear constitutive relationships of the material can be applied
to obtain the stress σj,i+1 of the jth fiber.
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5. Section level: The section internal force Si+1(xk) at the integration points can be

assembled as Si+1(xk) = [Ni+1(xk), Mi+1(xk)]
T =

[
∑

N f
j=1 σj,i+1 Aj, ∑

N f
j=1 σj,i+1 Ajyj

]T
.

6. Element level: The element force
¯
f e,i+1 in the local coordinate system can be integrated

by the section forces at the integration points as
¯
f e,i+1 = ∑5

k=1 Bd(xk)
TSi+1(xk)ωkLe.

Then, the element force fe,i+1 = TT
e
¯
f e,i+1 in the global coordinate system can be

obtained.
7. Structure level: The element forces of all elements can be assembled as the first-order

restoring force Ri+1.

3.2. P-∆ Effects

In this study, the P-∆ effects are taken into account with the lean-on column, which
is subjected to the gravity of each floor. The lean-on column is simulated by several bar
elements and connected to the moment-resisting frame by a rigid diaphragm at each floor.
The discretization of the cross-section, i.e., fiber section, is not used to simulate the bar
elements of the lean-on column, which is assumed to behave elastically. The second-order
restoring force is the product of the structural geometric stiffness Kg and the structural
displacement Xi+1. The structural geometric stiffness Kg is the assembly of the geometric
stiffness kg of the bar elements, which is expressed as:

kg =
P
Le


1 0 −1 0
0 1 0 −1
−1 0 1 0
0 −1 0 1

 (15)

where P is the gravity subjected to the lean-on column. It should be noted that the geometric
stiffness is a symmetric matrix.

3.3. Time History Analysis of a Four-Story Frame Subjected to Earthquake

The primary structure is a four-story steel frame, as shown in Figure 4. The stiffness-
based beam-column elements with fiber sections are used to simulate the beams and
columns of the moment resisting frame, which is completely symmetric, and the bar
elements are adopted to model the lean-on column. There are 24 fibers for each section of
the beam-column elements. The elastic modulus and yield strength of the steel are 200 GPa
and 345 MPa, respectively. The elastic–perfectly plastic constitutive relationship is adopted
for steel. A consistent mass is used to build the mass matrix. The formulation of the initial
stiffness matrix follows the procedure in Section 3.1. Shear deformation is not considered
in the finite element model. According to the modal analysis, the first and second natural
periods of the frame are 1.02 and 0.32 s, respectively. The Rayleigh damping assumption
with a 2% damping ratio for the first and second order modes is applied to generate the
damping matrix.



Symmetry 2021, 13, 1739 9 of 25

Figure 4. Four-story steel frame.

The structure is subjected to the unscaled 1940 El Centro NS ground motion. GCR
algorithms with κ1 = 1/2, κ2 = 1/4 and two time steps of 0.01 and 0.001 s are used to
conduct the time history analysis. The Newmark CAA algorithm with a time step of 0.001
s is taken for comparison. It should be noted that the GCR algorithms are explicit, whereas
the CAA is implicit, so the computing efficiency of the GCR algorithms far exceeds that of
the CAA algorithm with the same time step. If a larger time step is adopted, the efficiency
of the GCR algorithm can be further improved. Figure 5 compares the lateral displacements
of different stories using variant algorithm schemes.

Figure 5. Cont.
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Figure 5. Time history curves of lateral displacements. (a) First story; (b) second story; (c) third story; (d) fourth story.

Figure 5 shows that the numerical results of the GCR algorithms match well with
those of the CAA algorithm. Furthermore, two error indices are adopted to measure the
errors between the reference model (CAA) and computing models (GCR):

NEE =

∣∣∣∣∣∑
N
i=1 x2

RM,i −∑N
i=1 x2

CM,i

∑N
i=1 x2

CM,i

∣∣∣∣∣ (16)

NRMSE =

√
∑N

i=1
(xRM,i−xCM,i)

2

N

max(xCM)−min(xCM)
(17)

where xRM and xCM are the structural responses of the reference model and computing
model, respectively; N is the sampling number. NEE and NRMSE are sensitive to the
amplitude and frequency errors, respectively. Table 2 provides the corresponding error
indices for Figure 5. It can be concluded from Table 2 that the differences between the
GCR algorithms and the CAA algorithm with the same time step of 0.001 s are extremely
small; even for the GCR algorithm with a larger time step of 0.01 s, the maximum NEE and
NRMSE are less than 4% and 1%, respectively, which are acceptable in engineering practice.
This indicates that GCR algorithms are viable for solving nonlinear dynamic problems
with superior computational efficiency and accuracy.

Table 2. Error indices of lateral displacements using different integration algorithms (unit: %).

Integration Algorithm Scheme Story NEE NRMSE

GCR (κ1 = 1/2, κ2 = 1/4), ∆t = 0.001 s

1 1.09 × 10−2 2.75 × 10−3

2 1.49 × 10−2 3.26 × 10−3

3 1.66 × 10−2 3.73 × 10−3

4 1.62 × 10−2 3.95 × 10−3

GCR (κ1 = 1/2, κ2 = 1/4), ∆t = 0.01 s

1 2.33 0.64
2 3.06 0.65
3 3.54 0.73
4 3.61 0.82

4. Analytical Models of Dampers

Four types of dampers, i.e., tuned mass dampers (TMDs), tuned liquid dampers
(TLDs), particle dampers (PDs), and particle-tuned mass dampers (PTMDs), are selected
to mitigate the seismic responses of the four-story steel frame. All four types of damper
are installed on the top story and can be regarded as secondary structures to the primary
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structure, so they are ideal experimental substructures for SSTT. The four structure–damper
systems are illustrated in Figure 6. The TMD can absorb the vibration energy at the tuned
frequency and, therefore, reduce the structural response of the primary structure. The TLD
is a tank containing liquid and can dissipate the vibration energy by liquid boundary layer
friction, free surface contamination, and wave breaking. Similarly, the PD is a container
equipped with particles that dissipate the energy by particle-to-particle and particle-to-
container wall collision and friction. The PTMD is a combination of a TMD and PD, so it
integrates the energy dissipation mechanisms of the two dampers.

Figure 6. Primary structure–secondary structure (damper) systems.

4.1. Tuned Mass Damper (TMD)

The tuned mass damper (TMD) can be idealized as an SDOF system with mass,
stiffness, and damping coefficients. To design a TMD, the mass ratio γM is the first
parameter that should be determined:

γM =
MTMD

Ms
(18)

where MTMD and Ms are the mass of the TMD and the primary structure, respectively.
According to Section 3, the total mass of the primary structure is 8 × 105 kg. Four TMDs
with various auxiliary mass ratios, i.e., 1%, 2%, 3%, and 4%, are adopted. The corresponding
mass of the TMD can easily be calculated using Equation (18).

According to the classical optimizing parameters for TMD proposed by Den Har-
tog [32], the optimized frequency ratio γF and the damping ratio ξTMD can be expressed as
the function of γM:

γF =
fTMD

fs
=

1
1 + γM

(19)

ξTMD =

√
3γM

8(1 + γM)
(20)

where fTMD and fs are the frequency of the TMD and the primary structure, respectively.
The first-order frequency of the primary structure ( f1 = 0.98 Hz) can be assigned to fs.
Other parameters of the TMD, such as stiffness KTMD = MTMD(2π fTMD)

2 and damping
coefficient CTMD = 2MTMDξTMD(2π fTMD), can be determined and are listed in Table 3.
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Table 3. Parameters of dampers with different mass ratios (mass unit: kg; stiffness unit: N/m; damping coefficient unit:
N.s/m).

Auxiliary
Mass Ratio TMD TLD PD PTMD

1%
MTMD = 8 × 103

KTMD = 2.95 × 105

CTMD = 5.92 × 103

MTLD = 8 × 103

KTLD = 2.05 × 105 κ
CTLD = 8.11 × 104

ξTLD
√

κ

MPD = 8 × 103

KPD = 1.26 × 108

CPD = 4.02 × 106

MTMD = 1.6 × 103, MPD = 6.4 × 103

KTMD = 5.91 × 104, KPD = 1.01 × 108

CTMD = 1.18 × 103, CPD = 3.22 × 105

2%
MTMD = 1.6 × 104

KTMD = 5.79 × 105

CTMD = 1.65 × 104

MTLD = 1.6 × 104

KTLD = 4.11 × 105 κ
CTLD = 1.62 × 105

ξTLD
√

κ

MPD = 1.6 × 104

KPD = 2.53 × 108

CPD = 8.04 × 106

MTMD = 3.2 × 103, MPD = 1.28 × 104

KTMD = 1.16 × 105, KPD = 2.02 × 108

CTMD = 3.30 × 103, CPD = 6.43 × 105

3%
MTMD = 2.4 × 104

KTMD = 8.52 × 105

CTMD = 2.99 × 104

MTLD = 2.4 × 104

KTLD = 6.16 × 105 κ
CTLD = 2.43 × 105

ξTLD
√

κ

MPD = 2.4 × 104

KPD = 3.79 × 108

CPD = 1.21 × 106

MTMD = 4.8 × 103, MPD = 1.92 × 104

KTMD = 1.70 × 105, KPD = 3.03 × 108

CTMD = 5.98 × 103, CPD = 9.65 × 105

4%
MTMD = 3.2 × 104

KTMD = 1.11 × 106

CTMD = 4.54 × 104

MTLD = 3.2 × 104

KTLD = 8.21 × 105 κ
CTLD = 3.24 × 105

ξTLD
√

κ

MPD = 3.2 × 104

KPD = 5.05 × 108

CPD = 1.61 × 106

MTMD = 6.4 × 103, MPD = 2.56 × 103

KTMD = 2.23 × 105, KPD = 4.04 × 108

CTMD = 9.07 × 103, CPD = 1.29 × 106

4.2. Tuned Liquid Damper (TLD)

There are several existing analytical or numerical models for TLD. According to [33],
the TLD model developed by Yu et al. [34] has good predictions in both weak and strong
wave breaking and in a broad range of frequency ratios. Therefore, Yu et al.’s model is
adopted in this study.

Yu et al.’s model is an equivalent nonlinear-stiffness–damping (NSD) model of the
TLD. The structural parameters of the TLD model are summarized as follows.

1. Mass: Assume the mass MTLD of TLD equals the mass of liquid; that is, the mass
of the container is neglected. Water is typically used as the liquid, so MTLD can be
calculated as MTLD = Mw = ρwBLh, where ρw is the density of water; B and L are
the width and length (the excitation direction) of the rectangular tank, respectively; h
is the water depth.

2. Stiffness: The initial linear stiffness of TLD is Kw = MTLD(2π fw)
2, where fw is the

linear fundamental natural frequency for water and expressed as:

fw =

√
πg
L tanh

(
πh
L

)
2π

(21)

where g is the gravitational constant. According to Yu et al. [34], the nonlinear stiffness
KTLD of TLD can be determined by the stiffness hardening ratio of κ and Kw:

κ =
KTLD

Kw
=

(
fTLD

fw

)2
=

{
1.075Λ0.007, for Λ ≤ 0.03 weak wave breaking
2.52Λ0.25, for Λ > 0.03 strong wave breaking

(22)

KTLD = MTLDκ
πg
L

tanh
(

πh
L

)
(23)

where Λ = A/L is the non-dimensional displacement amplitude, and A is the
displacement amplitude of excitation.
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3. Damping: The damping coefficient of the TLD can be obtained as CTLD =
2MTLDξTLD(2π fTLD), where the damping ratio ξTLD is also a function of Λ:

ξTLD = 0.5Λ0.35 (24)

CTLD = 2MTLDξTLD

√
κ

πg
L

tan h
(

πh
L

)
(25)

To design a TLD, the first parameter is also the mass ratio γM, which is the ratio of
MTLD to Ms. In the same manner as for the TMDs, four TLDs with various auxiliary mass
ratios, i.e., 1%, 2%, 3%, and 4%, are adopted. The tank length L is assigned as a constant:
1 m. To achieve the maximum effectiveness of the TLD, the nonlinear natural frequency
fTLD of the TLD should be equal to the natural frequency fs of the primary structure. Then,
the water depth h is determined as:

h =
L
π

tan h−1
(

4πL f 2
s

gκ

)
(26)

Based on the numerical results presented in Section 3, the displacement amplitude A
of the fourth story is 0.1149 m; the non-dimensional displacement amplitude Λ and the
corresponding stiffness hardening ratio κ can be calculated. By substituting the values of L,
κ, and fs into Equation (26), the water depth h is determined to be 0.3821 m. Therefore, the
mass for a certain TLD is a constant, whereas the stiffness and damping are displacement
amplitude-related variables and should be updated during time-history analysis. The
parameters of the four TLDs with different mass ratios are also listed in Table 3.

4.3. Particle Damper (PD)

The conventional computing model of the PD uses the discrete element method
(DEM), which is very time consuming and complicated. Based on correlational studies by
Papalou and Masri [35], Lu et al. [3] proposed a simplified analytical method for the PD.
The simplified model has been verified to have computational efficiency and a satisfactory
degree of accuracy in practical applications. Therefore, Lu et al.’s model is adopted in
this study.

The essence of the model is to transform multiple particles into an equivalent single
particle, as shown in Figure 7. The mass of the single particle equals the total mass of the
multiple particles, assuming that the collisions between the particles can be neglected; then,
the damping forces of the PD mainly originate from the collisions between the particles
and the container wall.

Figure 7. Equivalent single particle of multiple particles (adapted from [3]).

In Figure 7, the clearance d of the single particle is a critical parameter governing the
damping force and can be determined by the following equation:

(
1

ρPD
− 1
)

MPD
ρ

=
MPD

2ρ
+

π

4

(
6MPD

πρ

) 2
3
d (27)
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where MPD is the mass of the PD; ρ is the density of the particle material; ρPD is the packing
density of the multiple particles. Hales et al. [36] suggested that ρPD should not exceed
0.74; a value of 0.6 is assigned to ρPD.

The mass MPD of PD is the product of the mass ratio γM and the mass Ms of the
primary structure. Four mass ratios ranging from 1% to 4% are selected. The stiffness KPD

of the equivalent single PD is determined as KPD = MPD(2π fPD)
2. Masri and Ibrahim [37]

recommended that fPD ≥ 20 f1, so the frequency of PD is set as 20 f1 ≈ 20 Hz. The damping
coefficient CPD of the equivalent single PD can be written as CPD = 2MPDξPD(2π fPD),
where the damping ratio ξPD is related to the coefficient of restitution e [38]. In this study,
a steel particle with e = 0.5 is adopted; thus, ξPD is determined to be 0.2. The damping
force of the single PD can be expressed as:

fPD = CPD H
(

xr
PD,

.
xr

PD

)
+ KPDG(xr

PD) (28)

where xr
PD and

.
xr

PD are the relative displacement and velocity of the PD with respect to

the primary structure. H
(

xr
PD,

.
xr

PD

)
and G

(
xr

PD
)

are two nonlinear functions with the
expressions of:

H
(

xr
PD,

.
xr

PD

)
=

{ .
xr

PD, f or xr
PD ≤ −d/2 and xr

PD ≥ −d/2
0, f or− d/2 < xr

PD < d/2
(29)

G(xr
PD) =


xr

PD + d/2, for xr
PD ≤ −d/2

0, for− d/2 < xr
PD < d/2

xr
PD − d/2, for xr

PD ≥ d/2
(30)

4.4. Particle-Tuned Mass Damper (PTMD)

The particle-tuned mass damper (PTMD) is the combination of TMD and PD. The
simplified analytical model proposed by Lu et al. [3] is also adopted. The PTMD can be
idealized as a 2DOF system, which includes an SDOF TMD connected to the primary
structure and an SDOF PD attached to the TMD. For the PTMD, the mass of the container
cannot be neglected because it constitutes the TMD. Therefore, the total auxiliary mass of
the PTMD is divided into two parts: PD and TMD. Lu et al. [3] investigated the influence of
the ratio of the particle mass (MPD) to the total auxiliary mass (MPTMD) on the structural
control effects of PTMD and found that the vibration attenuation of the PTMD can be
improved to a certain extent by increasing the mass proportion of the PD. Therefore, an 80%
mass ratio of MPD to MPTMD is used. Four PTMDs with varying auxiliary mass ratios from
1% to 4% are selected. The parameters of the TMD and PD are determined following the
procedures presented in Sections 4.1 and 4.3, respectively. The corresponding parameters
of PTMDs can be found in Table 3.

5. Modeling of Substructure Shake Table Testing of Frame Structure–Damper System
5.1. Procedure of Substructure Shake Table Testing of Frame Structure–Damper System

To carry out SSTT of the frame structure–damper system, the primary structure (frame)
and the secondary structure (damper) are assigned as the analytical and experimental
substructures, respectively. The analytical substructure is numerically simulated, and the
damper is mounted on and excited by the shake table [15,16]. A schematic diagram of
SSTT of the frame structure–damper system is illustrated in Figure 8.
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Figure 8. Schematic diagram of shake table testing of the frame structure–damper system.

Figure 9 shows a flowchart of SSTT of the frame structure–damper system using GCR
algorithms and the finite element method.

Figure 9. Flowchart of substructure shake table testing of the frame structure–damper system using
GCR algorithms and the finite element method.
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In Figures 8 and 9, it should be noted that the excitation signal of the shake table is
the total displacement at the interface instead of the relative displacement. Therefore, two
additional calculation steps are required:

xI
i+1 = T1Xi+1 (31)

uI
i+1 = xI

i+1 + xg,i+1 (32)

where xI
i+1 and uI

i+1 are the relative and total displacements at the interface, respectively;
xg,i+1 is the ground displacement; T1 is the matrix transforming the DOFs of the structure
to the interface DOF.

In addition, the EOM of the primary structure should be modified due to introduction
of the damper force (interface force):

M
..
Xi+1 + C

.
Xi+1 + Ri+1 = Fi+1 + T2 fD,i+1 (33)

where fD,i+1 is the damper force; T2 is the matrix converting the interface DOF to the DOFs
of the structure. This study aimed to conduct a series of virtual SSTTs, so the damper forces
of the four types of dampers are numerically simulated instead of experimentally measured
in a real SSTT. All numerical simulations were performed using MATLAB software and the
Simulink toolbox.

5.2. Numerical Results and Discussions

It can be seen from Figures 8 and 9 that the SSTT system is composed of four parts: the
experimental substructure (damper), the analytical substructure (frame), the integration
algorithm, and the shake table. Therefore, all four components influence the results of the
SSTT system. The four-story frame in Section 3.3 is taken as the analytical substructure and
remains unchanged. The four types of damper in Section 4 with different auxiliary mass
ratios are taken as the experimental substructures. Therefore, the effects of the auxiliary
mass ratio are investigated first. As discussed in Section 2, the integration parameters
κ1 and κ2 greatly influence the numerical properties of the GCR algorithms. Thus, the
effects of different sets of integration parameters are considered. Similarly, the time step
is a critical factor determining the accuracy of the integration algorithm, and thus, is also
studied. Finally, the time delay, which is a critical property of the shake table dynamics, is
also taken into account.

5.2.1. Effects of the Auxiliary Mass Ratio

GCR algorithms with κ1 = 1/2, κ2 = 1/4 and a time step of 0.001 s are adopted to
solve the virtual SSTT of the four-story steel frame (Section 3) with four types of damper
(Section 4). Figure 10 shows the lateral displacements at the fourth story for the steel frame,
in addition to four dampers with four auxiliary mass ratios. The seismic responses of
the uncontrolled structure without dampers are used for comparison. The corresponding
damper forces are provided in Figure 11. Two widely used reduction factors based on
the maximum and root-mean-square (RMS) structural responses are used to quantify the
reduction effects of dampers:

Rmax = 1− max|xcontrolled|
max|xuncontrolled|

(34)

RRMS = 1− RMS(xcontrolled)

RMS(xuncontrolled)
(35)

where xcontrolled and xuncontrolled are the structural responses of the controlled structure with
dampers and the uncontrolled structure without dampers, respectively. The two reduction
effects of the different dampers with varying mass ratios are compared in Figure 12.
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Figure 10. Comparisons of lateral displacements with different auxiliary mass ratios. (a) TMD; (b) TLD; (c) PD; (d) PTMD.

Figure 11. Time–history curves of damper forces. (a) TMD; (b) TLD; (c) PD; (d) PTMD.
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Figure 12. Reduction factors with respect to auxiliary mass ratios for four types of dampers. (a) Rmax; (b) RRMS.

Figures 10 and 12 show that the TLD has the best performance in vibration control
among the four dampers. Both the reduction factors of the TLD linearly increase with
respect to the mass ratio. This result is consistent with the shake table results of structure–
damper systems, such as [3,16]. Most TMDs possess positive vibration reduction effects,
with the exception of RRMS of the TMD, with a mass ratio of 1%. The RRMS of the TMD
increases with the increase in mass ratio. According to [6], the mass ratio of the TMD
can only reach 0.1%–5% due to installation difficulties and economic costs. These mass
ratios are much smaller than the optimal mass ratio, so the limited tuned mass cannot
effectively reduce the structural vibrations. This explains the fair performance of the TMDs.
A PD with a mass ratio of 3% has a satisfactory performance in terms of both Rmax and
RRMS, whereas it does not provide a positive control effect for other mass ratios. The
mass ratio has negligible influence on the reduction effects of the PTMD. The Rmax of
the PTMDs is positive, whereas the RRMS is negative. Figure 11 shows that the damper
forces have a positive correlation with the mass ratios. In addition, the damper forces of
the PDs have a magnitude of 106 N, which is much larger than those of the counterpart
TLDs. This indicates that a larger damper force cannot ensure better control performance.
In sum, for the particular structure and ground motion in this study, these dampers are
not always effective at controlling the seismic responses of the four-story steel frame.
According to previous studies [3,6–10], the control performance of dampers is influenced
by many factors, such as the dynamic characteristics of the primary structure, the frequency
characteristics and intensities of the seismic inputs, and the damper parameters. Therefore,
the conclusions drawn from Figures 10–12 are specific and not generalizable.

5.2.2. Effects of the Integration Parameters of GCR Algorithms

As mentioned in Section 2, the integration parameters, i.e., κ1 and κ2, of the GCR
algorithms may greatly influence the numerical properties of the algorithms. Therefore,
the influences of the two integration coefficients on SSTT are investigated. GCR algorithms
with four sets of [κ1, κ2] = [1/2, 1/2], [1/2, 1], [1, 1/2], [1, 1] are selected, whereas GCR
algorithms with κ1 = 1/2, κ2 = 1/4 are used as the reference model. A time step of 0.001 s
is adopted for the integration algorithms. The structural responses of the steel frame
with four dampers with a mass ratio of 1% are considered. Figure 13 depicts the lateral
displacement at the fourth story using GCR algorithms with different sets of integration
coefficients. Table 4 further provides the error indices of the structural responses.
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Figure 13. Effects of the integration parameters on structural responses. (a) TMD; (b) TLD; (c) PD; (d) PTMD.

Table 4. Error indices of top lateral displacements with different integration parameters (unit: %).

Integration Parameters Damper NEE NRMSE

κ1 = 1/2, κ2 = 1/2

TMD 2.68 × 10−2 6.80 × 10−3

TLD 3.86 × 10−2 9.19 × 10−3

PD 1.48 1.77
PTMD 1.05 × 10−2 1.66 × 10−2

κ1 = 1/2, κ2 = 1

TMD 7.98 × 10−2 2.03 × 10−2

TLD 0.12 2.76 × 10−2

PD 2.49 1.31
PTMD 1.50 × 10−2 4.92 × 10−2

κ1 = 1, κ2 = 1/2

TMD 0.76 0.35
TLD 0.30 0.37
PD 1.26 0.83

PTMD 0.45 0.52

κ1 = 1, κ2 = 1

TMD 0.80 0.35
TLD 0.37 0.36
PD 0.43 0.81

PTMD 0.46 0.53

Figure 13 and Table 4 show that the error indices of the PDs are generally larger
than their counterpart TMDs, TLDs, and PTMDs, particularly when κ1 = 1/2, κ2 = 1/2
and κ1 = 1/2, κ2 = 1. In addition, the error indices of κ1 = 1 normally exceed those
of κ1 = 1/2 because there exists numerical damping for GCR algorithms with κ1 = 1,
as shown in Figure 1. However, all the error indices are relatively small (the maximum
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NEE and NRMSE are less than 3%). This can be explained as follows: the fundamental
frequency of the frame structure f1 is 0.98 Hz, thus the corresponding Ω = 2π f1∆t = 0.006.
As the value of Ω is small, the PE and equivalent damping ratio, as indicated in Figure 1,
of the integration algorithm is very small. For instance, when κ1 = 1, κ2 = 1, the PE
and equivalent damping ratios of the GCR algorithms are only 1.2 × 10−5 and 0.0015,
respectively. The relatively low error of the integration algorithm leads to small errors
in the SSTT results. Therefore, the influences of the integration parameters of the GCR
algorithms on SSTT of the frame structure with dampers can be neglected. It should be
noted, however, that if a larger time step and a stiffer structure with a larger frequency are
adopted, the influences of the integration parameters may be significant.

5.2.3. Effects of the Time Step

The time step is a crucial factor of the integration algorithms and SSTT. A larger
time step means saving more computing time while reducing accuracy. It is well known
that SSTT requires high computational efficiency for integration algorithms. If an integra-
tion algorithm maintains a relatively high accuracy for a larger time step, it is definitely
a promising choice for the application of SSTT. Therefore, we studied the influence of
the time steps on SSTT. GCR algorithms with κ1 = 1/2, κ2 = 1/4 and four time steps
(∆t = 0.002 s, 0.005 s, 0.01s, 0.02 s) are adopted. The results for GCR algorithms with
κ1 = 1/2, κ2 = 1/4 and a time step of ∆t = 0.001 s are used for comparison. The lateral
displacements at the top story and the steel frame attached to the four types of dampers
with a mass ratio of 1% are provided in Figure 14. The corresponding error indices are
tabulated in Table 5.

Figure 14. Effects of the time step on structural responses. (a) TMD; (b) TLD; (c) PD; (d) PTMD.
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Table 5. Error indices of top lateral displacements with different time steps (unit: %).

Time Step Damper NEE NRMSE

∆t = 0.002 s

TMD 7.14 × 10−2 1.74 × 10−2

TLD 9.07 × 10−2 2.20 × 10−2

PD 0.50 1.48
PTMD 0.29 0.15

∆t = 0.005 s

TMD 0.55 0.13
TLD 0.70 0.17
PD 3.46 2.02

PTMD 0.81 0.67

∆t = 0.01 s

TMD 1.82 0.43
TLD 2.36 0.60
PD 9.16 2.07

PTMD 5.22 1.55

∆t = 0.02 s

TMD 4.89 1.25
TLD 3.68 1.09
PD 28.62 13.16

PTMD 10.10 2.10

Figure 14 and Table 5 indicate that with the increase in the time step, the error indices
for all damper cases increase. Regarding the TMDs and TLDs, even when the time step is
very large, i.e., ∆t = 0.02 s, the error indices are less than 5%. However, for the PDs and
PTMDs, the error indices for ∆t = 0.02 s are relatively large and almost reach 30%. The
TMD and PD cases have the smallest and largest errors, respectively. The error indices of
the PTMD cases are between those of the TMD cases and the PD cases, because the PTMD
is a combination of the TMD and PD. A possible reason for the large errors of the PD cases
is that the impulsive force induced by the PD has a negative impact on the integration
algorithms.

5.2.4. Effects of the Time Delay

The time delay induced by the dynamics of the shake table is a significant factor when
conducting SSTT. According to previous studies [39], the time delay can be regarded as
having a negative damping effect because it introduces additional energy into the SSTT
system. GCR algorithms with κ1 = 1/2, κ2 = 1/4 and a time step of ∆t = 0.01 s are used to
solve the EOM. Four time delays (τ = 0.01 s, 0.02 s, 0.05s, 0.1 s) are considered. Figure 15
presents the lateral displacements of the controlled structure with a mass ratio of 1% for
different levels of time delay. The errors are calculated and listed in Table 6.

Figure 15 and Table 6 show that the time delay has a negative influence on the
structural responses. Essentially, the errors increase with the increase in time delay. For
τ = 0.01 s, 0.02 s, 0.05 s, the PD cases have the largest errors. The TMD case has relatively
large errors close to 20% when τ = 0.1 s. The errors of the TLD and PTMD cases are
less than 7% for all time delays. This means that the influence of the time delay on SSTT
of the frame structure with the TLD and PTMD is less significant. However, if the time
delay continues to increase, the negative impact will undoubtedly be enhanced and delay
compensation techniques [40–42] will be required to eliminate any adverse effects.
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Figure 15. Effects of the time delay on structural responses. (a) TMD; (b) TLD; (c) PD; (d) PTMD.

Table 6. Error indices of top lateral displacements with different time delays (unit: %).

Time Delay Dampers NEE NRMSE

τ = 0.01 s

TMD 0.28 0.51
TLD 5.55 × 10−2 0.26
PD 3.88 1.93

PTMD 1.70 0.65

τ = 0.02 s

TMD 0.94 1.04
TLD 0.23 0.51
PD 10.98 2.48

PTMD 0.32 0.40

τ = 0.05 s

TMD 5.08 2.71
TLD 1.51 1.25
PD 24.42 3.96

PTMD 1.83 0.62

τ = 0.1 s

TMD 19.68 6.26
TLD 5.32 2.41
PD 12.63 3.48

PTMD 6.62 2.00

6. Conclusions

In this study, a series of virtual SSTTs on frame–damper systems were conducted
using GCR algorithms and stiffness-based beam-column elements with fiber sections. Four
types of secondary structure-type dampers were adopted to attenuate the seismic vibration
of the primary structure. The effects of the mass ratio, integration parameters of the GCR
algorithms, the time step, and time delay on the SSTT results were studied. Some important
conclusions are summarized as follows:
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1. The GCR algorithms can provide accurate numerical results, even when the time
step is relatively large. Compared with the traditional implicit CAA algorithm, no
iteration is required for the GCR algorithms to determine the restoring force, which
can save a considerable amount of computational time.

2. For the specific structure and ground motion in this study, the TLD has the best
performance in structural control and its control effects are enhanced by increasing
the mass ratio, whereas for the other three types of damper, they are not always
effective at controlling the vibration induced by an earthquake. However, the above
conclusions are not generalizable and may not be correct for other structures with
different dynamic characteristics and ground motions exhibiting different energy
contents.

3. When the time step is 0.001 s, the GCR algorithms with four typical sets of integration
parameters can provide satisfactory SSTT results, because the PE and equivalent
damping ratio of the integration algorithm are very small. Therefore, the integration
parameters of the GCR algorithms have negligible effects on the SSTT results. It
should be noted, however, that if a larger time step and a stiffer structure with larger
frequency are adopted, the influences of the integration parameters may be significant.

4. The influences of the time step on the SSTT results are insignificant for the TMD and
TLD cases. However, for the PD cases, a large time step of 0.02 s may lead to relatively
large errors.

5. The time delay has a negative impact on the SSTT results. However, if the time delay
is within a certain level, any adverse effects can be ignored. If the time delay is very
large, delay compensation should be used to offset its negative influence.
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