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Abstract: For symmetric non-orthogonal multiple access (NOMA)/multiple-input multiple-output
(MIMO) systems, radio resource allocation is an important research problem. The optimal solution is
of high computational complexity. Thus, one existing solution Kim et al. proposed is a suboptimal
user selection and optimal power assignment for total data rate maximization. Another existing
solution Tseng et al. proposed is different suboptimal user grouping and optimal power assignment
for sum video distortion minimization. However, the performance of sub-optimal schemes by
Kim et al. and Tseng et al. is still much lower than the optimal user grouping scheme. To approach
the optimal scheme and outperform the existing sub-optimal schemes, a deep neural network (DNN)
based approach, using the results from the optimal user selection (exhaustive search) as the training
data, and a loss function modification specific for NOMA user selection to meet the constraint that a
user cannot be in both the strong and weak set, and avoid the post processing online computational
complexity, are proposed. The simulation results show that the theoretical peak signal-to-noise ratio
(PSNR) of the proposed scheme is higher than the state-of-the-art suboptimal schemes Kim et al.
and Tseng et al. by 0.7~2.3 dB and is only 0.4 dB less than the optimal scheme at lower online
computational complexity. The online computational complexity (testing stage) of the proposed
DNN user selection scheme is 60 times less than the optimal user selection scheme. The proposed
DNN-based scheme outperforms the existing suboptimal solution, and slightly underperforms the
optimal scheme (exhaustive search) at a much lower computation complexity.

Keywords: deep learning; post-processing; cost function modification; cross layer optimization;
multi-antenna; non-orthogonal multiple access (NOMA); resource allocation

1. Introduction

To meet the rapidly increasing consumer demand for wireless data, especially wireless
video delivery, wireless transmission technology is continuously evolving. To efficiently
manage the resources of the wireless transmission technology, resource allocation such
as user selection and beamforming group allocation is key. The multiple-input multiple-
output (MIMO) has been used in wireless communications. Chen et al. [1] investigated
resource management in MIMO systems for multiview 3D video delivery. Yang et al. [2]
proposed user grouping for multicell uplink multiuser MIMO systems to achieve higher
sum rates. Lee et al. [3] proposed a cross-layer optimization scheme for heterogeneous
multiuser MIMO networks.

In addition, non-orthogonal multiple access (NOMA) can meet the world’s demand
for higher data transmission rate. NOMA has promising applications in 5G networks and
beyond [4–7] and the digital TV standard ATSC 3.0 [8]. NOMA can serve more than one
user at the same radio resource, and has higher bandwidth efficiency than conventional or-
thogonal multiple access (OMA) [9]. Since the receiver uses serial interference cancellation
(SIC) technology, multiple signals can be combined and transmitted [10].

Combining MIMO and NOMA can achieve higher spectrum efficiency and diversity.
Senel et al. [11] shown that the combination of multi-user beamforming and NOMA
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outperforms two standalone schemes. Uplink NOMA-MIMO systems include [12–14].
Kim et al. [12] proposed a user grouping considering the correlation between strong
and weak users and proposed a power control scheme to maximize the sum rate in
NOMA–MIMO systems. Tseng et al. [13] proposed an improved weak user selection
scheme in the physical layer, and a power allocation/user substitution scheme in the
application layer. This is a cross-layer approach just as with non-NOMA systems [15,16].
Qureshi et al. [14] proposed a concept of successive bandwidth division (SBD). The above
conventional schemes are usually iterative and thus have high computational complexity.
This high complexity is called algorithm deficit and motivates the application of the
deep learning [17]. The deep learning-based approach has inherent parallel processing
structure which can accelerate at the graphic processing unit (GPU), but the conventional
scheme is usually a sequential operation and doesn’t have parallel processing structure for
accelerating by the GPU. Therefore, the computational complexity of the deep-learning-
based scheme is much less than that of the non-deep-learning-based scheme in terms of
execution time in a platform with a GPU [18–20].

In addition, deep learning is widely used in pattern recognition, speech recognition,
signal processing [21,22], communications, and networks [4,18,23,24]. Kim et al. [21]
proposed deep learning for antenna design and radar signal processing. To learn the
suboptimal scheme (weighted minimum mean square error, WMMSE), Sun et al. [22]
applied deep learning and achieved the performance close to the iterative suboptimal
WMMSE algorithm. Gui et al. [4] investigated an auto-encoder approach of a NOMA
system. Kim et al. [18] investigated deep learning for sparse code multiple access (SCMA)
López et al. [23] proposed deep learning to increase the probability of success in forecasting
primary users in cognitive radio networks. Wang et al. [24] surveyed the most recent
spectrum allocation schemes by reinforcement learning in cognitive radio networks.

Due to the algorithm deficit, deep learning is applicable for communications and
yields lower-complexity solutions. At the testing stage (the runtime) of the deep neural
network (DNN), the deep learning-based approach is expected to have much smaller
computational complexity than that of non-deep learning approaches, such as 11.34 times
lower for a small 6× 4 SCMA system on a desktop computer with GPU NVIDIA 1080Ti [18],
100 times faster in power control of underlaid device-to-device communications [19], and
28.72 times less execution time for OFDMA-massive MIMO resource allocation [20].

In summary, the combination of NOMA and MIMO provides higher data rates to meet
the increasing demand of wireless video. The addition of deep learning can significantly
reduce the online computational complexity.

2. Related Works

For NOMA-MIMO systems, user selection is a key research topic. One prior work [12]
proposed a suboptimal user selection and optimal power allocation to maximize sum data
rate. Another prior work [13] proposed different suboptimal user selection and optimal
power allocation to minimize the sum video mean square error (MSE) distortion. The
comparison of the prior works and the proposed scheme is made in Table 1.

Deep learning has been applied for radio resource allocation in wireless communica-
tion systems. Sun et al. [22] proposed learning from the suboptimal WMMSE algorithm
and achieved a performance close to the suboptimal WMMSE algorithm. Lee et al. [19]
proposed power control of underlaid device-to-device communications. Tseng et al. [25] pro-
posed learning resource allocation scheme for OFDMA/NOMA systems from a suboptimal
scheme. A post processing scheme for the testing stage is also proposed to guarantee the
constraint that each user has at least one subcarrier for user fairness. Wang [26] proposed a
modified loss function in the training processing of OFDMA-NOMA resource allocation
such that the constraint that each user has at least one subcarrier is usually satisfied.



Symmetry 2021, 13, 1737 3 of 14

Table 1. Comparisons of NOMA-MIMO systems.

[12] [13] Proposed

User selection Base on physical layer metric
information rate in (9) and (13)

Base on ross layer metric video
MSE in (14) Learn from [13]

Power allocation Base on physical layer metric
information rate in (9) and (13)

Base on cross layer metric video
MSE in (14) the same as [13]

Computational complexity Iterative algorithm, so high
computation complexity

Iterative algorithm, so high
computation complexity

Non-iterative, deep
learning-based approach,

so low online computation
complexity

The performance of the suboptimal schemes by Kim et al. [12] and Tseng et al. [13]
still shows a significant gap with the optimal scheme. The previous works about deep
learning for radio resource allocations in [22,25,26] all learn from the suboptimal scheme
(training data), so their performance would be slightly worse than the suboptimal scheme
and can’t be close to the optimal solution. Our proposed scheme uses the DNN to learn
the strong/weak set user selection from the optimal solution (by exhaustive search) and
thus performs better than the suboptimal scheme, and close to the optimal scheme at the
lower complexity.

Compared to the prior works, our proposed scheme makes the following contribution:

(1) A deep learning scheme (Scheme DNN in Section 4) to learn from the optimal scheme
(Scheme Optimal) is proposed. The Scheme Optimal attempts all the combina-
tions/permutations of K candidate users (exhaustive search) and chooses the best
performing user grouping. Scheme DNN uses the Scheme Optimal results as train-
ing data. The proposed Scheme DNN achieves near optimal performance at lower
complexity. It outperforms the previous suboptimal schemes proposed in [12,13].

(2) A new loss function for deep learning of the user selection to deal with constraint viola-
tion is proposed. If a user is selected in both of the strong set and weak set (constraint
violation), extra value is added to the cost function. This avoids post-processing
after the training stage to satisfy the constraint that a user can’t be in both of the
strong set and weak set and reduces the complexity. For comparison, Tseng et al. [25]
investigated the deep leaning-based resource allocation for OFDMA/NOMA but
not MIMO. Its scheme has the post-processing after the training stage to satisfy the
constraints and additional complexity and latency during the runtime. The scheme
in [26] modified the loss function for satisfying the constraint that each user has
at least one subcarrier and thus avoid post-processing, but it deals with different
constraint (a user has at least one subcarrier, not that a user can’t be in both of the
strong set and weak set) in different systems (OFDMA/NOMA, not NOMA-MIMO).

(3) The proposed deep learning approach for NOMA resource management crosses the
physical and application layers. Previous NOMA schemes such as [4–6,12,27] focus
on the physical layer and there is currently no deep learning-based cross-layer user
selection scheme for NOMA-MIMO video systems [28–30].

The remaining part of this paper is organized as follows. Section 3 describes the
system model. Section 4 describes the proposed deep learning approach and proposed
modified cost function for constrained optimization. Our simulation results are shown in
Section 5. The conclusion is given in Section 6.

3. Uplink NOMA-MIMO Video Transmission System Model

Sections 3.1–3.3 describe the structure of the uplink NOMA-MIMO video communica-
tion system, received signal model, and multiantenna beamforming method ZF post-coder.
Key idea is the N antennas at the BS creates N multiantenna beamforming groups and
NOMA allows two users in the same resource, so total 2N users can be supported in the
uplink NOMA-MIMO systems, so the sum data rates of all users are 2N times.
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Section 3.4 is the received SINR and then the information (data) rate in (9) and (13) for
the strong and weak NOMA users, respectively. The information (data) rate is a physical
layer metric used in the prior work [12]. Section 3.5 describes the model of the video MSE
distortion in (14) which is a function of the information (data) rates in Section 3.4. The
video MSE distortion is a cross layer metric used in the prior work [13] and the proposed
scheme. Then, the video quality indicator, PSNR, is a log expression of the video MSE
distortion and defined in (17).

3.1. Uplink Noma-Mimo System Structure

The structure of the symmetric uplink NOMA–MIMO video transmission system is
shown in Figure 1, and is the same as that in [12,13] except the gray part-resource allocation.
The resource allocation in [12,13] are non-deep-learning-based. The resource allocation
block in Figure 1 is a deep learning-based one with the training data obtained from the
optimal solution. Figure 2 shows the symmetric uplink NOMA-MIMO system model with
K users and N antennas at the BS, K < 2 N, and is the same as that in [12,13]. Overall, the
uplink NOMA-MIMO video transmission system model in Figures 1 and 2 is the same as
that in [12,13] except that the resource allocation is based on deep-learning.
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3.2. Received Signal Model

The received signal of all the groups with all users in the uplink NOMA system can
be expressed as follows:

y = Hsxs + Hwxw + nawgn (1)

where Hs and Hw denote the channel matrix of the strong and weak sets, respectively.
nawgn is the additive white Gaussian noise (AWGN) with power Pawgn, and xs, xw are the
N × 1 transmitted signal vector of the strong and weak sets, respectively.

The channel vectors of the strong and weak sets can be denoted as

Hs =
[
hs,1 hs,p . . . hs,N

]
, Hw =

[
hw,1 hw,q . . . hw,N

]
(2)

where p ∈ {1, 2, · · · , N}, q ∈ {1, 2, · · · , N}, and hs,p, hw,q are the N × 1 uplink channel
matrix of the p-th and q-th users in the strong and weak sets, respectively.

The transmitted signal vector of the strong and weak set is given by

xs =
[√

αs,1ss,1
√

αs,pss,p · · ·
√

αs,Nss,N
]tr (3)

xw =
[√

αw,1sw,1
√

αw,qsw,q · · ·
√

αw,Nsw,N
]tr (4)

where (.)tr denotes the transpose of the matrix. ss,p and sw,q are the signal of the p-th and
q-th user in the strong set and weak set, respectively. αs,p and αw,q are the power control
factors of the p-th and q-th user in the strong set and weak set, respectively.

3.3. Multiantenna Beamforming: Zero-Forcing Post-Coder

As in [12], the BS in an uplink (UL) beamforming NOMA system can utilize the CSI
of the entire set of users. In order to eliminate intra-set interference, the zero-forcing (ZF)
scheme to generate the post-coding matrix is used. Based on Hs and Hw, Ws and Ww are
defined to be the ZF post-coding matrices

Ws =
[
wtr

s,1wtr
s,j · · ·wtr

s,N

]tr
= (Hs)

∗((Hs)(Hs)
∗)−1

Ww =
[
wtr

w,1wtr
w,j · · ·wtr

w,N

]tr
= (Hw)

∗((Hw)(Hw)
∗)−1

(5)

where (.)∗ is the complex conjugate of the matrix, and ws,j and ww,j is the 1 × N ZF
post-coder of the j-th user in the strong set and weak set, respectively.
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3.4. Received Sinr and Information (Data) Rate of Users

As mentioned above, the strong set signal after post-coding for the strong set can be
obtained using Ws and the received vector, zs = [zs,1zs,n · · · zs,N ]

tr is achieved as follows

zs = Wsy = WsHsxs + WsHwxw + Wsnawgn (6)

The received signal of strong set user (s, p) is expressed as

zs,p =
∣∣hs,p

∣∣√αs,pss,p +
(

ΣN
q=1ws,phw,q

√
αw,qsw,q

)
+ ws,pnawgn (7)

where
(

ΣN
q=1ws,phw,q

√
αw,qsw,q

)
represents the interference coming from the weak user.

The received SINR of the strong user (s, p) is denoted as follows:

SINRs,p =

∣∣hs,p
∣∣2αs,pPs,p

∑N
q=1
∣∣ws,phw,q

∣∣2αw,qPw,q + Pawgn
(8)

Then w the information rate of the strong set user (s, p) is given by

rates,p
(
αs,p
)
= BW∗log2(1 + η

Ps,p∗αs,p∗|hs,p|2

Pawgn+∑N
q=1|ws,phw,q|2∗αw,q∗Pw,q

)

= BW∗log2(1 +
αs,p∗As,p

1+αw,q∗Cp
),

(9)

where BW is the signal bandwidth, As,p = η ∗ Ps,p ∗
∣∣hs,p

∣∣2/Pawgn, Cp = ∑N
q=1 Pw,q ∗∣∣ws,phw,q

∣∣2/Pawgn and η represents the gap to the theoretical capacity [13,15].
The transmit power of strong user (s, p) and weak user (w, q) is denoted as Ps,p and

Pw,q, respectively. The maximum transmit power per user is Pmax, and pN is the power of
the noise. On the opposite side, the weak set signal can be decoded by perfect SIC after the
signal interference from the strong set is removed. Then zw =

[
zw,1zw,q · · · zw,N

]tr after the
Ww ZF post-coder is achieved, and the received vector of the weak set is represented as

zw = WwHwxw + Wwnawgn (10)

zw,q =
∣∣hw,q

∣∣√αw,qsw,q + ww,qnawgn (11)

The received SINR of the weak user

SINRw,q =

∣∣hw,q
∣∣2αw,qPw,q

Pawgn
(12)

Then the information rate of the weak user

ratew,q
(
αw,q

)
= BW∗log2(1 + η

Pw,q∗αw,q∗|hw,q|2
Pawgn

)

= BW∗log2(1 + αw,q Aw,q),
(13)

where Aw,q = η ∗ PW,q ∗
∣∣hw,q

∣∣2/Pawgn

3.5. Video MSE Distortion Model and Psnr

According to the video distortion model [15], the video MSE of each group of pictures
(GOP) of the NOMA system can be approximated as the following equation [31]:

MSENOMA = ak +
bk

rateNOMA + ck
(14)
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The rateNOMA is either rates,p in (9) for strong users or ratew,q in (13) for weak users.
The ak, bk, and ck are fitted before transmission and depend on the video content [15,16,25].

The video MSE of the OMA system is

MSEOMA=ak +
bk

rate′OMA + ck
(15)

The information rate of the OMA system is

rate′OMA = BW∗ 1
2

log2(1 + AOMA) (16)

The reason that AOMA approximates to Aw,q, the parameter of the weak user in
NOMA system, is that the users of the OMA system do not interfere with each other, so
AOMA = η ∗ POMA,k ∗

∣∣hOMA,k
∣∣2/Pawgn, where POMA,k is the transmit power of the OMA

user, and hOMA,k is the channel vector of the OMA user,
The PSNR, peak signal-to-noise ratio, is defined as [31]

PSNR = 10× log10
255× 255

MSE
(17)

The theoretical PSNR is obtained by using MSE in (14), (15). The simulated PSNR
is obtained by using MSE in the simulation, which accounts for channel-induced errors,
imperfect source encoding rate control etc. [15].

4. Proposed Deep Learning Approach for User Selection (Scheme DNN)

The optimal user grouping is to attempt all the combinations/permutations of K
candidate users (exhaustive search) and choose the best performing grouping, where K
is the number of candidate users that BS can choose from. Its complexity is high, so
the user set selections in the previous studies such as [12,13] are heuristic suboptimal
solutions. The proposed deep learning approach for user selection uses optimal user
grouping results as the training data and achieves near optimal performance at lower
online computational complexity.

4.1. Deep Neural Networks Structure

Figure 3 is the proposed fully-connected deep neural network (DNN) model for user
selection. The output layer is separated into a strong set selection and weak set selection.
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The normalized channel gains [32] (physical layer) and RD-function parameters (ap-
plication layer) of all users are adoppted as the input to the DNN, and the output data is
the user grouping result and can be represented as a 2 × K matrix. The first 1XK matrix
indicates N users selected in the strong set (N ones, the others are zeros). The second 1XK
matrix indicates N users selected in the weak set (N ones, the others are zeros). Therefore,
it is possible that a user is in both strong and weak set. Furthermore, for DNN, the data
needs to be one-dimensional, so the output data are reshaped to a 1 × 2 K matrix.

The training data in the form of (DNN input, DNN desired output) pair are generated
as follows. The channel coefficients are the DNN input of the training data and randomly
generated based on the independent and identically distributed (i.i.d.) probabilistic model.
The 1 × 2K resource allocation matrix is the output of the training data and obtained
from the optimal or suboptimal resource allocation algorithm such as Scheme Optimal or
Scheme A [13] in the next section. The testing data are generated in a similar way. The
channel coefficients are generated based on the i.i.d. probabilistic model, and different
from those in the training data.

4.2. DNN System Model

ω is used to represent the parameters of the DNN,ω = {ω1,ω2, . . . ,ωL}. The set of
the parameters of the layer l is ωl= {Wl , bl}. Wl is the weight of the neurons and bl is the
bias of the neurons at the l-th layer. The l-th layer can be denoted as follows:

Yl = σ(WlXl + bl) (18)

where σ ( ) is an activation function. A rectified linear unit function (ReLU function) with
σReLU (x) = max (0, x) is used as the activation function in each layer except for the last layer.
The ReLU function can keep the gradient at 1 and the size of gradients will not reduce
exponentially when back-propagating via many layers [33].

The softmax activation function in the output layer was attempted. All user combina-
tions in the NOMA system are numbered and the pre-training data are transformed into
numbers as DNN training data. The number is converted back to the original data type
after training. However, the accuracy of this method is only 30%. Finally, the original train-
ing data are used and the activation function is changed to sigmoid σsigmoid(x) = 1

1+e−x ,
which maps the output to interval [0, 1].

Binary cross-entropy (BCE) is used for the cost function since it is a classification problem:

Loss1(W, b) =
1
K ∑K

i −[Y(i) ln(YL(i)) + (1−Y(i)) ln(1−YL(i))] (19)

where Y(i) is the labeled (desired) DNN output and YL(i) is the DNN output during the
training stage.

4.3. Proposed Modified Cost Function for Constrained Optimization

The proposed modified loss function is as follows:

Loss = Loss1 + Lossconstraint (20)

where Lossconstraint represents the proposed modification to meet the constraint of the
resource allocation. In the NOMA system, a user cannot be selected in both of the strong
set and weak set. To avoid the post-processing of the DNN output and the resulting
additional online computational complexity, e.g., [25], the modification of the cost function
is proposed: If the strong and weak set have user(s) in common, the value of Lossconstraint
will be 0.5; otherwise it will be 0. In order to minimize the loss function during the training
stage, the DNN will avoid the situation that the strong and weak set have user(s) in
common. Thus, the post-processing dealing with violation of the constraint that the strong
and weak set cannot have user(s) in common, can be saved.
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4.4. Statistical Analysis

For tasks in communications and networks, the training data can be collected or
generated [17], so there is no problem of limited training samples. The training data do not
have the data imbalance problem described in [34] since the channel coefficients of users at
different slots are randomly generated based on the i.i.d. probabilistic model.

5. Simulation Results

The video content type in the simulation results is as follows. The video is a travel
documentary of CIF size and of length 50 s at 30 fps [13,15]. Each user has different starting
time of the same cyclic video. In this way, application layer diversity for users is created and
the complexity over time for users is the same. The size of a GOP (time slot) is 15 frames.
The resource allocation is conducted once per GOP. The source encoding rate control is
H.264/AVC baseline profile, and 80~600 kbps for each GOP.

The signal bandwidth is BW = 50 kHz, and the adaptive modulation method is M-
QAM with M = 4~256. The users randomly located and their channel gains are also random.

The channel gain is modeled as αrayleigh
2·K0·

(
d0
dk

)γ
. where αrayleigh is Rayleigh fading and

γ is the path loss exponent. K0 is −24 dB, dk is uniformly distributed [40 m, 100 m], and
d0 is 40 m. The maximum transmitting power per user Pmax is 24 dBm. The time varying
channel response is assumed block fading. That is, the channel coefficients are constant
during a GOP/time slot and are independently and identically distributed (i.i.d.) for
different GOPs/time slots [13,15,16]. Additionally, Table 2 shows the parameters of the
DNN. The activation function for the hidden layers is ReLU since it can keep the gradient
at 1 and the size of gradients will not reduce exponentially when back-propagating via
many layers [33]. The activation function for the output layers is sigmoid since the user
selection in NOMA-MIMO systems is a multi-label classification. The number of epochs is
selected based on the training/validation loss curve convergence in Figures 4 and 5.

The following schemes are considered for comparison.
Scheme Optimal: the optimal scheme (the exhaustive search bound).
Scheme DNN (proposed): Proposed DNN, learning from Scheme Optimal (optimal

training data).
Scheme A: [13], sub-optimal scheme, state-of-the-art
Scheme A’: DNN, but learning from Scheme A (sub-optimal training data)
Scheme B: [12], sub-optimal scheme, state-of-the-art
Scheme C: The OMA system.

Table 2. The parameters of the DNN.

Parameter Value

Batch size 100

Learning Rate 0.0001

Activation function (hidden layers) ReLU

Activation function (last layer) Sigmoid

Cost function Proposed modified cost function in (21)

Epochs 200

Number of hidden layers 4

Number of training data 24,000

Number of validation data 6000

Number of testing data 3000



Symmetry 2021, 13, 1737 10 of 14

Symmetry 2021, 13, x FOR PEER REVIEW 10 of 15 
 

 

Number of testing data 3000 

The model validation and credibility of the simulation results for proposed Scheme 
DNN are justified as follows. The training loss and validation loss versus epochs are 
shown in Figures 4 and 5, respectively. The following is observed: 
(1) The loss function converges after 200 epochs, so the epochs = 200 in Table 2. 
(2) The validation loss converges to almost zero in a way as the training loss, and no 

overfitting occurs. The DNN model can learn the correct answer from the unseen 
data (the validation data are different from the training data). This validates the DNN 
system model with the parameters in Table 2. 

(3) The initial loss is greater than 1 (maximum of the binary cross entropy). Also, there 
are jumps of 0.5 (constraint violation) before convergence (about epoch 100) in the 
training and validation loss curves. These validate the 𝐿𝑜𝑠𝑠  in (20) in the 
DNN system model. 

 
Figure 4. The loss vs. epochs in the training stage. 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

0 50 100 150 200 250 300

lo
ss

epoch

training loss

Figure 4. The loss vs. epochs in the training stage.

Symmetry 2021, 13, x FOR PEER REVIEW 11 of 15 
 

 

 
Figure 5. The loss vs. epochs in the validation stage. 

The comparison metrics are the theoretical and simulated PSNR. The theoretical 
PSNR is obtained by using MSE in (14) and (15). The simulated PSNR is obtained by using 
MSE in the simulation and accounts for channel-induced errors, imperfect source encod-
ing rate control etc. [15] 

Figure 6 shows the average theoretical PSNR of all schemes. Obviously, the pro-
posed Scheme Optimal has perform best. The proposed Scheme DNN, which learns from 
the optimal solution, outperforms the previous suboptimal Schemes A and B by 0.7 dB 
and 2.3 dB, respectively, and is only 0.4 dB away from the Scheme Optimal. Scheme D, an 
OMA scheme, has the lowest 29.0 dB among all schemes. 

In Figure 7, the simulated PSNR of all schemes are all lower than the corresponding 
theoretical PSNR. This is due to the fact that of the communication channel errors, imper-
fect rate control at the source encoder, etc. [15,16]. The complexity of Scheme Optimal is 
too high so its simulated PSNR can’t be achieved. It can be seen that the proposed Scheme 
DNN outperforms Schemes A and B by 0.8 dB and 2.0 dB, respectively. 

 
Figure 6. The theoretical PSNR of all schemes, SNR = 15 dB, 12 users. Scheme DNN is the proposed 
scheme. 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

50 100 150 200 250 300

lo
ss

epoch

validation loss

27

28

29

30

31

32

33

Scheme
Optimal

Scheme
DNN

(proposed)

Scheme A Scheme A' Scheme B Scheme C

Th
eo

re
tic

al
 P

SN
R

Figure 5. The loss vs. epochs in the validation stage.

The model validation and credibility of the simulation results for proposed Scheme
DNN are justified as follows. The training loss and validation loss versus epochs are shown
in Figures 4 and 5, respectively. The following is observed:

(1) The loss function converges after 200 epochs, so the epochs = 200 in Table 2.
(2) The validation loss converges to almost zero in a way as the training loss, and no

overfitting occurs. The DNN model can learn the correct answer from the unseen
data (the validation data are different from the training data). This validates the DNN
system model with the parameters in Table 2.
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(3) The initial loss is greater than 1 (maximum of the binary cross entropy). Also, there
are jumps of 0.5 (constraint violation) before convergence (about epoch 100) in the
training and validation loss curves. These validate the Lossconstraint in (20) in the DNN
system model.

The comparison metrics are the theoretical and simulated PSNR. The theoretical PSNR
is obtained by using MSE in (14) and (15). The simulated PSNR is obtained by using MSE
in the simulation and accounts for channel-induced errors, imperfect source encoding rate
control etc. [15]

Figure 6 shows the average theoretical PSNR of all schemes. Obviously, the proposed
Scheme Optimal has perform best. The proposed Scheme DNN, which learns from the
optimal solution, outperforms the previous suboptimal Schemes A and B by 0.7 dB and
2.3 dB, respectively, and is only 0.4 dB away from the Scheme Optimal. Scheme D, an OMA
scheme, has the lowest 29.0 dB among all schemes.
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In Figure 7, the simulated PSNR of all schemes are all lower than the corresponding
theoretical PSNR. This is due to the fact that of the communication channel errors, imperfect
rate control at the source encoder, etc. [15,16]. The complexity of Scheme Optimal is too
high so its simulated PSNR can’t be achieved. It can be seen that the proposed Scheme
DNN outperforms Schemes A and B by 0.8 dB and 2.0 dB, respectively.
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Scheme DNN and Scheme A’ are compared in Figures 6 and 7. Scheme DNN uses
DNN to learn from the optimal scheme (Scheme Optimal) and Scheme A’ use DNN to learn
for sub-optimal scheme. Scheme DNN and Scheme A’ use the same the DNN structure but
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different training data (from Scheme Optimal or Scheme A). Scheme DNN outperforms
Scheme A’ by 1.6 dB and 1.8 dB in the theoretical and simulated PSNR, respectively.

The DNN architecture, a computational model composed of more than one hidden
layer, learns to represent data with multiple abstraction levels, in a similar way to human
brains [35]. A more complicated problem needs more hidden layers in a neural network to
solve it. For an ordinary neural network (number of hidden layers = 1), the theoretical PSNR
is 30.2 dB and significantly worse than the deep neural network (Scheme DNN in Figure 6,
number of hidden layers = 4). Thus, DNN is more useful than ordinary neural network in
a complicated cross-layer user selection in uplink NOMA-MIMO video transmissions.

Discussions

The proposed DNN model details and why it is a good solution are as follows. The
number of neurons at 4 hidden layers is 1024/1024/1024/2048. The input is the normalized
channel gains [32] (physical layer) and RD-function parameters (application layer) of all
users. DNN model parameters such as number of hidden layers, number of neurons at
each hidden layer, etc., are determined by exhaustive search [18]. The DNN model quality
is quantitively indicated by the training loss and validation loss [36–38]. In Figure 4, the
training loss converges to almost zero after 200 epochs, so there is no underfitting and the
DNN model is not too simple. In Figure 5, the validation loss also converges to almost zero
in a way as with the training loss, so there is no overfitting and the DNN model is not too
complex. Therefore, the DNN model is identified as a good one.

Next, the performance is discussed and better presentation of simulation results
is given. The training and validation loss in Figures 4 and 5 show convergence before
200 epochs and no underfitting/overfitting. The parameter setting in Table 2 in the revised
manuscript (Table 1 in the original manuscript) including the DNN size, epochs, training
data size, etc. is appropriate. The jumps of 0.5 and greater-than-1 value of initial loss
indicate the modified loss function in (20) with Lossconstraint = 0.5. The proposed Scheme
DNN outperforms prior work suboptimal Scheme A [13] by 0.7 dB and only 0.4 dB away
from Scheme Optimal in theoretical PSNR in Figure 6 since it learns from the optimal
Scheme Optimal. For comparison, Scheme A’ learns from suboptimal Scheme A and
slightly underperforms Scheme A. The simulated PSNR is obtained by using MSE in the
simulation, which accounts for channel-induced errors, imperfect source encoding rate
control etc. The proposed Scheme DNN outperforms the prior work suboptimal Scheme A
by 0.8 dB in more realistic simulated PSNR in Figure 7. Again, the proposed Scheme DNN
learns from the optimal, so it can surpass the suboptimal Scheme A.

Next the computational complexity is discussed. First, note that the training stage is
executed beforehand (offline), so it is not an obstacle for the real-time (online) operation of
the deep learning-based scheme [19]. Deep learning-based resource allocation decisions
could be obtained with much less online computations than the non-deep-learning-based
resource allocation schemes [28]. Thus, as in [18–20,28], the training time is excluded in the
computational complexity comparison where only online (testing stage) computational
complexity is counted since the training procedure is conducted offline. For K = 12 and
N = 2, the execution time of Scheme Optimal for 3000 testing data is over 15 min. The
execution time (testing stage only, not including training stage) of Scheme DNN is 14.86 s
for the same 3000 testing data. The schemes are performed in a desktop computer with
Intel Core I7-8700 NVIDIA 1080Ti GPU. For each testing data (resource allocation in one
GOP), the proposed Scheme DNN requires only 5 ms and the Scheme Optimal requires
300 ms.

Lastly, the comparison among different video samples is needed in order to evaluate
the performance of the overall adopted methodology (such as the modified loss function).
It allows to evaluate the solution scalability to other cases and then to evaluate the goodness
of DNN model. We simulate PSNR for other video sequences in CIF resolution with 30 fps
in [39]. Although the absolute values of the simulated PSNR differs for different video
samples, the relative performance gain among schemes are similar.
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6. Conclusions

A DNN structure with the modified loss function to learn the optimal user selection
scheme is proposed. The loss function modification is to skip the post-processing of the
DNN output (and the corresponding complexity and delay) during the testing stage. The
numerical results show that the proposed DNN-based approach learning from the optimal
user selection (by exhaustive search) outperforms the state-of-the-art [13] and [12] by 0.7 dB
and 2.3 dB in theoretical PSNR, respectively, and is only 0.4 dB less than the optimal
solution. The proposed Scheme DNN using the results from the optimal user selection
as the training data is 1.8 dB higher in theoretical PSNR than Scheme A’ using the results
from the sub-optimal user selection as the training data. The proposed Scheme DNN has
60 times lower computational complexity during the testing stage than the optimal scheme
(Scheme Optimal) since each layer of the DNN is just a linear combination and a non-
linear activation function. and may benefit a low latency scenario for the next generation
communication systems. Previously, the deep learning-based resource allocation schemes
all learned from the sub-optimal scheme so they cannot outperform the sub-optimal scheme.
In the paper, the proposed deep learning-based scheme learns from the optimal scheme,
and offers near-optimal video quality at much less computational complexity. It may
be beneficial for next generation multimedia communications to increase the quality of
user experience.
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