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Abstract: Aiming at the problem of the poor robustness of existing methods to deal with diverse
industrial weld image data, we collected a series of asymmetric laser weld images in the largest
laser equipment workshop in Asia, and studied these data based on an industrial image processing
algorithm and deep learning algorithm. The median filter was used to remove the noises in weld
images. The image enhancement technique was adopted to increase the image contrast in different
areas. The deep convolutional neural network (CNN) was employed for feature extraction; the
activation function and the adaptive pooling approach were improved. Transfer Learning (TL) was
introduced for defect detection and image classification on the dataset. Finally, a deep learning-
based model was constructed for weld defect detection and image recognition. Specific instance
datasets verified the model’s performance. The results demonstrate that this model can accurately
identify weld defects and eliminate the complexity of manually extracting features, reaching a
recognition accuracy of 98.75%. Hence, the reliability and automation of detection and recognition
are improved significantly. The research results can provide a theoretical and practical reference
for the defect detection of sheet metal laser welding and the development of the industrial laser
manufacturing industry.

Keywords: deep learning; weld defect detection; image detect recognition; convolutional neural
network; transfer learning

1. Introduction

With the continuous improvement of industrialization, the technical scheme domi-
nated by laser welding has been widely used in aerospace, sheet metal processing, equip-
ment manufacturing and other fields [1]. In the process of industrial laser welding, affected
by the production environment and manufacturing process, various welding defects such
as pores, cracks, lack of fusion, sputtering and undercut inevitably occur. These defects
affect the performance of products to a great extent [2]. It is very important to detect
welding defects and repair them in time. At present, the laser welding detection methods
commonly used in the industry are manual detection and non-destructive detection, in-
cluding radiographic detection, eddy current detection, penetration detection, ultrasonic
detection and magnetic particle detection [3]. Although non-destructive testing can solve
most of the significant surface defects, it requires special technicians to carry out on-site
testing. For enterprises, it is difficult to meet the standard in terms of testing efficiency
and economic cost [4]. In the actual high-power laser welding, the generation of surplus
materials should be avoided as far as possible. The detection of the welding area and
reprocessing the defect location are conducive to improve the service quality and utilization
rate of the plate. Therefore, it is particularly important to improve the quality and efficiency
of welding defect detection.
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At present, steel welds are usually detected by non-destructive methods, in which
X-ray is the most common method [5]. X-ray weld detection is divided into radiographic
film detection and digital detection according to the images. The former is highly subjective
and prone to misjudgments [6], while the latter utilizes computer algorithms for image
recognition and detection [7]. Machine learning and deep learning have been widely
used in many fields. Mohammadhehdi et al. proposed a new non-destructive testing
method to measure the flow pattern and void fraction of an oil pipeline, and used machine
learning and neural networks for classification and regression, respectively—the experi-
mental results are good [8]. Muhammad et al. proposed a method of achievement caching
to solve the consistency problem faced in the time evolution graph, which significantly
improved the performance and throughput of the graph query system [9]. Shahin et al.
dynamically estimated the clinical response of critically ill patients to drugs based on
multiple-model square-root cubature Kalman filtering (mmsrckf) and linear parameter-
varying (LPV) control technology, and verified the effectiveness of this method through
closed-loop simulation [10]. Mohsen et al. proposed a neural network classifier to predict
the abnormal Border Gateway Protocol (BGP) events caused by network worm attacks; by
collecting three different types of worm data and extracting only eight features, a classi-
fier can be trained, and finally the classification accuracy can reach 98% [11]. Bijan et al.
proposed an electric train monitoring and control system. The system controls the wheel
angular speed through field-oriented control (FOC), reduces the speed through model
predictive control (MPC) and tracks the expected speed of the electric train; finally, the
feasibility of the system is verified by simulation experiments [12]. Sahar et al. introduced
Personalized Feedback Email (PFE) into online courses based on machine learning tech-
nology and directly collected data from students for analysis so as to improve students’
learning strategies and improve their performance; the research shows that this method can
significantly improve students’ performance and reduce their learning pressure in the short
term [13]. With the rapid development of deep learning technology, convolutional neural
networks have been widely used to extract data features. In particular, neural networks
are used to analyze symmetric and asymmetric data; for example, the classification of
data [14], the measurement of symmetry perception [15] and wireless signal processing and
classification [16]. In the field of industrial application, using deep learning to detect defects
is also a hot direction. Hou et al. (2019) developed a model based on a Deep Convolutional
Network (DCN) to directly extract deep features from X-ray images; the classification capa-
bilities of traditional methods and this model were compared using different datasets. The
model had an accuracy of 97.2%, which was much higher than traditional feature extraction
methods [17]. Shevchik et al. (2020) proposed a method that could detect defects in process
instability in real time based on a deep Artificial Neural Network (ANN); finally, the
quality classification confidence was between 71% and 99%, revealing excellent application
values [18]. Ajmi et al. (2020) provided a comparative evaluation method of deep learning
network performance for different combinations of parameters and hyperparameters and
added an enhanced learning method to the dataset, which increased the model accuracy
by approximately 3% [19]. Ajmi et al. (2020) also applied Machine Learning (ML) and
image processing tools to traditional crack detection and proposed a novel classification
method based on deep learning networks using data enhancement for random image
transformation on the data; it turned out that the model had the best performance in a
short time [20]. Boikov, A et al. analyzed the surface defect characteristics of a steel plate
based on Unet and Xception, and showed good results through experiments [21]. Hence,
current studies mostly focus on using deep learning for weld defect detection. However,
a stable and efficient automatic detection system has never been established. Most steel
enterprises still adopt traditional manual sampling methods, which have many subjective
factors and a low detection efficiency, causing quality problems with steel plates.

Therefore, the previous studies are summarized and the current problems in steel plate
production are analyzed using the production line status of a steel mill’s workshop as an
example. The five major weld defects are explored, including inclusions, scratches, scars, roll
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marks and gas pores. The deep learning algorithm recognizes and detects weld defects; the
images of weld defects are processed, whose features are extracted via Convolutional Neural
Networks (CNNs). Transfer Learning (TL) is then adopted to shorten the training time via
simple adjustments and hyperparameter regulations. The results can lay a foundation
for the efficient automatic detection of steel plates, eliminating technology constraints,
reducing the operation costs and the high-quality development of iron and steel enterprises.

2. Recent Studies
2.1. Research Progress of Weld Defect Detection

At present, the commonly utilized non-destructive approaches to detect weld defects
include X-ray, infrared thermal radiation and ultrasonography. The X-ray approach has the
advantages of being non-destructive, accurate and fast, and it has become an indispensable
technology to ensure the quality of a welded structure and it can accurately reflect the
location, shape, type and size of defects on gray images [22]. Boaretto and Centeno (2017)
put forward an approach to automatically detect and identify weld X-ray image defects
via a double-wall dual-image exposure technique. The accuracy of the classifier reached
88.6% [23]. Bestard et al. (2018) designed a real-time infrared sensing system, which
used a galvanometer scanner to continuously reflect infrared energy to the point infrared
sensor. This system could better identify the type of weld defect, which was of reference
value in monitoring the interference generated during welding [24]. Vasilev et al. (2019)
employed non-contact air-coupled ultrasound to inspect weld defects, which could detect
weld defects immediately [25]. Gao et al. (2020) put forward a defect automatic recognition
model based on CNN. The model used a simple moving average approach to reduce the
size of the feature set, which was of great help to the classification performance of the
model [26]. Li et al. (2020) adopted an image processing technique and the deep structure
of a complex neural network to detect defects. This method did not require calculating
defect features [27]. Sony et al. (2021) proposed a deep learning framework based on data
fusion of CNN and Naive Bayes to detect cracked areas [28].

2.2. Research Progress of Weld Defect Image Recognition

The effectiveness of image features extracted by traditional weld defect recognition
models is the key factor influencing the classification effect. Feature extraction must com-
prehensively consider the similarity between the same features and the differences between
different features. Various features are primarily based on manual design and selection [29].
Standard image features include shape features, texture features and the Gray-Level Co-
occurrence Matrix (GLCM) [30]. Li et al. (2017) combined geometric features and texture
features to form 43 feature descriptors for a multi-class pattern recognition experiment [31].
Gao et al. (2019) proposed a weld defect recognition model based on the Gray-Gradient
Co-occurrence Matrix (GGCM) and cluster analysis. This model comprehensively considered
the combined distribution of pixel-level grayscale and edge gradient size. In addition, it
added image variation information to GLCM, avoiding the complexity and diversity of
traditional weld defect information analysis. Hence, it could recognize and analyze the
defect information effectively [32]. Bashar (2019) proposed that the ability of neural networks
to extract and learn image features could be further improved to avoid subjectivity and
inefficiency during manual feature extraction, thereby obtaining better recognition and clas-
sification results [33]. Defect detection models based on pattern recognition have achieved
many fruitful results, among which neural networks, Support Vector Machines (SVMs),
Decision Trees, and Fuzzy Reasoning are ubiquitous. Malarvel and Singh (2021) trained a
Multi-Layer Perceptron (MLP) to detect and recognize 60 weld defects using the known
defect features in the collected original weld images, achieving an accuracy of 97.96% [34].

2.3. Summary of Related Studies

Despite the studies conducted on weld defect image recognition, manual feature
extraction approaches cannot extract features from images well. Deep learning aims to
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process and sort single features to transform them into high-dimensional features, extract
extra abstract features from the input image of the model and use these features to solve
image classification and recognition problems. At present, most of the datasets used by
deep learning models in defect detection are based on their own data research, with no
well-labeled and public datasets for weld defect detection. Furthermore, most links, such as
image data labeling, require manual participation, which has not yet been fully automated,
indicating a significant research potential in weld defect detection. Deep learning can
extract extra high-dimensional image features from the input data, fit different image
features and simplify the weight learning of the last step to increase its effectiveness.
Therefore, the deep learning algorithm is applied to detect and recognize pipe weld defects
in the present work.

3. Materials and Methods
3.1. Analysis of Steel Plate’s Surface Defects

Hot-rolled steel plates will have some surface defects due to the production process
and the steel billets; such defects are divided into steel defects and process defects according
to the causes [35]. The structure of surface defects is shown in Figure 1. Scars are metal
flakes with irregular shapes that attach to the surface of the steel strip. This defect can cause
problems such as metal peeling or holes during subsequent processing and utilization. Gas
pores are irregularly distributed round or elliptical convex hull defects on the surface of
the steel strip, which can cause problems such as delamination or low welding during
subsequent processing and utilization [36]. Inclusions are lumpy or elongated inclusive
defects in the slab exposed on the surface of the steel strip after the inclusions or slag
inclusions are rolled. Such defects will cause holes, cracks and delamination during
subsequent processing. Iron oxide scale is a kind of surface defect formed by pressing
an iron oxide scale into the surface of the steel strip during the hot rolling process. This
defect will affect the surface quality and coating effect of the steel strip. Roll marks are
irregularly distributed convex and concave defects on the surface of the steel strip, which
can cause folding defects in the rolling process. Edge cracking is a phenomenon in which
one or both sides of the steel strip edges are cracked along the length direction, which may
cause problems such as interruption of the strip during the subsequent processing and
utilization [37]. Scratches are a form of linear mechanical damage on the surface of the
steel strip lower than the rolled surface. The scratched iron sheet is difficult to eliminate by
pickling after oxidation, which can easily cause breakage or cracking. Scrapes are a form of
mechanical damage on the surface of the steel strip in the form of points, strips or blocks.
The iron oxide scale at the scrapes is challenging to remove by pickling. Problems such as
bending and cracking may be caused [38].
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3.2. Detection Technologies for Steel Plate’s Surface Defects
3.2.1. Traditional Detection Technology

Traditionally, technologies of detecting steel surface defects are divided into manual
detection methods and non-destructive detection methods. Manual inspection is based on
visual inspection and manual experience, which requires on-site observations in harsh en-
vironments, causing considerable damage to the health of the staff member; besides, solely
relying on workers’ experience often causes problems, such as missed inspections, making
it difficult to guarantee the quality of the steel plates [39]. Traditional non-destructive
detection is divided into eddy current detection, infrared detection and magnetic leakage
detection. Eddy current detection is suitable for detecting defects on the surface and lower
layer of the steel plate, which requires a more extensive current guarantee. Hence, it con-
sumes a lot of energy, and the surface of the steel plate must be at a constant temperature,
making it unsuitable for industry requirements [40]. Infrared detection adds induction coils
to the production process of industrial steel plates. If the steel billets pass by, the induced
current will be generated on the surface; if a defect is found, the current will increase, which
is an excellent way to detect defects. However, infrared detection can only be utilized in
products with lower detection standards, and fewer types of defects can be detected [41].
Magnetic leakage detection is based on a proportional relationship between the volume
of steel defects and the magnetic flux density. After calculating the density of magnetic
leakage, the defect location and area of the steel can be calculated; however, this detection
method is disadvantageous for surface detection [42]. As science and technology advances,
a machine vision detection technology is proposed, which uses lasers and charge-coupled
components to effectively detect the surface of steel plates after digitization.

3.2.2. Deep Learning Detection Technology

As deep learning technology advances continuously, it gradually presents apparent
advantages in image recognition and classification. CNNs can extract image features. The
detection ability of neural networks is improved by continuously increasing the number
of layers and network widths of CNNs [43]. Such an improvement can effectively avoid
subjectivity and inefficiency in the manual extraction process. Research on recognizing
weld defect images is varied; especially, deep learning technology processes and organizes a
single feature to quantify the abstract features according to the extraction principle, thereby
using these features to classify and recognize images [44]. Figure 2 shows the difference
between traditional machine learning and deep learning processes. Deep learning can
obtain high-dimensional image features from the input data, fit the features and finally
utilize the learning method of weights to increase the accuracy of classification prediction.
However, while analyzing welds of industrial steel plates, deep learning cannot learn
due to the lack of complete datasets; in addition, current research primarily focuses on
improving the weld recognition ability; however, a complete automatic detection system
has never been built, increasing the difficulty in actual industrial applications [45].
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3.3. Image Preprocessing
3.3.1. Image Denoising

Image processing is the basis for effective weld detection. Here, image preprocessing
aims to ensure that the image quality meets the requirements of deep learning. The weld
images, provided by some enterprises, are observed, revealing a problem that, currently,
some images often appear as dispersive white or black noise particles during digitization;
meanwhile, during the radiography process, the exposure intensity will also cause prob-
lems, such as image contrast and grayscale degradation [46]. Therefore, image denoising is
necessary. The typical image denoising methods include mean filtering, median filtering,
Gaussian filtering, bilateral filtering and wavelet filtering, among which median filtering
can effectively interfere with uniform pulses, enabling it to effectually maintain edge infor-
mation after processing. However, such processing will cause the gray level to decrease.
Gaussian filtering can process the details very well, but the images must conform to the
Gaussian function distribution. Bilateral filtering can retain the edge information; neverthe-
less, the processing of other noises is inexplicit. Wavelet filtering has a good time-domain
performance but a common processing effect on the frequency band [47]. Randomly, an
image during processing is chosen and processed by the above five denoising methods to
find the optimal processing method. Peak Signal-to-Noise Ratio (PSNR) and Mean Squared
Error (MSE) are employed for evaluation. Specifically, the equations are as follows:

PSNR = 10 log10(
2552

MSE
) (1)

MSE =

M
∑
1

N
∑
1
( f (i, j)− f0(i, j))2

MN
(2)

In Equations (1) and (2), 255 represents the maximum value of the image point color.
f (i, j) is the gray pixel value of the image after denoising, f0(i, j) is the gray pixel value of
the input image and MN is the image pixel.

3.3.2. Image Enhancement

In welds, unreasonably adjusting the window width will cause image contrast re-
duction. Especially, edges of the defects are usually difficult to recognize, affecting the
subsequent processing of the images. Therefore, image enhancement technology is em-
ployed to improve the contrast effectually [48]. First, images undergo grayscale processing;
a specific histogram is obtained after statistical analysis. Then, the processed image is
stretched according to its size to make its average gray value the segmentation standard
so that the average grayscale will increase after processing. Finally, a dual-peak gray
distribution image is obtained. The Sin function is used for nonlinear transformation and
image stretching, which is shown in Equation (3):

f (x, y) = 127
{

1 + sin
[

π f0(x, y)
b− a

− π(a + b)
2(b− a)

]}
(3)

In Equation (3), f (x, y) is the gray value after transformation, f0(x, y) is the gray value
before the transformation, a is the lowest gray value before the transformation and b is
the highest gray value before the transformation. The value 127 represents the median
value of the difference between the highest pixel value and the lowest pixel value, which is
calculated as a fixed constant.

The whole image preprocessing process is based on C++/Python and OpenCV on the
Visual Studio2013 platform.



Symmetry 2021, 13, 1731 7 of 17

3.4. Deep Learning Neural Networks
3.4.1. Convolution Neural Networks

The CNN is a useful supervised deep learning model. It is a feed-forward neural
network whose artificial neurons can respond to some surrounding units within the
coverage [49]. CNNs are widely applied to image recognition, including AlexNet, Visual
Geometry Group Nets (VGGNets) and other models that reduce the recognition error rate
of CNNs on a typical ImageNet dataset. Generally, deep learning models have at least
three hidden layers. As the number of hidden layers increases, the model’s parameters will
also increase, thereby increasing the complexity of the model, providing the possibility to
complete more complicated tasks. If a shallow model in which each layer of the network is
fully connected is adopted for image classification and recognition, this model will contain
many parameters. In the case of multiple hidden layers, the parameters contained in the
model will exhibit explosive growth, causing adverse impacts on the space occupation,
iterative calculation and convergence speed of the model. The hidden layers in CNNs can
significantly reduce the number of parameters in the model via weight sharing and sparse
connections, thereby increasing the training speed of the model [50]. Figure 3 shows the
structure of the CNN.
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In a CNN, the cross-entropy loss function for the classification error of the i-th sample
(xi, yi) is defined as:

Li = − ln esyi + ln ∑ esi (4)

The output of a single sample (xi, yi) after passing the network is f (x), and the
corresponding sample loss value is:

Li( f (x), y) = − ln f (x)y (5)

The backpropagation rule of the CNN updates the weight of each neuron, making
the overall error function of the model continuously decrease. The convolution process is
defined as follows:

xl
j = f ( ∑

i∈Mj

xl−1
i × kl

ij + bl
j) (6)

In Equation (6), l is the number of convolutional layers in the model, kl
ij is the number

of convolution kernels, bl
j is the additive bias, f is the activation function and Mj is the

input image. The convolutional collection layer is defined as:

xl
j = f (βl

jdown(xl−1
i ) + bl

j) (7)

In Equation (7), down(·) represents the data collection function, βl
j and bl

j represent
the product bias and additive bias, respectively, and f is the activation function.

3.4.2. Transfer Learning

TL can meet the end-to-end needs in practical applications with more expressive
features. It is a deep learning method that uses existing knowledge to solve problems
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in different but related domains. TL has become another popular research direction in
deep learning [51]. Compared with traditional machine learning methods, TL directly
improves the learning effect on different tasks, focuses on applying good source domain
task knowledge to different but related target problems, and enables computers to learn
by analogy without relying on big data for initial learning in every field. The training
of traditional machine learning models requires labeled data from various fields, while
data in different fields do not have TL performance on the same model. TL can utilize
existing knowledge to learn new knowledge. Figure 4 shows the structural comparison
between traditional machine learning and transfer learning. TL can organically utilize the
knowledge in the source domain to better model the target domain under the condition of
changes in data distribution, feature dimensions and model output conditions [52].
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3.5. Deep Learning-Based Image Defect Recognition Model

Based on the above questions, the model is divided into four processes. The first
process is establishing a crack defect dataset. The second process is building a deep learning
process based on the above dataset. The third process is using the improved CNN for data
learning and feature extraction. Finally, TL trains and classifies the corresponding images
based on the original VGG16 model.

(1) Deep learning process: The number of convolutional layers is 3, the size of the
convolution kernel is 5 × 5 and the depth is 6, 12 and 16, respectively. The initial weight of
each convolution kernel is a truncated customarily distributed random number with a mean
value of 0 and a standard deviation of 0.1. Each convolutional layer is composed of several
convolutional units, and the backpropagation algorithm optimizes the parameters of the
convolutional unit. More complex features are extracted iteratively by extracting different
features of the input. N represents normalization, which can constrain the convolution
result. E denotes the ELU activation function, which can de-linearize the calculation result.
P signifies the pooling layer, the size of its convolution kernel is set to 2× 2 and the moving
step size is 2. Both the convolutional layer and the pooling layer are filled with all zeros. FC
refers to the fully connected layer, and the number of nodes is reduced to 60 through two
fully connected layers. The designed CNN comprises five types of defects to be classified
and recognized. Hence, the number of output layer S is set to 5.

(2) CNN improvement: ReLU’s unilateral inhibition capability can make the neurons
in the network sparsely activate, thereby better mining relevant features, fitting training
data and solving the gradient exploding/vanishing problem. In the present work, an
improved ELU nonlinear activation function is adopted. ELU can integrate the advantages
of the Sigmoid and ReLU functions. While maintaining the unsaturation on the right
side of the function, it increases the soft saturation on the left side of the function so
that the unsaturated part can alleviate the gradient vanishing during model training.
Moreover, soft saturation can make the model more robust to input changes or noises.
The pooling process is one of the critical steps in the CNN; however, the classic pooling
model has some shortcomings in pooling domain feature extraction. Excessive noises
during image feature extraction caused by the pooling approach can result in difficulty in
optimal feature selection. In addition, the lack of selective importance extraction of each
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feature will also affect the final recognition effect. Hence, improvements can be made based
on classic pooling approaches. In the present work, an adaptive pooling approach that
comprehensively considers the pooling domain and feature distribution is adopted so that
the pooling model can select the optimal features under different feature distributions.

(3) TL process: The first step is model pre-training, performed on a large, challenging
image dataset. This dataset contains sufficient image data resources so that the VGG16
model can obtain the weights of each layer by training the source domain dataset. The
second step is model transfer. Based on model pre-training, its convolutional layer and
pooling layer parameters are retained as the frozen layer. The fully connected layer and the
input image size of the model are changed to adapt to the model input requirements and
defect recognition types. Afterward, the data are retrained, and finally, tasks of classification
and recognition are completed. The third step is model fine-tuning. This operation can
perform good fitting and extract image features during the training process, initialize the
model during the target domain training and utilize the backpropagation algorithm and
Stochastic Gradient Descent (SGD) algorithm to fine-tune and correct the model parameters
until the training task is completed or the training end condition is reached. Eventually,
a model with excellent generalization ability is obtained. Here, the SoftMax classifier is
adopted to classify and output the recognition results. The specific structure is presented
in Figure 5.
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3.6. Experimental Data and Performance Evaluation
3.6.1. Experimental Environment and Data

This experiment is based on the Linux Ubuntu 16.04 operating system, Inter (R)
Core (TM) I5-2400 Central Processing Unit (CPU) @3.10 GHz, using python language to
implement under the TensorFlow framework and Spyder platform of Anaconda. The
number of iterations is set to 250 according to the model accuracy and training time. The
SGD algorithm is adopted. The momentum parameter is 0.9, the Batch_Size is 20 and the
learning rate is 1 × 10−4. Table 1 shows the corresponding environment for the experiment.

Table 1. Experimental environment.

Software and Hardware Specific Configuration Information

Central Processing Unit Inter(R)-Core (TM) I5-2400
RAM DDR4 16 G

CPU Hertz 3.10 GHz
Operating system Ubuntu 16.04

Programming environment Python 3.5

The VGG16 model is employed for TL. The pre-trained model comes from the Ima-
geNet dataset, the world’s largest database for image recognition, containing 15 million
images and covering the images of all objects in life [53]. The image data in this work come
from the steel plate production line of an actual factory. The laser welding of carbon steel
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plates and stainless steel plates is studied and the appearance of these two types of steel
plates is inconsistent under the definition of the same defect type. Affected by the change
in welding environment, various welding defects will be produced in laser welding. A
total of 1030 original steel plate weld images were collected by an industrial camera, visual
light source and laser welding machine tool. Each original weld image is 5 million pixels
and each original weld image contains various defects. We mixed all these asymmetric
image data. Five different types of weld images can be obtained by cutting the original
image. Figure 6 illustrates the detailed information of some images. From left to right were
flawless, cracks, lack of fusion, lack of penetration and gas pores.
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3.6.2. Image Partition and Labeling

A total of 5200 usable weld defect images were obtained through image data en-
hancement, containing five types: gas pores, cracks, lack of fusion, lack of penetration and
flawless. These image data were stored in five folders according to the defect types, and
the file labels were set from 1 to 5, in turn. All data were divided into a training set, a
validation set and a test set by 8:1:1. The labels corresponding to the number of images in
each image dataset are summarized in Table 2. The image processing time was 20 s.

Table 2. Image data partition and labeling.

Type of
Defect

Gas Pores
(GP)

Flawless
(FL)

Lack of Fusion
(LOF)

Lack of
Penetration (LOP)

Cracks
(CK)

Training set 1200 1040 920 680 320
Validation set 150 130 115 85 40

Test set 150 130 115 85 40
Label 1 2 3 4 5

3.6.3. Model Performance Evaluation

Accuracy (ACC) is the comparison indicator of model performance evaluation, repre-
senting the proportion of processed samples correctly classified as positive samples [54].
The calculation of ACC is Equation (8), where R(u) is the number of correctly predicted
defect images and T(U) is the number of actual defect images. The algorithms selected
include Spatial Pyramid Pooling Networks (SPP-Net), Single Shot MultiBox Detector (SSD),
Region-CNN (RCNN), CNN, BPNN, and Recursive Neural Networks (RNN), totaling six
algorithms for comparative analysis.

ACC =
∑ u∈U |R(u) ∩ T(U)|

∑ u∈U |R(u)|
(8)

4. Results and Discussion
4.1. Image Processing Results of Weld Defects

Figure 7 shows the image effects and the quantization results processed by the filtering
methods. Median filtering can present a clear edge area of the steel plate defect, while
other denoising algorithms cannot. Furthermore, in all the images, especially in the fifth
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image, the highest PSNR reaches 50.31 dB, indicating that the effect of median filtering is
better than other methods.
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Figure 8 demonstrates the weld image and grayscale histogram before and after the Sin
function transformation. The gray value of the image after the Sin function transformation
increases significantly, and the contrast image is enhanced considerably, showing the
effectiveness of the image enhancement technology applied.
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4.2. Performance Comparison of Different Training Models

Figure 9 presents the comparison results of different training models’ performances.
As the amount of data increases, the defect detection performance of the model continu-
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ously improves, and the training set and the test set show the same trend, indicating the
correctness of this training process. The proposed CNN model presents the best perfor-
mance among different algorithm models, whose average ACC is above 92%, followed by
the RNN model because of its multiple input processes that can reduce the model loads.
The above results show that the weld defect detection and recognition model based on
deep learning technology has excellent performance.
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4.3. Comparative Experiment of Industrial Weld Defect Images

Figure 10 shows the experimental results of comparisons among industrial weld defect
images. As the number of convolutional layers increases, the performance of the model
decreases. The proposed model presents a higher ACC than traditional machine learning
algorithms under different defect types, showing excellent robustness. The performance
of the proposed weld detection algorithm is significantly improved. The highest defect
detection ACC reaches 98.75%, which effectively improves the automation degree of
industrial weld detection and recognition.
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Figure 10. Comparative experiment of industrial weld defect images. AC represents the original
number of steel plates; TD represents the results of using traditional machine learning algorithms;
A1–A4 represent the results using the VGG16 model for sufficient training, 12-layer training, 123-layer
training and 1234-layer training, respectively; B1–B5 represent practical problems such as pores,
cracks, lack of fusion, lack of penetration and flawless.

4.4. Results of Other Performance Indicators

Figure 11 shows the result curves of the model accuracy and over-fitting rate under
different experimental methods.
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The average accuracy and over-fitting ratio of 250 iterations of the model in various
experimental methods are shown in Figure 11; without_TF directly uses the first VGG16
model without training ImageNet datasets or learning how to migrate. Train_All means
to create the VGG16 model and improve all training and network parameters of different
layers without freezing the model through sufficient data training and migration training.
Frozen_Cx represents an experimental method that freezes the fine-tuning model of X-layer
training parameters of the heterogeneous migration model. The analysis in Figure 11
is a migration recognition task of the image dataset for the weld defect detection. The
without_TF method lacks enough data to train the model, the extraction ability and feature
representation are relatively low, the recognition efficiency is low, there is a serious over-
fitting problem, the performance is poor, and it has not been calculated.

Figure 12 shows the results of cross-entropy loss under different iteration times. When
the source domain model features and training parameters are fully mounted to fine-tune
the entire model, the learning ability of the target domain will be rapidly improved. Since
the adjustment process from the beginning to the end gradually refines the underlying
features of the original input, the feature expression ability between layers is more vital.
In that case, the abstract features of the image can be better integrated, presenting better
results. The more frozen convolutional layers there are, the lower the accuracy of the model,
and the higher the over-fitting ratio of the model.
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The results in Table 3 can be analyzed from two aspects: experimental methods and
types of defects. First, the test results are consistent with the results obtained from the
training and verification data regarding different experimental methods. When the source
domain model features and training parameters are fully mounted to fine-tune the entire
model, the model can provide better generalization ability, and the recognition result is
also the best. With the continuous increase in the number of frozen layers, the test accuracy
of the model has decreased, and the test accuracy of the weld inspection image has also
gradually decreased. Second, regarding different types of defects, the image test accuracy
of GP and FL is higher than that of other defects. The test accuracy of CK is the lowest due
to the small data amount. The test results for LOF and LOP images are not ideal because
their shape, size, color and other features are similar. During the training process, the
image features are prone to confusion, so errors are prone to occur during testing. Using
TL for small sample weld defect images can provide a better recognition effect regarding
the computing power and sample data volume.
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Table 3. Test set classification results.

Type of Defect GP FL LOF LOP CK ACC/%

CNN-Train_All 20 20 20 19 18 97
CNN-Frozen_C1C2 20 20 18 18 18 94

CNN-Frozen_C1C2C3 20 19 18 17 17 91
CNN-Frozen_C1C2C3C4 19 19 17 17 16 86

ACC/% 98.75 97.50 91.25 88.75 86.25 -

5. Conclusions

A deep learning-based weld defect detection and image defect recognition model is
proposed regarding the GP, FL, LOF, LOP and CK defects in industrial welding, and the
recognition accuracy of the model reaches 98.75%. The size of the whole model is 232 M,
and the test time of a single image input into the model is about 200 ms. The model uses
image denoising processing and enhancement to segment the target image. Cross datasets
are used regarding the insufficient training data in deep neural networks. This model
improves activation function and adaptive pooling. Regarding the recognition problems of
DNN on the weld defect image dataset, TL is employed to shorten the model training time
through simple adjustment and hyperparameter adjustment. This model can overcome the
shortcomings of traditional approaches. It provides strong robustness and high recognition
accuracy in the task of identifying weld defect images. Nevertheless, several shortcomings
are found. First, since there are no high-precision industrial sample datasets, if the images
of industrial weld defect samples can be utilized to build a high-quality database, the model
accuracy can be improved effectively. Second, given the increasing number of industrial
datasets, building more complex neural network models is necessary. This requires using
the Graphic Processing Unit (GPU) distributed optimization algorithms to improve the
efficiency of algorithm operation. Finally, although the content of TL is introduced, it is an
addition to CNNs. Therefore, the problem of sample appearance caused by TL needs to
be solved. In the future, these aspects will be researched and analyzed more deeply, in an
effort to help steel enterprises master the automated detection technology of weld defects,
get rid of technology monopoly and truly realize high-quality development.
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