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Abstract: Speech intelligibility is a crucial element in oral communication that can be influenced
by multiple elements, such as noise, channel characteristics, or speech disorders. In this paper, we
address the task of speech intelligibility classification (SIC) in this last circumstance. Taking our
previous works, a SIC system based on an attentional long short-term memory (LSTM) network,
as a starting point, we deal with the problem of the inadequate learning of the attention weights
due to training data scarcity. For overcoming this issue, the main contribution of this paper is a
novel type of weighted pooling (WP) mechanism, called saliency pooling where the WP weights
are not automatically learned during the training process of the network, but are obtained from
an external source of information, the Kalinli’s auditory saliency model. In this way, it is intended
to take advantage of the apparent symmetry between the human auditory attention mechanism
and the attentional models integrated into deep learning networks. The developed systems are
assessed on the UA-speech dataset that comprises speech uttered by subjects with several dysarthria
levels. Results show that all the systems with saliency pooling significantly outperform a reference
support vector machine (SVM)-based system and LSTM-based systems with mean pooling and
attention pooling, suggesting that Kalinli’s saliency can be successfully incorporated into the LSTM
architecture as an external cue for the estimation of the speech intelligibility level.

Keywords: speech intelligibility; LSTM; weighted pooling; attention; saliency; auditory saliency model

1. Introduction

Speech intelligibility refers to the comprehensibility of speech and its deterioration can
drastically hinder the communication process between speaker and listener. The speech
intelligibility level (SIL) may deteriorate due to a variety of reasons, such as the presence
of environmental noise, channel distortions, or physiological impairments in the human
speech production system caused by certain sicknesses or other causes that produce the
so-called disordered or pathological speech.

This work focuses on the task of speech intelligibility classification (SIC) for dysarthric
speech that is a particular case of pathological voice. The term dysarthria refers to a speech
disorder caused by the impaired movement of the speech muscles [1], and is character-
ized by vocal harshness, nasality, deficient articulation, unclear coarticulations between
phonemes, excessive phoneme duration, and disturbances in the intensity, pitch, and elocu-
tion speed [2,3]. It is a typical symptom and consequence of several degenerative illnesses,
such as amyotrophic lateral sclerosis, Huntington’s Disease, or Parkinson’s Disease.

The assessment of the SIL has multiple practical applications, such as the monitoring
of patients following logopedic or other medical therapies, and the aid to diagnosis and
the tracking of the progression of several illnesses, such as the aforementioned Parkinson’s
Disease or the Alzheimer Disease.
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The most commonly used method for judging the SIL is based on subjective tests
where specialists listen to several words uttered by the patient and annotate the percentage
of words correctly understood, obtaining the so-called intelligibility score. However, this
is a time-consuming task and is hampered by the hearing skills and subjective criterion
of the clinicians [4]. For these reasons, in recent years, the automatization of this task has
attracted the attention of numerous researchers with the aim of obtaining a less variable
and reproducible measure for the speech intelligibility.

Many of the SIC systems proposed in the literature are based on classical machine learn-
ing algorithms, such as, for example, linear discriminant analysis [3,5,6], support vector ma-
chines (SVM) [7–9], or random forests [10], that use, as input, different types of hand-crafted
features, such as the average of the mel frequency cepstrum coefficients (MFCC) [8,11], the
average of the mel-frequency delta-energy coefficients [12], the intensity and frequency
of the maximum values of the modulation spectrum [5], the quotient between low and
high modulation energies [3,6], the average energy of the modulation spectrogram [8] or
features derived from the output of an automatic speech recognizer [9,13].

More recently, deep learning (DL) methods have been proposed for SIC as they have
been proven to be very effective in several audio and speech-related tasks, such as acoustic
event detection [14], automatic speech recognition [15], speech emotion recognition [16–18],
cognitive load classification from speech [19,20], or deception detection from speech [21].
Recent studies propose the use of dense networks fed by features derived from the de-
composition of log-mel spectrograms in temporal and frequency basis vectors [22], the
use of convolutional neural networks and different spectro-temporal representations as
input [23], or long short-term memory (LSTM) networks with MFCC as feature vectors [24]
for multilevel or binary speech intelligibility classification.

LSTMs can be integrated with weighted pooling (WP) mechanisms with the aim of
obtaining a compact representation of the whole utterance, that is fed to the classifier itself.
Attention pooling [16,25,26] is a recently proposed WP scheme that, incorporated into the
conventional LSTM, is able to perform a better modeling of the input sequences by learning
the relevance scores (weights) of the temporal frames, and by modulating the contribution
of each temporal frame to the final output as a function of its score.

Our previous works on SIC, where we addressed the problem of estimating the
speech intelligibility level of a dysarthric patient, can be placed in this latter approach.
In [8], we proposed a SIC system based on per-frame log-mel spectrograms and attention
LSTM networks that significantly outperformed a SVM-based system with hand-crafted
features. Furthermore, in [11] we showed that this architecture is also suitable for the
modeling of per-frame modulation spectrograms [27] and that the combination of log-
mel and modulation spectrograms into an attentional LSTM framework outperforms the
corresponding individual systems.

The main weakness of our previous research is that the lack of training data (typical
in this kind of medical applications) prevents the use of complex attention models as it is
not feasible to properly train them. For this reason, we were restricted to using simpler
models, and were unable to exploit all the possibilities of this technique. For overcoming
this issue, in this paper, we study the alternative of using external sources of information to
establish the weights of the WP stage of the LSTM-based system instead of learning them
during the network training. In particular, we propose to compute these weights from the
so-called saliency that is produced by an external auditory saliency model. This approach
is called saliency pooling. In [19], we presented preliminary experiments on cognitive load
estimation from speech using a system based on a similar strategy. Here, we deepen into
this approach and we apply it to the task of SIC, what, to the best of our knowledge, has
not been studied before.

From a more general psychological perspective, saliency and attention are related
concepts. Attention refers to a cognitive function that prioritizes particular stimuli over
others [28], allowing persons to choose the most important events in their surroundings in
order to concentrate their cognitive and sensory capabilities on them. It is clear that there is
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a conceptual symmetry between the human attention mechanism and the aforementioned
attention models that are integrated into DL-based systems [26]. When attention is modu-
lated by bottom-up, sensory-driven factors, it is denoted as saliency. Particularizing to the
case of audition, the auditory saliency mechanism is able to detect the sounds that constitute
conspicuous or salient events of a complex acoustic scene, by focusing on acoustic cues,
such as intensity or timbre [29].

In recent years, several models of auditory saliency have been proposed [30–34].
Among them, in this work, we have considered the auditory saliency model developed
by Kalinli et al. [35–37] as it is inspired on the central auditory system and has been
successfully tested for prominent syllable detection in speech. As demonstrated in [38],
listeners can perceive a phoneme or syllable to be more salient than the others due to
several circumstances, such as the stress, intensity, or coarticulation between adjacent
phonemes. As aforementioned, speech intelligibility can be reflected in some way in these
phenomena [2,3], so our hypothesis is that Kalinli’s model can help to detect the salient
parts of speech that are more relevant to the determination of the comprehensibility level
of an utterance, and, therefore, it is feasible to use it as a kind of weighted pooling model
inside our LSTM-based SIC system.

This research aims to improve our previously developed attention LSTM-based SIC
system by addressing the problem of the inadequate learning of the attention weights due
to training data scarcity. This work is supported by the hypothesis that, in these situations,
it is more effective to introduce external cues to the LSTM architecture in order to obtain
these weights. In this sense, the main contribution of this paper is the so-called saliency
pooling where the WP weights are derived from the saliency values produced by an external
auditory saliency model, in particular, the Kalinli’s model. This approach can be seen as
a method for emphasizing the more relevant frames of the input features (in this case,
log-mel spectrograms) that can be easily integrated into the LSTM framework.

The remainder of the document is structured as follows: Section 2 describes the dataset
utilized in the experiments, the auditory saliency model and the proposed LSTM-based
systems for speech intelligibility classification. In addition, it contains the experimental
protocol and the evaluation measures used for the assessment of the different systems.
Sections 3 and 4 include, respectively, the main results and the corresponding discussion
and future work. Section 5 closes the document with some conclusions.

2. Materials and Methods
2.1. Database

In this work, we have utilized the UA-speech database [39] that contains speech
uttered by 11 male and 4 female patients with different levels of dysarthria. Each participant
pronounced 765 isolated words of several complexities (digits, radio alphabet letters,
commands, common short words, and uncommon long words). The audio files were
collected with an array of 7 microphones and a sampling frequency of 16 KHz. Only
signals acquired with the 6th microphone have been used in the experiments. As several
files were discarded due to errors in the recording process, the total number of available
exemplars is 11,435.

The dataset was manually labeled in terms of the intelligibility score by medical staff
who performed several listening tests and annotated the percentage of understood words
for each participant. As the values of these original scores were in the range from 0 to
100, they were transformed to the three intelligibility levels considered in this study: low
(scores from 0 to 33), medium (from 34 to 66), and high (from 67 to 100).

2.2. Auditory Saliency Model

In order to compute the saliency values of the speech signals, in this work we have
used the Kalinli’s model [35–37], as implemented in [40]. Its simplified block diagram is
represented in Figure 1.
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Figure 1. Simplified block diagram of the Kalinli’s auditory saliency model.

The process is as follows. First, a two-dimensional (2D) spectro-temporal representa-
tion of the speech signal, called mel spectrogram, is computed using an analysis Hamming
window of 32 ms length with an overlap between adjacent windows of 96% (i.e., the frame
period is 1.25 ms) and an auditory filterbank composed of 256 triangular mel-scaled filters.
The mel scale is a frequency transformation that mimics the sensitivity of the human
auditory system at different frequencies. The dimension of the resulting mel spectrogram
is nI

F × nI
T , where nI

F is the number of mel filters (256 in this case) and nI
T is the number of

acoustic frames, being each of them equivalent to 1.25 ms.
This mel spectrogram is further processed by extracting four features (intensity, fre-

quency, and temporal contrast and orientation). For doing that, a set of receptive filters
that simulates the analysis carried out in the primary auditory cortex [41] is utilized. These
features are computed at multiple scales, each being a decimated version by a factor 2 of
the previous one. Then, center-surround differences are computed and the different scales
are combined resulting in a set of conspicuity mapsM ∈ {I ,F , T ,O}, where I , F , T , O
denote, respectively, the intensity, frequency contrast, temporal contrast, and orientation
conspicuity maps. As the number of scales is four, the final dimension of these maps is 1:8
of the original size of the input mel spectrogram. Therefore, the dimension ofM is nF × nT ,
where nF = nI

F/8 = 32 and nT = nI
T/8, i.e., the frame period is now 1.25 ms × 8 = 10 ms.
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These maps are normalized by using an iterative and non-linear algorithm
N (.) [35–37] that emphasizes their most prominent areas, and summed up, as follows,

S = N (I) +N (F ) +N (T ) +N (O) (1)

yielding the final 2D auditory saliency map S with size nF × nT .
The weights that are incorporated as an external source of information into the WP

stage of the LSTM-based SIC system are derived from both, the conspicuity and saliency
maps, as described in Section 2.3.2.

2.3. Many-to-One LSTM Networks

Following our previous works on speech intelligibility classification [8,11], the SIC
system is based on long short-term memory networks [42,43].

In this case, LSTM works in a many-to-one mode because in the SIC task a single
output (intelligibility level) must be assigned to the whole input sequence. Specifically, in a
first step, LSTM processes a T-long input sequence X = {x1, ..., xT}, transforming it into a
T-long output sequence Y = {y1, ..., yT}, and in a second step, Y is summarized in a single
value Z by means of a certain weighted pooling (WP) mechanism [16,44]. Finally, Z is the
input to the classifier itself.

The WP stage is implemented as the linear combination of the frames of the LSTM
output sequence, according to the following expression,

Z =
T

∑
t=1

αtyt (2)

where α = {α1, ..., αt, .., αT} is the set of weights that determines the contribution of each
LSTM frame yt to Z, and is computed following a certain criterion, that, at least in theory,
should be related to the relevance of the frame to the classification task.

Two relevant methods of WP are mean pooling (MP), where the weights are the same
for all frames and equal to 1/T [17], and attention pooling (AP) that is going to be described
in next paragraphs together to our approach, denoted as saliency pooling (SP).

2.3.1. Attention Pooling

The rationale behind this strategy is that not all the LSTM frames convey the same
useful information for the classification task in hand and, therefore, the more relevant ones
should be emphasized by means of the assignment of weights with high values. In contrast,
non-relevant frames should be diminished or even ignored, so the values of the correspond-
ing weights should be small. This approach has been proposed with great success in other
automatic learning problems that deal with temporal sequences [14,16,17,19–21,25,45], in-
cluding our previous works on the estimation of the intelligibility level [8,11].

The availability of large amounts of training data makes feasible to utilize complex
attention models, as those proposed in [16,44]. However, as in our case the training data
are scarce, we have adopted the strategy proposed, among others, by [17]. This is a simple
model, and for that, it is more appropriate for this kind of scenarios. This way, the attention
weights are computed through the following Equation:

αt =
exp(utryt)

∑t=T
t=1 exp(utryt)

(3)

where tr stands for the transpose operation, and u is a learnable attention parameter that
is computed during the training process of the system. Note that Equation (3) involves
a softmax transformation, in such a way that the summation of the sequence weights is
equal to one.
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2.3.2. Saliency Pooling

Attention and saliency pooling share the same basic hypothesis about the uneven im-
portance of each temporal frame. However, they differ in the way the weights are computed.

As aforementioned, the training data scarcity makes the use of sophisticated attention
models inappropriate. Our assumption is that, in this situation, the attentional mechanism
described in Section 2.3.1, even being simple, is not going to be properly learned during the
training process and, as a consequence, it should be more adequate to obtain the weights
from external sources of information.

As pointed out in Section 2.2, in the SP approach, the conspicuity and saliency maps
produced by the Kalinli’s auditory saliency model are considered as external cues for
finding out the relevance score for each temporal frame. Our hypothesis is that frames
containing relevant information for the determination of the utterance intelligibility level
can be identified with the help of this saliency analysis. This way, a frame with a large
conspicuity or saliency value should also present a large weight into the WP scheme.

We have computed five different variants of saliency weights (note that throughout
this paper, all the weights derived from the Kalinli’s auditory saliency model are referred
to as saliency weights, regardless of whether they have been computed from conspicuity
or saliency maps.). The first four ones are derived from the four conspicuity maps (I ,
F , T , and O), and are referred to as Intensity, Frequency Contrast, Temporal Contrast, and
Orientation weights, respectively. The last set is computed from the saliency map (S) and is
denoted as Global Saliency weights.

The process for obtaining any of these sets of weights is as follows. Firstly, as conspicu-
ity and saliency maps are 2D representations and the weights are unidimensional temporal
signals, these maps are summed across frequency channels for each time instant [46]. Sec-
ondly, the resulting vectors are standardized at utterance-level to mean zero and standard
deviation one, obtaining a saliency signal of length T, SS = {ss1, ..., sst, .., ssT}. Finally, the
saliency weights α are obtained by applying the softmax transformation on the saliency
signal, using the following Equation:

αt =
exp(sst)

∑t=T
t=1 exp(sst)

(4)

Note that, as in the case of the attention weights described in Section 2.3.1, the saliency
weights also add up to one.

2.4. Speech Intelligibility Classification System

Figure 2 shows the block diagram of the SIC system developed in this work, whose
main stages are described in next subsections.

Masking LSTM (64) Dense (25) Dense (3)
Intelligibility

level
Speech 
signal

LSTM Module Fully Connected Module

Z
Dense (32)

X Weighted 
Pooling

Y

REFERENCE SYSTEM

Attention-Pooling

a

OUR APPROACH
Saliency-Pooling

(weights derived from 
Kalinli’s model)

Log-mel
spectrogram 
computation

Feature Extraction

XS

Figure 2. Block diagram of the speech intelligibility classification system.
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2.4.1. Feature Extraction

The input to the SIC system consists of log-mel spectrograms, a kind of 2D speech
representations that have been previously used for this task [8,11,21], and other applications
related to speech and audio processing, such as depression detection [47], deception
detection [21], or sound classification [48].

Log-mel spectrograms are computed in a similar way to the mel spectrograms de-
scribed in Section 2.2, but in this case a 20 ms Hamming window with a 10 ms overlap is
used. In addition, the outputs of the auditory filterbank are later converted to a logarithmic
scale. The Python’s package LibROSA [49] is utilized for this purpose.

Then, for each utterance, these features are standardized to mean zero and variance
one, yielding a normalized sequence XS whose dimension is nF × T, where nF and T are,
respectively, the number of mel filters (32 in this case) and speech frames. These acoustic
frames are extracted every 10 ms, matching the frame period of conspicuity and saliency
maps, and saliency signals).

To optimize the computational resources required by LSTM networks, the input se-
quences must be of the same duration. For this reason, taking into account that more than
95% of the speech signals are shorter than 7 s, a maximum length of L = 700 frames was es-
tablished (see [8] for details). Sequences longer than this quantity were cut, whereas shorter
ones were completed with dummy values that are discarded in subsequent computations.

2.4.2. LSTM and Fully Connected Modules

The LSTM module is composed of a masking layer that guarantees that the masked
values of the padded input sequences XS are not utilized in subsequent processes (see
Section 2.4.1), a dense layer of 32 neurons and a LSTM layer with 64 hidden units connected
to a weighted pooling step. As mentioned before, two different techniques for WP have
been tested: attention pooling and our approach, saliency pooling.

The WP output goes into the fully connected module, that is composed of a dense
layer of 25 neurons with a dropout of 0.33 in order to avoid over-fitting during the network
training, and a final dense layer with a sigmoid activation function. This last layer has 3
nodes as the number of possible intelligibility categories is also 3 (low, medium, and high).

2.5. Experimental Protocol and Assessment Measures

All the tested models were built with the Python’s packages Tensorflow [50] and
Keras [51]. These systems were trained with the Adam optimizer and a categorical cross-
entropy loss function with the following values of the learning rate, the batch size and the
maximum number of epochs: 0.0002, 32, and 50.

We used the same experimental protocol as in our previous work [11], consisting of a
subject-independent 5-fold cross validation. Specifically, the database was split into five
balanced groups. In each one of the five sub-experiments, three groups composed the
training set, whereas the remainder two groups were used as, respectively, the validation
and testing sets. These three sets were disjoint in the sense that a speaker was included in
only one of them. This way, it was avoided that the systems learned the speaker’s identity
instead of his or her comprehensibility degree. Results corresponds to the average of these
five sub-experiments.

For the systems assessment, we adopted the accuracy or classification rate per speech file
as evaluation metric. It is defined as the ratio between correctly classified audio recordings
and the total amount of test files. As each experiment was repeated 20 times, results
included in Section 3 correspond to the average and standard deviation of the classification
rate across these 20 experiments.

3. Results

Table 1 contains the mean and standard deviation of the accuracies obtained
with the LSTM-based systems with the two weighted pooling schemes
studied in this work: attention pooling and the five variants of saliency pooling. For
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comparison purposes, the accuracy obtained by the LSTM-based system with mean pool-
ing is also reported. Note that MP can be considered as a special case of WP where the
weights of all temporal frames are equal, i.e., all the frames are assumed to be evenly
relevant to the task. In addition, for completeness, the outcome achieved by a traditional
machine learning algorithm (in particular, a SVM) that uses the average of the MFCC as
input is also included. More details about the implementation of this last system can be
consulted in our previous work [11]. Moreover, a set of preliminary experiments were
performed where conspicuity/saliency maps were directly fed to the LSTM system instead
of log-mel spectrograms. Results were worse than in the case of the baseline LSTM system
with log-mels and AP and, for brevity reasons, they have not been included here. Any case,
this outcome suggests that conspicuity/saliency maps do not carry out enough information
for the SIC task by themselves, being more adequate the use of the SP approach proposed
in this work, as shown in this Section.

Figure 3 shows the mean accuracies achieved by the LSTM-based architectures as-
sessed in this study, and the corresponding 95% confidence intervals. For a better visual-
ization, the SVM-based system is not included in this graph.

Firstly, as expected, all LSTM-based systems achieve better classification rates than
the SVM-based one. This result confirms our previous findings related the comparison
between traditional machine learning and deep learning techniques [11] for the SIC task.

Secondly, focusing on the different WP schemes, mean pooling achieves the worst
performance. Attention pooling produces better results than this basic approach, since it
allows the system to automatically learn the speech frames that contribute the most to
the determination of the intelligibility level of the utterance. Nevertheless, this strategy
does not seem effective enough as it is outperformed by all the variants of saliency pooling,
where the relevance score of each temporal frame is estimated from an external information
source, that in this case is the Kalinli’s auditory saliency model. In addition, the differences
in performance between attention pooling and saliency pooling are statistically significant.

Thirdly, as for the comparison between the different SP techniques, it can be observed
that the classification rates achieved by Intensity, Frequency Contrast, and Orientation are
very similar, whereas Temporal Contrast produces significantly better results than these
three former variants.

Finally, the best system is Global Saliency, where the weights of the temporal frames
are computed from the saliency map that is a linear combination of the four conspicuity
maps. In particular, Global Saliency obtains a relative error reduction of 8.10% with respect
to Temporal Contrast, of 20.34% with respect to attention pooling, of 27.70% with respect to
mean pooling, and of 57.56% with respect to SVM.

Table 1. Mean and standard deviation of the classification rates (%) obtained with the LSTM-based system and different
WP schemes. Results achieved by a SVM-based reference system are also shown for comparison purposes.

System WP Scheme Type of Saliency Accuracy [%]

SVM [11] - - 41.68± 0.85

LSTM Mean Pooling - 65.77± 0.47
LSTM Attention Pooling - 68.93± 0.35

LSTM Saliency Pooling Intensity 70.80± 0.61
LSTM Saliency Pooling Frequency Contrast 71.11± 0.59
LSTM Saliency Pooling Temporal Contrast 73.07± 0.51
LSTM Saliency Pooling Orientation 71.26± 0.43
LSTM Saliency Pooling Global Saliency 75.25± 0.52
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Figure 3. Average classification rates (%) and the corresponding 95% confidence intervals for the
different LSTM-based speech intelligibility classification system with different WP schemes.

4. Discussion

Results corroborate the main hypothesis of this paper that points out the feasibility of
using an auditory saliency model, the Kalinli’s model, to determine the frames conveying
the most relevant information about the intelligibility level of an utterance, in such a way
that the saliency signal can be incorporated as an external cue into the weighted pooling
stage of a LSTM-based system for the SIC task.

In order to gain more insight into the performance of the proposed LSTM-based
systems, the behaviour of the auditory saliency model and the SP mechanism is illustrated
in the next example.

Figure 4 shows the conspicuity and saliency maps produced by the Kalinli’s model
over an utterance of low intelligibility belonging to the UA-SPEECH database. This speech
signal consists of a hesitation between 0.5 s and 1 s and the word “jowls” between 1.6 s
and 2.5 s. In particular, Figure 4a represents from top to bottom, the mel spectrogram,
the Intensity and the Frequency Contrast conspicuity maps, whereas Figure 4b depicts
the Temporal Contrast and Orientation Conspicuity maps, and the saliency map. On the
one hand, it can be observed that Intensity, Frequency Contrast, and Orientation maps are
similar, whereas the Temporal Contrast one presents a different structure, being the more
conspicuous regions of this map mainly located in the coarticulations (around 1.6 s and
2.5 s). In addition, the four conspicuity maps present a certain degree of relevant regions
placed in the hesitation event, although it is not a proper speech sound. On the other hand,
the saliency map is more abrupt, exhibiting a smaller number of salient regions, all of them
belonging to the region where the word “jowls” is located. Note that, in the remaining
parts of the utterance, including the hesitation event, there is no salient regions. This fact is
due to the normalization algorithm applied on the individual conspicuity maps, prior to
their combination to build the final saliency map, that completely removes areas with very
low conspicuity values.

Figure 5a,b show the waveform, attention pooling, Intensity, Frequency Contrast,
Temporal Contrast, Orientation, and Global Saliency weights corresponding to the same
utterance as in Figure 4. Additionally, mean pooling weights are depicted for comparison
purposes. As a general observation, it can be seen that the AP and SP weights vary
significantly with time, whereas the MP ones are constant, suggesting that the information
about the intelligibility level of an utterance is regionalized and as a consequence, it seems
crucial to detect the relevant frames to the SIC task and emphasize their contribution.

As for the comparison between the AP and SP mechanisms, it can be observed that
the former assigns large weights to the areas corresponding to the hesitation event and the
noise situated at the end of the word, that are not proper speech sounds and, therefore,
they should not be taken into account, whereas the SP weights are smaller or even zero in
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these regions. This observation might justifies the fact that the results obtained by AP are
worse than those achieved by SP.

Regarding the different SP variants, SP weights exhibit the same trends as the cor-
responding conspicuity and salience maps represented in Figure 4. Again, Intensity,
Frequency Contrast, and Orientation weights are similar and they mainly spread over the
speech sound segment. However, Temporal Contrast weights are more peaky and focus
mainly to temporal transitions, such as coarticulations, that are known to carry information
about the utterance intelligibility level [2,3]. This fact explains the better performance
of Temporal Contrast over Intensity, Frequency Contrast, and Orientation SP variants.
Any case, all these methods assign small non-zero relevance scores to the hesitation and
background noise events.

In contrast, Global Saliency weights combine the detection capabilities of Temporal
Contrast SP with the ability of entirely discarding frames corresponding to non-speech
sounds. It is very plausible that this is the reason why Global Saliency SP is the method
that produces the best results.
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Figure 4. Conspicuity and salience maps obtained by applying the Kalinli’s model on an utterance with low intelligibility.
(a) from top to bottom: Mel spectrogram, Conspicuity map (Intensity), Conspicuity map (Frequency Contrast); (b) Conspicu-
ity map (Temporal Contrast), Conspicuity map (Orientation), and Saliency map. This speech signal consists of a hesitation
between 0.5 s and 1 s and the word “jowls” between 1.6 s and 2.5 s.



Symmetry 2021, 13, 1728 11 of 15

(a) (b)

0 0.5 1 1.5 2 2.5 3

-0.5

0

0.5

x(
t)

0 0.5 1 1.5 2 2.5 3
2.06

2.1
2.14
2.18

(t)

10-3

Attention Mean

0 0.5 1 1.5 2 2.5 3

2.1

2.2

2.3

(t)

10-3

Intensity
Mean

0 0.5 1 1.5 2 2.5 3
t (s)

2.1

2.2

2.3

(t)

10-3

Frequency
Mean

0 0.5 1 1.5 2 2.5 3

-0.5

0

0.5

x(
t)

0 0.5 1 1.5 2 2.5 3
2.1

2.3

2.5

(t)

10-3

Temporal
Mean

0 0.5 1 1.5 2 2.5 3

2.1

2.2

2.3

(t)

10-3

Orientation
Mean

0 0.5 1 1.5 2 2.5 3
t (s)

2.2
2.4
2.6
2.8

(t)

10-3

Global Saliency
Mean

Figure 5. Attention pooling and saliency pooling weights for an utterance with low intelligibility. (a) from top to bottom:
Waveform, Attention weights, Saliency weights (Intensity), Saliency weights (Frequency Contrast); (b) Waveform, Saliency
weights (Temporal Contrast), Saliency weights (Orientation), Saliency weights (Global Saliency). Mean pooling weights
are also depicted for comparison purposes. This speech signal consists of a hesitation between 0.5 s and 1 s and the word
“jowls” between 1.6 s and 2.5 s.

Limitations and Future Research

The automatic classification of the speech intelligibility level is a challenging task, even
for humans, for several reasons. Firstly, it depends on the phonetic characteristics of the
utterances used for measuring the intelligibility level (short, long, highly confusable words,
etc.). Secondly, in the case of subjective tests carried out by specialists, the intelligibility
assessment is influenced by the degree of familiarity with disordered speech experimented
by the listener and his or her hearing skills. Thirdly, the presence of background noise
in the recordings can alter the perception of the speech, making even more difficult its
comprehensibility. Fourthly, the limited amount of data in the available datasets and its
scarce diversity with respect to the distribution of intelligibility scores, age and gender
directly affects the quality of the machine learning-based systems developed for this
task [8,9].

All these elements cause that the SIC systems performance is far from optimal, giving
place to new opportunities of research in this field. Specifically, for further work, we plan to
study the selection of the optimum set of words for automatic intelligibility measurement,
taking as starting point both, the analysis of the classification errors and the taxonomy
of the salient areas detected by the auditory saliency model. Furthermore, taking into
account that collecting and annotating new recordings for this task is very tough, we will
study the more appropriate data augmentation methods for alleviating the problem of data
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scarcity. In addition, we will explore the use of new speech representations, such as the
deep features derived from the decomposition of log-mel spectrograms in temporal and
frequency basis vectors proposed in [22], and their combination with the saliency pooling
LSTM-based model.

5. Conclusions

In this study, we have expanded our previous works about speech intelligibility
classification based on attention LSTM networks. Specifically, we have addressed the
problem of the inadequate learning of the attention weights due to training data scarcity.
In this sense, our main contribution is a novel type of weighted pooling mechanism, called
saliency pooling that is inspired on the symmetry between the human auditory attention
mechanism and the fundamentals of the attention models integrated into deep learning
networks. In this novel approach, the WP weights are not automatically learned during the
training process of the network, but are obtained from an external source of information,
the Kalinli’s auditory saliency model. The proposed technique can be seen as a method for
emphasizing the more important frames of the log-mel spectrograms regarding the SIC
task, that can be successfully incorporated into the LSTM architecture.

We have proposed five different variants of saliency pooling, four of them derived
from the four conspicuity maps produced by the Kalinli’s model and the fifth one computed
from the global Kalinli’s saliency map. The different systems have been assessed on the
UA-speech dataset that comprises speech uttered by subjects with several dysarthria levels.
All the systems with SP significantly outperform a traditional machine learning method (in
particular, a SVM), a LSTM-based system with mean pooling and a LSTM-based system
with attention pooling. These results show that saliency can be successfully incorporated
into the LSTM architecture as an external cue for the estimation of the speech intelligibility
level. Moreover, the system that achieves the best results is that it uses the global saliency
weights. In particular, this model obtains a relative error reduction of 57.56% with respect
to SVM, of 27.70% with respect to mean pooling, and 20.34% with respect to attention pooling.
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Abbreviations
The following abbreviations are used in this manuscript:

2D Two dimensional
AP Attention pooling
DL Deep learning
LSTM Long short-term memory
MFCC Mel frequency cepstrum coefficients
MP Mean pooling
SP Saliency pooling
SIC Speech intelligibility classification
SIL Speech intelligibility level
SVM Support vector machine
WP Weighted pooling
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