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Abstract: The displacement and stress function fields of straight dislocations and lines forces are
derived based on three-dimensional anisotropic incompatible elasticity. Using the two-dimensional
anisotropic Green tensor of generalized plane strain, a Burgers-like formula for straight dislocations
and body forces is derived and its relation to the solution of the displacement and stress function
fields in the integral formalism is given. Moreover, the stress functions of a point force are calculated
and the relation to the potential of a Dirac string is pointed out.

Keywords: anisotropic elasticity; dislocations; body forces; Green tensor; Burgers formula

1. Introduction

Anisotropic elasticity is an important theory for deformed bodies, which can be used
for three-dimensional and two-dimensional problems. Dislocations and line forces are
important problems of anisotropic elasticity for many applications in material science. In
particular, the topic of dislocations in anisotropic elastic media is of high relevance (see,
e.g., Refs. [1–3]). In two-dimensional (2D) anisotropic elasticity, the displacement and stress
function fields of straight dislocations and straight line forces were derived by Stroh [4,5]
using the so-called Stroh formalism (see also [3]) and by Asaro et al. [6,7] using the so-
called integral formalism (see also [2,8]). However, the integral formalism was originally
derived from the Stroh formalism by Barnett and Lothe [9]. In two dimensions, infinitely
long straight dislocation lines with Burgers vector b and body forces of strength F, and the
corresponding field quantities, displacement u and stress function vector Φ, are treated
by the so-called “six-dimensional integral theory”, developed by Barnett and Lothe [9].
The integral formalism connects with the eigenvectors and eigenvalues of the previously
developed theories of Lekhnitskii [10] and Stroh [4] (see also [2,3,8,11]). In anisotropic
elasticity, the integral formalism provides suitable expressions for the numerical modelling
and implementation of line defects. Many examples of the integral formalism can be found
in the book of Ting [3]. For instance, the displacement field of a straight dislocation with
the direction normal to the basal plane of a hexagonal crystal was derived by Kirchner and
Bluemel [12] using the integral formalism. An interesting duality between dislocations and
line forces was pointed out by Ni and Nemat-Nasser [13]. Using the integral formalism,
the outstanding problem of line defects in the (110)-plane of a cubic crystal was solved by
Wu and Kirchner [14].

In three-dimensional (3D) anisotropic elasticity, Lazar and Kirchner [15] found the
anisotropic Burgers formula which is the solution for the displacement field u for a given
dislocation density tensor α like for a dislocation loop and also the formula for the stress
function tensor Φ for a given dislocation density α. In particular, the plastic distortion βP

of a dislocation loop gives rise to the solid angle in the Burgers formula. The 3D inverse
Fourier transform of the Green tensor employed leaves over to 1-D integration over the unit
circle. In 3D, there seems to be no particular advantage in putting together the dislocation
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density tensor α and the body force vector f , and displacement vector u and stress function
tensor Φ, into aggregates. Such manipulation is, however, necessary for the generation of
2D solutions from 3D ones. It will be shown that the 2D solutions can be derived from the
3D framework in a straightforward manner based on corresponding 2D Green functions.
One arrives at the level of two-dimensional Fourier transforms, which, when transformed
back to real space, give the equations of the integral formalism based on the inverse Fourier
transform of the 2D Green functions.

In this work, we show how the integral form of the displacement field and stress
functions of straight dislocations and line forces can be derived directly from the 3D
framework given by Lazar and Kirchner [15]. We show that the integral formalism is
nothing but a result of the inverse Fourier transform of the Green tensor and the F-tensor.
In fact, the integration of the angle φ, which is the elementary solid angle on the unit circle
in the Fourier space, cannot be carried out and gives rise to the φ-integral expressions of
the integral formalism. Therefore, the φ-integration is the remnant of the inverse Fourier
transform in polar coordinates in anisotropic elasticity, a fact which is blurred in the original
formulation of the integral formalism.

2. Basic Equations of Incompatible Elasticity with Dislocations and Body Forces

The basic equations of 3D anisotropic incompatible elasticity, in the presence of a body
force vector f and a dislocation density tensor α, are given by (see, e.g., Refs. [16–20])

∂jσij = − fi , (1)

and

εjkl∂kβil = αij . (2)

Here, ∂j denotes the partial derivative with respect to the spatial coordinate xj.
Equations (1) and (2) represent the force equilibrium equation and the incompatibility
condition in the presence of dislocations, respectively. The force equilibrium Equation (1)
is a fundamental field equation in the linear elasticity theory of body forces. The incom-
patibility condition (2) is a fundamental field equation of the linear continuum theory
of dislocations. The stress tensor σ and the elastic distortion tensor β are related by the
Hooke law

σij = Cijkl βkl , (3)

where Cijkl is the fourth-rank tensor of elastic constants. The tensor Cijkl possesses the
symmetry properties:

Cijkl = Cjikl = Cijlk = Cklij . (4)

In Equations (3) and (4), it can be seen that the stress tensor σ is a symmetric tensor,
whereas the elastic distortion tensor β is an asymmetric tensor. However, only the sym-
metric part of the elastic distortion tensor provides a contribution to the symmetric stress
tensor via the Hooke law (3).

Both Equations (1) and (2) may be rewritten as:

∂j(σij + σ0
ij) = 0 , (5)

and

εjkl∂k(βil + βP
il) = 0 , (6)

with
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∂jσ
0
ij = fi , (7)

and

εjkl∂kβP
il = −αij . (8)

The quantity βP is the well-known plastic distortion tensor (or eigendistortion tensor)
corresponding to the dislocation density tensor α. Note that the relation (8) has the status
of the definition of α in the linear continuum theory of dislocations (see [17]). Moreover,
Equations (2) and (8) imply a divergence-free dislocation density tensor

∂jαij = 0 , (9)

which means that dislocations do not end inside the medium. The quantity σ0 is less
known but is important for the modelling of line forces (see, e.g., Refs. [19,21,22]) and for
stress functions in the presence of body forces (e.g., Ref. [23]).

On the one hand, Equation (6) is satisfied by deriving the total distortion tensor
(β + βP) from a displacement vector u according to:

βij + βP
ij = ∂jui , (10)

which is nothing but the additive decomposition of the displacement gradient. If the dis-
placement field u possesses a jump, then its gradient can be decomposed into a continuous
part β, the elastic distortion, and a discontinuous part βP, the plastic distortion. Using
Equation (10), the elastic distortion tensor can be written in terms of the displacement field
and the plastic distortion tensor:

βij = ∂jui − βP
ij , (11)

where βP is a particular solution of (8). Of course, the decomposition (11) satisfies the
incompatibility condition (2) using Equation (8).

On the other hand, Equation (5) is satisfied by deriving (σ + σ0) from an asymmetric
stress function tensor of first order Φ as:

σij + σ0
ij = εjkl∂kΦil . (12)

If the stress function tensor Φ possesses a jump, then its curl can be decomposed into
a continuous part σ and a discontinuous part σ0. In particular, the stress functions of the
straight line forces possess a jump [3,7,13]. Using Equation (12), the stress tensor can be
written as (see also [23]):

σij = εjkl∂kΦil − σ0
ij , (13)

where σ0 is a particular solution of (7). Of course, the decomposition (13) satisfies the
force equilibrium Equation (1) using Equation (7). If a body force exists, the stress function
tensor, Φ, has to be combined with the tensor σ0 as given in Equation (13).

From Equation (1), an inhomogeneous Navier equation for the elastic distortion follows:

Cijkl∂j∂l βkm = −εmlnCijkl∂jαkn − ∂m fi , (14)

where the dislocation density tensor α and the body force vector f are the source fields for
the elastic distortion tensor β. The solution of Equation (14) can be written as a convolution
integral as follows
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βim = εmnrCjkln∂kGij ∗ αlr + ∂mGij ∗ f j , (15)

where ∗ denotes the spatial convolution. This is the well-known Mura–Willis formula [24,25].
Here, Gij indicates the anisotropic elastic Green tensor satisfying the Navier equation

Cikln∂k∂nGl j(x− x′) + δij δ(x− x′) = 0 , (16)

where x ∈ R3, δij is the Kronecker delta and δ(.) denotes the Dirac delta function.

2.1. Displacement Field Due to Dislocations and Body Forces

The divergence from the right (right-div) on Equation (10) gives the following inho-
mogeneous Laplace equation (Poisson equation) for the displacement field u:

∆ui = ∂mβP
im + ∂mβim . (17)

Using the Green function of the Laplace operator (e.g., Ref. [26]):

∆G∆ = δ(x− x′) , (18)

the so-called F-tensor (see also [15,20,27])

Fmkij = −∂m∂kGij ∗ G∆ (19)

and substituting the Mura-Willis Formula (15) into Equation (17), the formal solution of u
is given by

ui = ∂mG∆ ∗ βP
im − εmnrCjklnFmkij ∗ αlr + Gij ∗ f j . (20)

This is the solution of the displacement vector u for given βP, α and f and is valid for
any distribution of dislocations and body forces. The first term in Equation (20) is a purely
geometric part because it does not depend on the elastic properties of the medium and
gives the solid angle in 3D (see [15]). Only the second and third parts depend on the elastic
properties of the material due to the appearance of the tensor of elastic constants and the
elastic Green tensor. Therefore, Equation (20) represents the generalized anisotropic Burgers
formula for dislocations and body forces. By means of Equation (20), the displacement
fields of a dislocation loop and a point force were given in [15,28,29], respectively.

2.2. Stress Functions Due to Dislocations and Body Forces

The curl from the right (right-curl) on Equation (12) gives rise to

εmnj∂n(σij + σ0
ij) = εmnjεjkl∂n∂kΦil = ∂m∂lΦil − ∆Φim . (21)

Imposing the side condition,

∂jΦij = 0 , (22)

we obtain an inhomogeneous Laplace equation (Poisson equation) for the stress func-
tion tensor,

∆Φij = −εjkl∂k(σil + σ0
il) . (23)

Using Equations (3) and (18), we find:

Φij = −εjkl∂k(σil + σ0
il) ∗ G∆ = −εjklCilmn∂kβmn ∗ G∆ − εjkl∂kσ0

il ∗ G∆ . (24)
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Substituting Equation (15) into Equation (24), the formal solution of Φ is given by:

Φij = −εjkl∂kG∆ ∗ σ0
il + εjklCilmnεnpqCrstpFskmr ∗ αtq + εjklCilmnFknmp ∗ fp . (25)

This is the solution of the stress function tensor Φ for given α, f and σ0 and is valid for
any distribution of dislocations and body forces. The first term in Equation (25) is a purely
geometric part because it does not depend on the elastic properties of the medium. The
second and third parts in Equation (25) depend on the elastic properties of the material due
to the appearance of the tensor of elastic constants and the elastic Green tensor contained
in the F-tensor. Using Equation (25), the stress function tensor of a dislocation loop was
given in [15]. The corresponding stress function tensor of a point force is given below.

Stress Functions of a Point Force

Let us calculate the stress function tensor of a point force explicitly in anisotropic
elasticity, missing in the scientific literature.

The body force vector of a point force located at the origin is given by:

fi = Fi δ(x1)δ(x2)δ(x3) , (26)

where Fi is the strength of the point force. Substituting Equation (26) into Equation (7), the
solution of Equation (7) can be written as:

σ0
i1 = Fi H(x1)δ(x2)δ(x3) = Fi

∫ ∞

0
δ(x1 − x′1)δ(x2)δ(x3)dx′1 . (27)

Here, H(.) denotes the Heaviside step function. The singular field σ0
i1 in Equation (27)

vanishes everywhere except in the positive x1-axis from the origin to infinity. The 3D Green
function of the Laplace operator reads (see, e.g., Ref. [26]),

G∆ = − 1
4πr

, (28)

where r =
√

x2
1 + x2

2 + x2
3. The 3D F-tensor is given by (see [15,20])

Fknmp = − 1
8π2r

∫ 2π

0
κkκn (κ κ)−1

mp dφ , (29)

where κi = ki/k and

(κ κ)ij = κkCikjlκl . (30)

If we substitute Equations (26)–(29) into Equation (25) and carry out the convolution
and differentiation, then the stress function tensor of a point force located at the origin
reads as:

Φij = −
Fi

4π
εjk1

xk
r(r− x1)

−
Fp

8π2r
εjklCilmn

∫ 2π

0
κkκn(κ κ)−1

mp dφ . (31)

It is interesting to note that the first part of Equation (31), which is the purely geometric
part, has the form of the potential of a Dirac string along the positive x1-axis (see [30–32]).

3. Generalized Plane Strain of Straight Dislocations and Straight Line Forces

In this Section, we consider straight dislocations and straight line forces with a line
direction parallel to the x3-axis belonging to the framework of a generalized plane strain,
which is 2D elasticity consisting of plane strain and anti-plane strain. In generalized plane
strain problems of anisotropic elasticity, all field functions must be independent of the
variable x3, all derivatives with respect to the x3-axis vanishes, ∂3 = 0 and it holds: x ∈ R2.
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Therefore, all fields of dislocations and line forces depend only on x1 and x2 and are
two-dimensional fields.

3.1. Anisotropic Elasticity of Generalized Plane Strain

For generalized plane strain, the solutions for the displacement vector and the stress
function tensor, Equations (20) and (25), reduce to:

ui = ∂αG∆ ∗ βP
iα + ε3αβCjαlγFβγil ∗ αj3 + Gij ∗ f j (32)

and

Φi3 = −ε3βα∂βG∆ ∗ σ0
iα + ε3βαCiαlγε3γδCrµjδFβµlr ∗ αj3 + ε3βαCiαlγFβγl j ∗ f j , (33)

where the Latin subscripts i, j, l, r take the values of 1, 2, 3, whereas the Greek subscripts
α, β, γ, δ, µ take the values of 1 and 2 only. Therefore, we have three displacement compo-
nents ui = ui(x1, x2) and three stress functions Φi3 = Φi3(x1, x2), which are given by the
convolution of the 2D Green functions G∆(x1, x2), Gij(x1, x2), the 2D F-tensor Fαβij(x1, x2)

with the source fields of straight dislocations αj3(x1, x2), βP
iα(x1, x2) and the source fields of

line forces f j(x1, x2), σ0
iα(x1, x2).

For generalized plane strain, the Green tensor of the Navier operator reads as (see
Equation (A9)):

Gij = −
1

(2π)2

∫ 2π

0
(κ κ)−1

ij ln |x · κ|dφ (34)

and the F-tensor is given by (see Equation (A14))

Fαβij =
1

(2π)2

∫ 2π

0
κακβ (κ κ)−1

ij ln |x · κ|dφ . (35)

Here, bracket symbols of the type (a b) denote:

(a b)ij = aαCiαjβbβ . (36)

The matrix (κ κ)−1 is the inverse of (κ κ). The 2D Green function of the Laplace
operator reads (see, e.g., Ref. [26]):

G∆ =
1

2π
ln |x| . (37)

3.2. Displacements and Stress Functions of Straight Dislocations and Line Forces

Consider line defects with line direction parallel to the x3-axis and defect surface in
the x1x3 half plane for positive x1 (x2 = 0, x1 > 0). For a straight dislocation with Burgers
vector bj located at (x1, x2) = (0, 0), the dislocation density and the plastic distortion are
given by (see also [19]):

αj3 = bjδ(x1)δ(x2) , (38)

βP
j2 = −bj H(x1)δ(x2) , (39)

satisfying Equation (8). For a straight dislocation with Equation (38), the Bianchi identity (9)
is automatically fulfilled. For a straight line force with strength Fj located at (x1, x2) = (0, 0),
the corresponding fields are given by (see also [19])

f j = Fjδ(x1)δ(x2) , (40)

σ0
j1 = Fj H(x1)δ(x2) , (41)
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satisfying Equation (7). Note that the 2D expressions (40) and (41) of a line force can
be directly derived from the 3D expressions (26) and (27) of a point force by the projec-
tion of the 3D fields onto the x1x2 plane, namely: f j(x1, x2) =

∫ ∞
−∞ f j(x1, x2, x3)dx3 and

σ0
j1(x1, x2) =

∫ ∞
−∞ σ0

j1(x1, x2, x3)dx3.
Equations (32) and (33) can be written as matrix equation:(

ui
Φi3

)
=

(
ε3αβCjαlγFβγil Gij

ε3βαCiαlγε3γδCrµjδFβµlr ε3βαCiαlγFβγl j

)
∗
(

αj3
f j

)
+

(
δij ∂2G∆ 0ij

0ij δij ∂2G∆

)
∗
(

βP
j2

σ0
j1

)
. (42)

Equation (42) can be further performed for straight dislocations and line forces. First,
substituting Equations (37), (39) and (41) into the second part of Equation (42). The
convolution of the second part of Equation (42) can be computed using the relation (see
also [8]):

−∂2G∆ ∗
(

H(x1)δ(x2)
)
=

ω

2π
, (43)

where ω is the polar angle in the x1x2 plane with range 0 < ω ≤ 2π. Second, substituting
Equations (34), (35), (38) and (40) into the first part of Equation (42) and performing the
convolution, we obtain:(

ui
Φi3

)
=

[
1

(2π)2

∫ 2π

0

(
ε3αβκβCjαlγκγ(κ κ)−1

il (κ κ)−1
ij

ε3βαCiαlγε3γδCrµjδκβκµ(κ κ)−1
lr ε3αβκβCiαlγκγ(κ κ)−1

l j

)
ln |x · κ|dφ

](
bj
−Fj

)
+

ω

2π

(
δij 0ij
0ij δij

)(
bj
−Fj

)
. (44)

The first part of Equation (44) can be further simplified as follows. Choosing κ = n
and ε3αβκβ = ε3αβnβ = mα. Therefore, m and n are two orthogonal unit vectors in the
x1x2 plane. The north-west (NW) block of the matrix in the integrand in Equation (44) can
be rewritten:

ε3αβκβCjαlγκγ(κ κ)−1
il = mαCjαlγnγ(n n)−1

il = (m n)jl(n n)−1
il = (n n)−1

il (n m)l j , (45)

using the relation (36). The north-east (NE) block of the matrix in the integrand in Equa-
tion (44) is simply (κ κ)−1

ij = (n n)−1
ij . The south-east (SE) block of the matrix in the

integrand in Equation (44) reduces to

ε3αβκβCiαlγκγ(κ κ)−1
l j = mαCiαlγnγ(n n)−1

l j = (m n)il(n n)−1
l j . (46)

The south-west (SW) block of the matrix in the integrand in Equation (44) becomes

ε3βαCiαlγε3γδCrµjδ κβκµ(κ κ)−1
lr = CiαlβnβCjαrµnµ(n n)−1

lr − Ciαjα

= (m n)il(m n)jr(n n)−1
lr + (n n)il(n n)jr(n n)−1

lr − (m m)ij − (n n)ij

= (m n)il(n n)−1
lr (n m)rj − (m m)ij . (47)

Now, using the 6× 6 matrix N(φ), which is called the fundamental elasticity matrix
and is a function of the angle φ, of the following form (see, e.g., Refs. [2,11]):

N(φ) = −
(

(n n)−1 (n m) (n n)−1

(m n) (n n)−1 (n m)− (m m) (m n) (n n)−1

)
. (48)
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Equation (44) reduces to the following Burgers-like matrix equation for a straight
dislocation with Burgers vector b and a straight line force with strength F located at the
position (0, 0) in rather compact notation:(

u
Φ

)
=

[
ω

2π
I − 1

(2π)2

∫ 2π

0
N(φ) ln |x · n|dφ

](
b
−F

)
. (49)

Here, I is the 6 × 6 identity matrix. The 6 × 6 matrix N(φ) is periodic in φ with
periodicity π [3]. In Equation (49), it can be seen that the role of the solid angle is played
by the polar angle ω (see also [33]). In fact, the 3D solid angle Ω is reduced to the “2D
solid angle” −2ω (compare with the 3D result in [15]). Therefore, the 2D Burgers-like
Formula (49) is a decomposition into a purely geometric term, ω, and a line integral over
the unit circle with elastic constants in the matrix N(φ) and a logarithmic function ln |x · n|.
Equation (49) gives the solution of finding [u(x1, x2), Φ(x1, x2)]

T as function of the sources
[b,−F]T given at the origin.

3.3. Relation to the Integral Formalism

Now, we derive from Equation (49) a matrix equation for the displacement and stress
function fields of a straight dislocation and a line force using polar coordinates in order
to connect it with the integral formalism. As usual in the integral formalism [9], it is
convenient to choose the following orientation of the coordinate system. The unit vectors
m and n are orthogonal to each other and orthogonal to t such that m× n = t. The line
defects run along an axis t which is in our case the x3-axis. The unit vectors m and n are
rotated around t by the angle φ against a fixed basis (m0, n0) (see Figure 1)

m = m0 cos φ + n0 sin φ , (50)

n = −m0 sin φ + n0 cos φ . (51)

Similarly, the field vector x is given with respect to the fixed basis m0 and n0 and reads
as (see Figure 1):

x = r(m0 cos ω + n0 sin ω), (52)

with r = |x|. The inner product between the vectors x and n is given by:

x · n = r sin(ω− φ) = −r sin(φ−ω) (53)

so that the ln-term in Equation (49) can be rewritten as:

ln |x · n| = ln r + ln | sin(φ−ω)| . (54)

m0

n0

m

n
x

φ

ω

Figure 1. The unit vectors m and n are to be turned anticlockwise from m0 and n0 by an angle φ, and
the field vector x with angle ω.
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The substitution of Equation (54) into Equation (49) gives a split into a radial part, ln r,
and a part depending on the angle ω, namely(

u(r, ω)
Φ(r, ω)

)
= − 1

(2π)2

[ ∫ 2π

0
N(φ)dφ ln r− 2πω I

+
∫ 2π

0
N(φ) ln | sin(φ−ω)|dφ

](
b
−F

)
. (55)

In order to simplify the ln sin-term, we use the integral equation for N given by Lothe [11]
(see Appendix C)

−P
∫ 2π

0
N(φ) cot(φ−ω)dφ = 2πI + N(ω)

∫ 2π

0
N(φ)dφ , (56)

where the left-hand side of Equation (56) is a principal-value integral. After the integration
over ω, the following integral equation is obtained (see also [34]):∫ 2π

0
N(φ) ln | sin(φ−ω)|dφ = 2πωI +

(∫ ω

0
N(φ)dφ

) ∫ 2π

0
N(φ)dφ . (57)

If we substitute Equation (57) into Equation (55), we obtain the six-dimensional
displacement-stress function vector of a straight dislocation with Burgers vector b and a
line force with strength F located at the position (0, 0) known in the integral formalism
(see, e.g., Refs. [3,12,35]):(

u(r, ω)
Φ(r, ω)

)
= − 1

(2π)2

[∫ 2π

0
N(φ)dφ ln r +

∫ ω

0
N(φ)dφ

∫ 2π

0
N(φ)dφ

](
b
−F

)
. (58)

Equation (58) is in agreement with the expression originally given by Kirchner [35]
(see also [3,12]). In this manner, Equation (58) represents the unification of the displacement
fields of a straight dislocation and a line force, given by Asaro et al. [6], and the stress
functions of a straight dislocation and a line force, given by Asaro et al. [7]. Equation (58)
is the solution of finding [u(r, ω), Φ(r, ω)]T as function of the sources [b,−F]T at the origin,
which was originally obtained in terms of a specifically developed 2D “integral theory”
without reference to the 3D solution, unknown at that time (see [2,6,7,35]). Moreover,
Kirchner and Bluemel [12] have shown that Equation (58) gives the correct displacement
field of straight dislocations in isotropic elasticity. Using the average value of N(φ), given
in Equation (A17), Equation (58) simplifies to:(

u(r, ω)
Φ(r, ω)

)
= − 1

2π

[
I ln r +

∫ ω

0
N(φ)dφ

]
N̄
(

b
−F

)
. (59)

Note that we have derived Equation (58) from the 3D solutions (20) and (25) via
Equation (49) in a straightforward way. Equation (58) represents a 2D Burgers-like formula
expressed in polar coordinates.

4. Discussion

In this work, we have derived a Burgers-like formula for straight dislocations and
straight line forces in the framework of anisotropic incompatible elasticity. For generalized
plane strain, the necessary Green functions were computed using the 2D Fourier transform.
Using the 2D Fourier transform, the 2D anisotropic Green tensor of generalized plane
strain has been computed as line integral over the unit circle, which is the 2D version
of the famous Lifshitz–Rosenzweig–Synge 3D anisotropic Green tensor. Using the 2D
anisotropic Green tensor of generalized plane strain, the displacements and stress functions
of a straight dislocation with Burgers vector b and a line force with strength F located
at the position (0, 0) have been derived in a form of 2D Burgers-like formula. Moreover,
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the Burgers-like formula can be connected with the integral formalism. In particular, the
integral formalism, specifically developed for the 2D situation, turns out to be a disguised
2D inverse Fourier transform. Rewriting the 2D Burgers-like formula in polar coordinates
gives, in a straightforward way, the known expressions of the so-called integral formalism.
It became obvious that the φ-integral representation in the integral formalism is nothing
but the polar angle in the 2D Fourier transform in polar coordinates of the 2D Green tensor.

An extension of the presented sextic (6 × 6) formalism of anisotropic elasticity
toward the decadic (10 × 10) formalism of piezoelectric piezomagnetic elastic me-
dia [36] and piezoelectric-piezomagnetic-magnetoelectric elastic media [37] is possible
and straightforward.
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Appendix A. 2D Anisotropic Green Tensor of the Navier Operator for Generalized
Plane Strain

For generalized plane strain, the 2D Green tensor Gij of the anisotropic Navier operator

Lil = Ciαlβ∂α∂β , (A1)

which is a linear elliptic differential operator of second order, is defined by

Ciαlβ∂α∂βGl j(x− x′) + δij δ(x− x′) = 0 , x ∈ R2 (A2)

with i, j, l = 1, 2, 3 and α, β = 1, 2. Using 2D Fourier transform, Equation (A2) becomes

CiαlβkαkβĜl j(k) = δij , k ∈ R2 . (A3)

Therefore, the 2D Fourier transform of the Green tensor reads as

Ĝij(k) =
1
k2 (κ κ)−1

ij , (A4)

where κ denotes the unit vector in the k1k2 plane of the 2D Fourier space defined by
κ = k/k with k = |k|. For generalized plane strain, the matrix (κ κ)−1

ij is the inverse of
(κ κ)ij, defined by

(κ κ)ij = καCiαjβκβ . (A5)

It can be seen that in the Fourier space, Gij(k) is a homogeneous function of k of
degree −2, namely 1/k2.

The 2D Green tensor in real space is obtained by the inverse Fourier transform of
Equation (A4):

Gij(x) =
1

(2π)2

∫
R2

(κ κ)−1
ij cos(k · x)

k2 d2k

=
1

(2π)2

∫ 2π

0
(κ κ)−1

ij

∫ ∞

0

cos(k κ · x)
k

dk dφ . (A6)
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In Equation (A6), d2k = k dk dφ indicates the 2D volume element in Fourier space in
polar coordinates, and φ (0 < φ ≤ 2π) is an appropriate polar angle scanning a unit circle
κ2 = 1. The integration in k is performed with the relation∫ ∞

0

cos(k κ · x)
k

dk =
1
2

∫ ∞

−∞

1
k

eik κ·x dk (A7)

and the principal value integral (see Equation (32) in Section 9 in [26])

P
∫ ∞

−∞

1
k

eikt dk = −2γ− 2 ln |t| , (A8)

where γ denotes the Euler constant and P means the principal value. The constant term
can be neglected for the Green tensor. Using Equations (A7) and (A8), the 2D Green
function (A6) can be expressed as integral over the unit circle in Fourier space

Gij(x) = − 1
(2π)2

∫ 2π

0
(κ κ)−1

ij ln |x · κ|dφ . (A9)

Because κ(φ) varies with φ, the integrand (κ κ)−1
ij is a function of the integration vari-

able φ. Note that the Green tensor (A9) is in agreement with Gel’fand and Shilov [38] using
generalized functions (Equations (3) and (7) on page 129 in [38]) and with the 2D elastostatic
Green function for anisotropic elasticity obtained by Wang and Achenbach [39], Wang [40]
using the technique of Radon transform.

Recasting Equation (A9) as a line integral, Gij(x) can also be written as

Gij(x) = − 1
(2π)2

∮
S1
(κ κ)−1

ij ln |x · κ|ds(κ) (A10)

with the unit circle

S1 = {κ|κ ∈ R2, |κ| = 1} .

The integral in Equation (A10) corresponds to a line integral along s(κ) around the
unit circle S1.

Therefore, Equation (A9) gives the 2D Green tensor of the anisotropic Navier operator
for generalized plane strain, whereas the 3D Green tensor of the anisotropic Navier operator
was given by Lifshitz and Rosenzweig [28], and Synge [29] (see also [18,41]). Moreover, a
closed form representation of the Green tensor for the infinite 2D orthotropic material is
given by Michelitsch and Levin [42].

Appendix B. 2D Anisotropic F-Tensor for Generalized Plane Strain

For generalized plane strain, the F-tensor is defined as

Fαβij = −
[
∂α∂βGij

]
∗ G∆ . (A11)

The 2D Fourier transform of F-tensor is given by

F̂αβij(k) = −
1
k2 κακβ(κ κ)−1

ij . (A12)

As the Fourier transform of the Green tensor (A4), F-tensor (A12) varies like k−2 and
also its 2D inverse Fourier transform can be computed
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Fαβij(x) = − 1
(2π)2

∫
R2

κακβ(κ κ)−1
ij cos(k · x)
k2 d2k

= − 1
(2π)2

∫ 2π

0
κακβ(κ κ)−1

ij

∫ ∞

0

cos(k κ · x)
k

dk dφ (A13)

using Equations (A7) and (A8). In this manner, the 2D F-tensor reduces to an integral over
the unit circle in Fourier space as

Fαβij(x) =
1

(2π)2

∫ 2π

0
κακβ (κ κ)−1

ij ln |x · κ|dφ . (A14)

The F-tensor (A14) can also be written as line integral

Fαβij(x) =
1

(2π)2

∮
S1

κακβ (κ κ)−1
ij ln |x · κ|ds(κ) . (A15)

On the other hand, the 3D F-tensor of anisotropic elasticity can be found in [15,20]
(see also Equation (29)).

Appendix C. Lothe’s Integral Equation

The 6× 6 matrix N(φ) is a function of an angle φ and satisfies the following eigenvalue
equation (see [9,11])

N(φ) ξα = pα(φ) ξα , α = 1, . . . , 6 (A16)

with the six-dimensional eigenvector ξα and the six eigenvalues pα(φ). The average value
of N(φ) is given by

N̄ =
1

2π

∫ 2π

0
N(φ)dφ (A17)

and the average value of pα(φ) reads

p̄α =
1

2π

∫ 2π

0
pα(φ)dφ , p̄α = ± i , (A18)

satisfying the eigenvalue equation

N̄ ξα = ±i ξα . (A19)

The combination of Equations (A16) and (A17) leads to

N(φ) N̄ ξα = ± ipα(φ) ξα . (A20)

Substituting the integral equation for pα(φ) (see [9,11])

± ipα(φ) = −1− 1
2π
P
∫ 2π

0
pα(θ) cot(θ − φ)dθ (A21)

into Equation (A20), it gives

N(φ) N̄ ξα = −
[

1 +
1

2π
P
∫ 2π

0
pα(θ) cot(θ − φ)dθ

]
ξα

= −
[

I +
1

2π
P
∫ 2π

0
N(θ) cot(θ − φ)dθ

]
ξα . (A22)
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Finally, for a complete set of eigenvectors, the following equation is valid

− 1
2π
P
∫ 2π

0
N(θ) cot(θ − φ)dθ = I + N(φ) N̄ , (A23)

which is Lothe’s integral equation for the matrix N(φ) given in [11]. The advantage of
the use of Equation (A23) is that the principal value integral on the left-hand side can be
expressed in terms without the principal value inconvenience on the right-hand side.
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